SlideShare a Scribd company logo
1 of 100
Download to read offline
APCI- and APPI-GC/MS-MS for
Characterization of the Macondo Wellhead
Crude Oil and the Oil Spill
Vlad Lobodin
1
National High Magnetic Field Laboratory, Tallahassee, FL
Future Fuels Institute, Florida State University, Tallahassee, FL
Gerald Herbert, AP
April 20, 2010
April 22, 2010
Gerald Herbert, AP
NASA
May 24, 2010
~5 million barrels of crude oil have
leaked from the Macondo well
Michael Spooneybarger, AP
Pensacola Beach, Florida June 23, 2010
the inside of tarballs is saturated
with less weathered petroleum
compounds
Tarballs collected from beach
400 600 800 1000
m/z
Macondo Wellhead Oil
13,700 ± 80 Peaks ≥ 6σ
(+) ESI 9.4 FT-ICR MS
Pensacola Beach
32,232 ± 488 Peaks ≥ 6σ
(+) ESI 9.4 FT-ICR MS
High Resolution FT-ICR
Mass Spectrometry: 20 < C# < 100
Biomarker Region
Biomarker Region
1920
6920
16920
11920
8
6
4
2
0
1920
6920
16920
11920
8
6
4
2
0
1st Dimension
Retention Time
(seconds)
2nd Dimension
Retention Time
(seconds)
Pensacola Beach
Macondo Wellhead Oil
Comprehensive Two-dimensional
Gas Chromatography (GC×GC)
C8-C37, Volatiles
B.M. Ruddy et. al., Energy Fuels, 2014, 28 (6), pp 4043–4050
m/z 500.5500.4500.3
N1O1
N1
O1S1
13C1
N1O1
N1
N1O1 N1S1
A) Macondo Well Oil
10 Peaks across 250 mDa
O1
13C1
O2
13C1N1O2
H1C1
13C1O1
13C1
O2
13C1
N1O2
N1O3
O3
13C1
B) Pensacola Beach
32 Peaks across 250 mDa
(+) ESI 9.4 T FT-ICR MS
C14H30
C16H34
C18H38
C25H52
C30H62
C20H42
50ºC(3 min)- 3ºC/min- 300ºC
GC/MS of “Macondo crude oil” NIST 2779
(Total Ion Chromatogram)
GCxGC/TOF-MS of “Macondo crude oil” NIST 2779
Simulated Distillation for Macondo Well Petroleum (ASTM D-7169)
Temperature (°C)
%Recovered
0
10
20
30
40
50
60
70
80
90
100
0 100 200 300 400 500 600 700 800
More than 40 % of the Macondo
petroleum components cannot be
characterized by conventional
GC-based techniques
FT-ICR MS
Reddy, C.M., et al., PNAS, 2011, 1-6
GC Amenable
biomarkers
74% saturated
16% aromatic
10% polar
Macondo well
(Deepwater Horizon)
saturated
aromatic
polar
(resins / asphaltene)
Reddy et al. (2011) PNAS
“Petroleome”
Elemental composition
Structure
MW distribution
S- 0.3%
V- 52 ppm
Ni- 24 ppm
9.4 Tesla
FT-ICR MS
14.5 Tesla
FT-ICR MS
FT-ICR FACILITIES
N
HN
N
S
COOH
(+) (-)
(4X difference in pKa)
Analyte Ionization (+) ESI and (-) ESI
500
m/z
105,817 peaks > 6σ
500 < m/z < 2000
750 1000 1250 1500 1750 2000
(+) ESI FT-ICR MS of De-Asphalted Oil”
700.70700.65700.60700.55700.50700.45700.40
93.9 mDa
m/z
1,000900800700600500400300
(+) ESI FT-ICR MS
Crude Oil
36.4 mDa
8.2 mDa
3.4 mDa
17.1 mDa
C3 / SH4
N / 13CH
C / H12
O / CH4
13C2 / C2H2
N13C / C2H3
8.9 mDa
Broadband Positive ESI FT-ICR Mass Spectrum of Crude Oil
462.1345
m/z
464463462
m/z 462.13489
[ C27 H24 N4
58Ni ]+•
(+80ppb)
m/z 462.13432
[ C30 H24 N1 S2 ]+•
(+300ppb)
570 µDa
Theoretical Abundance 2.6%
Experimental Abundance 1.9%
N
N
N
N
OV
DBE = 18
58Ni
Mass e- 548 µDa
Direct Speciation of Metalloporphyrins in Crude Oil
1H = 1.007825
12C= 12.00000
Mass Defect
1
H
2
H
13
C
14
N 15
N12
C
16
O
19
F
17
O
18
O
31
P 32
S
33
S 34
S 36
S
35
Cl 37
Cl
79
Br
81
Br
127
I
Nuclide
Massdefect,mDa
14N = 14.003074
16O= 15.994915
1. Carbon Number
2. Heteroatom Composition
3. Aromaticity
m/z 704.53510
[C50H72S1]+•
800700600500400
*
m/z
m/Δm50%
100 - 400 ppb
DBE = C –
H
2
N
2
+ + 1
McLafferty & Turecek Int. Mass Spectra, 1993
[Z = -2(DBE) + n + 2]
Carbon Number
DBE
S1 Class
Relative Abundance (% total)
40
30
20
10
0
20 40 60 80
Workflow for High Resolution “Petroleomics”
S
CH3
Isomeric structure for S-compounds
S
CH3
C1-dibenzothiophenes (4 isomers)
S
CH3
S
CH3
1-methyl-dibenzothiophene 4-methyl-dibenzothiophene3-methyl-dibenzothiophene2-methyl-dibenzothiophene
C1-benzothiophenes (6 isomers)
C2-dibenzothiophenes (26 isomers):
22 dimethyl-dibenzotiophene isomers and 4 ethyl-dibenzotiophene isomers
S
CH3
S
CH3
2-methyl-
benzothiophene
S
CH3
S
CH3
3-methyl-
benzothiophene
4-methyl-
benzothiophene
5-methyl-
benzothiophene
SCH3
6-methyl-
benzothiophene
S
CH3
7-methyl-
benzothiophene
Benzonaphthotiophenes
S
S S
Benzo[b]naphtho[1,2-d]thiopheneBenzo[b]naphtho[2,3-d]thiopheneBenzo[b]naphtho[2,1-d]thiophene
Petroleum Biomarkers: Hopanes and Steranes
Bacteriohopanetetrol
(hopanoid in prokaryotes)
Hopanes
A B
C
D
E
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19 20
21
22
23 24
25 26
27
28
30
29
31
32
33
34
35
C35H62O4
Cholesterol
steroid in eukaryotes
Steranes
A B
C D1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21 22
23
24
25 26
27
28
C27H46O
============================================================
29
M+•
4% of TIC
C27H46
EI mass spectrum of 17α (H)-22,29,30-tris-norhopane
Petroleum Biomarkers
SteranesHopanes
Multiple reaction monitoring mode
(MRM)
m/z 191
m/z 217
M+• → m/z 191 M+• → m/z 217
Waters Xevo TQ-S
Ion Source Diagram of APCI-GC/MS-MS
Corona Pin
Capillary
GC Column
Ionization
Chamber
Adapted from Waters Corporation
Ion source
Housing
Mass Spec
Heated Transfer Line
N2
+• + M M+• + N2
(Atmospheric
Pressure)
Charge Transfer
Protonation
======================================================
Ionization mechanisms:
Charge Transfer vs. Protonation
By courtesy of Waters Corporation
Phenanthrene 100 pg
100 105 110 115 120 125 130 135 140 145 150 155 160 165 170 175 180 185
%
0
100
100 105 110 115 120 125 130 135 140 145 150 155 160 165 170 175 180 185
%
0
100
100 105 110 115 120 125 130 135 140 145 150 155 160 165 170 175 180 185
%
0
100
179
178
178
179
178
179
m/z
Ionization mechanisms:
Charge Transfer vs. Protonation
“wet” source
“wet” source
“dry” source
M+•
[M+H]+
MW 178
Phenanthrene
M+•
[M+H]+
M+•
APCI-GC/MS-MS of 17α(H)-22,29,30-trisnorhopane
Product (daughter) scan from M+• (m/z 370)
M+•
Collision energy: 15 eV
Collision gas: Ar
C27H46
m/z
50 70 90 110 130 150 170 190 210 230 250 270 290 310 330 350 370
%
0
100
191
95
81
69
149
109
135
121
163
177
355 370
MRM transition: m/z 370 → 191
MS/MS spectrum of 17α(H)-22,29,30-trisnorhopane
MS/MS spectrum
from m/z 370
NIST library EI mass spectrum
17β(H)-22,29,30-trisnorhopane
The first match
Sum of 7 MRM transitions
17α(H)-22,29,30-trisnorhopane C27H46
17α(H),21β(H)-30-norhopane C29H50
17α(H),21β(H)-30-hopane C30H52
ααα 20R-cholestane C27H48
αββ 20R-cholestane C27H48
αββ 20R 24S-methylcholestane C28H50
ααα 20R 24R-ethylsholestane C29H52
17α(H),21β(H)-22R-homohopane C31H54
17α(H),21β(H)-22S-homohopane C31H54
αββ 20R 24R- ethylcholestane C29H52
APCI-GC/MS-MS of NIST2266
(hopanes & steranes standard)
R² = 0.9998
0
500000
1000000
1500000
2000000
0 100 200 300 400 500 600
pg
Calibration curve
17α(H),21β(H)-30-hopane
17α(H)-22,29,30-trisnorhopane
17α(H),21β(H)-hopane
17α(H),21β(H)-22S-homohopane 17α(H),21β(H)-22R-homohopane
17α(H),21β(H)-30-norhopane
APCI-GC/MS-MS of NIST2266. Hopanes.
m/z 370 → 191
m/z 398 → 191
m/z 412 → 191
m/z 426 → 191
αββ 20R-cholestane ααα 20R-cholestane
αββ 20R 24S-methylcholestane
αββ 20R 24R- ethylcholestane
ααα 20R 24R-ethylsholestane
APCI-GC/MS-MS of NIST2266. Steranes.
m/z 372 → 217
m/z 386 → 217
m/z 400 → 217
NIST2779 (Macondo crude oil)
Pricey samples from BP oil spill being sold to scientists
http://www.nola.com/news/gulf-oil-spill/index.ssf/2012/03/federal_government_sells_price.html
By Mark Schleifstein, NOLA.com | The Times-Picayune. March 08, 2012
It's likely to be one of the oddest ironies to emerge from the BP oil spill: the federal
government is selling tiny containers of oil siphoned from the Macondo well at a price
equal to $76.3 million a barrel. By comparison, a barrel of crude oil was selling for
$106 on Wednesday.
Of course, the BP oil is not being sold by the
barrel.
The National Institute of Standards and
Technology, an agency of the U.S. Department of
Commerce, is selling 1.2 milliliter bottles of the oil
to scientists who need it for comparison with
materials collected as part of the federal Natural
Resources Damage Assessment process. The
price: $480 for a set of five.
MS/MS conditions for acquisition of MRM transitions
Compound class MRM transition Dwell time, ms Collision
energy, eV
C27-Hopanes 370.30 > 191.10 50 15
C27-Steranes 372.30 > 217.10 50 20
C27-Steranes 372.30 > 218.10 50 20
C27-Steranes 372.30 > 259.20 50 20
C28-Hopanes 384.30 > 191.10 50 15
C28-Steranes 386.30 > 217.10 50 20
C28-Steranes 386.30 > 218.10 50 20
C28-Steranes 386.30 > 259.20 50 20
C29-Hopanes 398.30 > 191.10 50 15
C29-Steranes 400.30 > 217.10 50 20
C29-Steranes 400.30 > 218.10 50 20
C29-Steranes 400.30 > 259.10 50 20
C30-Hopanes 412.30 > 191.10 50 20
C30-Steranes 414.30 > 217.10 50 20
C31-Hopanes 426.30 > 191.10 50 20
C32-Hopanes 440.40 > 191.10 50 20
C33-Hopanes 454.40 > 191.10 50 20
C34-Hopanes 468.40 > 191.10 50 20
C35-Hopanes 482.40 > 191.10 50 20
APCI/GC-MS/MS of NIST2779 (Macondo crude oil)
Time, min
50.00 60.00 70.00 80.00 90.00 100.00 110.00 120.00
RA,%
0
100
Time
80.00 82.00 84.00 86.00 88.00 90.00 92.00 94.00
Hopanes: Summed Signals for C27-C35 (M+• → m/z 191)
C35
C34
C33
C32
C31
H30
H29
Ts
Tm
H31S
H31R
H32S
H32R H33S
H33R H34S
H34R
H35R
H35S
A B
C
D
E
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19 20
21
22
23 24
25 26
27
28 29
30
31
32
33
34
35
C29Ts
DH30
M30
m/z 372 → 217
m/z 386 → 217
m/z 372 → 217
βα
βα
αβ
αβ
βα
βα
αβ
αβ
αααS
βα
βα
αβ
αααS
αααR
αβ
Time
50.00 55.00 60.00 65.00 70.00 75.00 80.00
50.00 55.00 60.00 65.00 70.00 75.00 80.00
%
100
50.00 55.00 60.00 65.00 70.00 75.00 80.00
50.00 55.00 60.00 65.00 70.00 75.00 80.00
0
%
100
0
%
100
%
100
0
0
APCI/GC-MS/MS of NIST2779 (Macondo crude oil)
C27 -Diasteranes
C27-Steranes
C28 -Diasteranes
C28-Steranes
C29 -Diasteranes C29-Steranes
Sum of C27-C29 Steranes/Diasteranes
A B
C D1
2
3
4
5
6
7
8
9
10
11
12
13
14 15
16
17
18
19
20
21 22
23
24 25 26
27
28
29
αααS
αββR
αααR
αββS
αββR
αββS
αααR
αββR
αββS
0
0.4
0.8
1.2
1.6
2
βαC27/βαC29
Diasteranes
Ts/Tm
H29/H30
H32S/H32R
H33S/H33R
αββC27/αββC29
Steranes
H30/H31+H32+H33+H34+H35
NIST 2779 (Macondo crude oil)
0
0.4
0.8
1.2
1.6
2
Ts/Tm
H29/H30
H32S/H32R
H33S/H33R
H30/(H31+H32+H33+H34
+H35)
αββC27/αββC29
βαC27/βαC29
NIST2779 (Macondo crude oil)
Steranes
Diasteranes
SAM 1-18 collected
1-45 months after
the oil spill
"Megaplume" in the GC600 lease block:
Lat: 27° 22.466' N
Long: 90° 30.689'W
water depth: 1382m
Natural Oil Seeps (GC600, Megaplume)
Natural oils seeps in the Gulf of Mexico - 140,000 tonnes per year (range of
80,000 to 200,000 tonnes).
Natural Oil Seeps. The Gulf of Mexico.
from www.sarsea.org
0
0.4
0.8
1.2
1.6
2
Ts/Tm
H29/H30
H32S/H32R
H33S/H33R
H30/(H31+H32+H33+H34+H3
5)
αββC27/αββC29
βαC27/βαC29
Steranes
Diasteranes
Megaplume Oil Seep (GC600)
0
0.4
0.8
1.2
1.6
2
Ts/Tm
H29/H30
H32S/H32R
H33S/H33RH30/(H31+H32+H33+H34+H35)
αββC27/αββC29
βαC27/βαC29
Steranes
Diasteranes
Blue crude (Anadarko Independence Hub)
0
0.5
1
1.5
2
0
0.5
1
1.5
2
0
0.5
1
1.5
2
0
0.5
1
1.5
2
SAM-1 SAM-2 SAM-3
SAM-4
SAM-6
0
0.5
1
1.5
2
SAM-7
0
0.5
1
1.5
2
SAM-8
0
0.5
1
1.5
2
0
0.5
1
1.5
2
SAM-5
βαC27/βαC29
Diasteranes
Ts/Tm
H29/H30
H32S/H32R
H33S/H33RH30/ΣH31‒H35
C27βα/C29βα
Diasteranes
Ts/Tm
H29/H30
H32S/H32R
H33S/H33RH30/ΣH31‒H35
C27βα/C29βα
Diasteranes
Ts/Tm
H29/H30
H32S/H32R
H33S/H33RH30/ΣH31‒H35
C27βα/C29βα
Diasteranes H29/H30
H32S/H32R
H33S/H33RH30/ΣH31‒H35
Ts/Tm
Ts/Tm
C27βα/C29βα
Diasteranes H29/H30
H32S/H32R
H33S/H33RH30/ΣH31‒H35
C27βα/C29βα
Diasteranes H29/H30
H32S/H32R
H33S/H33RH30/ΣH31‒H35
Ts/Tm
C27βα/C29βα
Diasteranes H29/H30
H32S/H32R
H33S/H33RH30/ΣH31‒H35
Ts/Tm
Ts/Tm
βαC27/βαC29
Diasteranes H29/H30
H32S/H32R
H33S/H33RH30/ΣH31‒H35
C27αββ/C29αββ
Steranes
C27αββ/C29αββ
Steranes
C27αββ/C29αββ
Steranes
C27αββ/C29αββ
Steranes
C27αββ/C29αββ
Steranes
C27αββ/C29αββ
Steranes
C27αββ/C29αββ
Steranes
C27αββ/C29αββ
Steranes
0
0.5
1
1.5
2
SAM-9
C27βα/C29βα
Diasteranes H29/H30
H32S/H32R
H33S/H33RH30/ΣH31‒H35
Ts/Tm
C27αββ/C29αββ
Steranes
0
0.5
1
1.5
2
SAM-10
0
0.5
1
1.5
2
SAM-11
0
0.5
1
1.5
2
SAM-12
0
0.5
1
1.5
2
SAM-13
0
0.5
1
1.5
2
SAM-14
0
0.5
1
1.5
2
SAM-15
SAM-16
0
0.5
1
1.5
2
0
0.5
1
1.5
2
SAM-17
C27βα/C29βα
Diasteranes H29/H30
H32S/H32R
H33S/H33RH30/ΣH31‒H35
Ts/Tm Ts/Tm
C27βα/C29βα
Diasteranes H29/H30
H32S/H32R
H33S/H33RH30/ΣH31‒H35
C27βα/C29βα
Diasteranes H29/H30
H32S/H32R
H33S/H33RH30/ΣH31‒H35
Ts/Tm
C27βα/C29βα
Diasteranes H29/H30
H32S/H32R
H33S/H33RH30/ΣH31‒H35
Ts/Tm Ts/Tm
C27βα/C29βα
Diasteranes H29/H30
H32S/H32R
H33S/H33RH30/ΣH31‒H35
C27βα/C29βα
Diasteranes H29/H30
H32S/H32R
H33S/H33RH30/ΣH31‒H35
Ts/Tm
C27βα/C29βα
Diasteranes H29/H30
H32S/H32R
H33S/H33RH30/ΣH31‒H35
Ts/Tm Ts/Tm
C27βα/C29βα
Diasteranes H29/H30
H32S/H32R
H33S/H33RH30/ΣH31‒H35
C27αββ/C29αββ
Steranes
C27αββ/C29αββ
Steranes
C27αββ/C29αββ
Steranes
C27αββ/C29αββ
Steranes
C27αββ/C29αββ
Steranes
C27αββ/C29αββ
Steranes
C27αββ/C29αββ
Steranes
C27αββ/C29αββ
Steranes
0
0.5
1
1.5
2
SAM-18
C27βα/C29βα
Diasteranes H29/H30
H32S/H32R
H33S/H33RH30/ΣH31‒H35
Ts/Tm
C27αββ/C29αββ
Steranes
0
0.4
0.8
1.2
1.6
2
βαC27/βαC29
Diasteranes
Ts/Tm
H29/H30
H32S/H32R
H33S/H33R
αββC27/αββC29
Steranes
H30/H31+H32+H33+H34+H35
NIST2779 (Macondo crude oil)
Blue crude (Independence Hub)
Megaplume oil seep (GC600)
SAM-10 (Pensacola Beach)
Overlaid spider diagrams
Correlation coefficients
Other case studies: Exxon Valdez oil spill
from www.uaf.edu
Prince William Sound, Alaska
March 24, 1989. 258,000 barrels
25,500 peaks
150 < m/z < 850
850750650550450350250150
m/z
(+) APPI FT-ICR MS of Macondo crude oil
Relative Abundance (% total) Carbon Number
10
15
5
0
20
DBE
10 20 30 40
S class (M+•)
50 60
DBE=12
S
DBE=9
R
10 20 30 40 50 60
25
30
HC class (M+•)
DBE=10
S
R
R
(+) APPI FT-ICR MS of Macondo crude oil
Mass Spec
UV-lamp
(Atmospheric
Pressure)
Heated Transfer Line
Capillary
GC Column
Ionization
Chamber
Ion source
Housing
APPI-GC/MS Ion Source Diagram
Kr UV-lamp
Atmospheric Pressure PhotoIonization (APPI)
Spectral distribution of a Krypton lamp
E=10.6 eV, λ= 117 nm
E=10.0 eV, λ= 124 nm
M+•M
hν
hν > IE(M)
Ionization energies, IE (eV)
IE(N2) = 15.6 eV
IE(H2O)= 12.6 eV
IE(O2) = 12.1 eV
IE(C6H6) = 9.2 eV
IE(Toluene)= 8.8 eV
IE(Naphthalene) = 8.1 eV
IE (Phenanthrene) = 7.9 eV
IE (Thiophene) = 8.9 eV
IE (DBT) = 8.0 eV
IE(Alkanes) ~ 10 eV
- ē
100 105 110 115 120 125 130 135 140 145 150 155 160 165 170 175 180 185 190
%
0
100
178
m/z
APPI-GC/MS. Mass Spectrum of Phenanthrene
M+•
MW 178
IE = 7.9 eV
Phenanthrene (20 pg injected)
M+•M
hν
time
5.00 6.00 7.00 8.00 9.00 10.00 11.00 12.00 13.00 14.00 15.00 16.00 17.00
%
0
100
5.00 6.00 7.00 8.00 9.00 10.00 11.00 12.00 13.00 14.00 15.00 16.00 17.00
%
0
100
APPI-GC/MS vs APCI-GC/MS of Phenanthrene
APCI-GC/MS
m/z 178 →m/z 152
APPI-GC/MS
m/z 178 → m/z 152
S/N 4160
S/N 32830
APPI-GC/MS of Aromatic compounds
M+•
M+•
M+•
MW 168
IE = 8.1 eV
MW 167
IE = 7.6 eV
MW 184
IE = 7.9 eV
Time
10.00 20.00 30.00 40.00 50.00 60.00 70.00 80.00 90.00
%
0
100
Acenaphthylene
Naphthalene
Acenaphthene
Fluorene Anthracene
Benz[a]anthracene
Fluoranthene
Pyrene
Phenanthrene
Chrysene
Benzo[b]fluoranthene
Benzo[k]fluoranthene
Dibenz[a,h]anthracene
Benzo[g,h,i]perylene
Benzo[a]pyrene
Indeno[1,2,3-cd]pyrene
Boiling T 500 °C
APPI-GC/MS of 610 PAH Calibration Mix A
610 PAH Calibration Std (x 1000 dilution)
Final concentration: 500-1000 ng/mL
APPI/GC-MS/MS of NIST2779 (Macondo crude oil)
S
Me
Me
S
APPI with Argon lamp
Ar UV-lamp
E=11.6 eV, λ= 106.7 nm
E=11.8 eV, λ= 104.8 nm
Spectral distribution
of Ar lamp
0.105 ‒ 9 µm
LiF wavelength transmission range
17α(H),21β(H)-30-hopane
as internal standard
Environ. Sci. Technol. 1994, 28, 142-145
APPI(Ar)-GC/MS-MS. PAHs and PASHs ratios.
Depletion of PAHs and PASHs in Environmental
samples from AL-MS shore line.
Phen DBT C2-Phen C2-DBT C3-Phen C3-DBT Chrys
≈
100
NIST 2779
(DWH)
Jul, 2011 Feb, 2012 Jan, 2014
Depletion is relative to 17α(H),21β(H)-30-hopane (C30-Hopane)
 We first utilized AP-GC/MS for a trace analysis of petroleum
biomarkers from the Macondo crude oil and environmental
samples.
 We describe an Atmospheric Pressure PhotoIonization
(APPI) source that in combination with GC separation and
MS/MS analysis is an efficient method for characterization of
aromatic compounds in wellhead and spilled oil.
 Analysis of petroleum compounds with APGC/MS-MS
provides a sensitive analytical tool for targeted analysis,
source identification of the oil spill, and tracking a fate of oil
spill residues.
SUMMARY
FT-ICR Group, NHMFL
Thank you!
(-) UniSpray TQS mass spectrum of Macondo crude oil
(NIST 2779)
m/z
200 300 400 500 600 700 800 900 1000 1100 1200 1300 1400 1500 1600 1700 1800 1900
%
0
100
NEG_UNISPRAY-DWH_1%NH3_B 20 (0.335) Cm (14:143) MS2 ES-
1.28e5421.26
294.15
247.13
490.32
566.38
684.51
790.66
858.68
dioctyl sodium sulfosuccinate (DOSS)
[M-H]-
m/z
60 80 100 120 140 160 180 200 220 240 260 280 300 320 340 360 380 400 420 440
%
0
100
NEG_UNISPRAY-DWH_MS-MS-421 121 (2.028) Cm (116:128) Daughters of 421ES-
3.73e4421
81
m/z
120 140 160 180 200 220 240 260 280 300 320 340 360 380 400
%
0
100
NEG_UNISPRAY-DWH_MS-MS-421 121 (2.028) Cm (116:128) Daughters of 421ES-
904367
227
187
219
291
265
279
338313
298
391
375
404
(-) UniSpray MS/MS spectrum for [M-H]-
ion of dioctyl sodium sulfosuccinate (DOSS)
CID: 20 V; Collision gas: Ar
[M-H]-
[HSO3]-
m/z
200 300 400 500 600 700 800 900 1000 1100 1200 1300 1400 1500 1600 1700 1800 1900
%
0
100
POS_UNISPRAY_DWH_1%HCOOH_A 23 (0.386) Cm (23:84) MS2 ES+
1.82e6360
227
338
305
431
499
478450
567
520
635
586
703
677
839771
(+) UniSpray TQS mass spectrum of Macondo crude oil
(NIST 2779)
1 mg/mL Tol:MeOH (50:50)- 1% HCOOH
APCI-GC/MS conditions
Mass spectrometer – Waters Xevo TQ-S
Tsource 150ºC
Corona 2.5 μA
Cone voltage 30V
Source offset 50V
Auxilliary gas (N2) 200 L/hr
Cone gas (N2) 250 L/hr
Collision gas Ar
Gas chromatograph –7890
Tinj=300ºC
Column: MXT-5 (or MXT-1), 60m × 0.25mm × 0.25 µm
Carrier gas: He
Flow rate: 1.2 mL/min
Split ratio: 1:10
Oven: 50ºC - 20ºC/min -150ºC- 2ºC/min - 350ºC (25 min)
Transfer Line: 380ºC
Injected volume: 1 μL
APPI-GC/MS conditions
Mass spectrometer – Waters Xevo TQ-S
Tsource 150ºC
Kr UV lamp 10 eV (or Ar UV lamp 11.7 eV)
Cone voltage 30V
Source offset 50V
Auxiliary gas (N2) 200 L/hr
Cone gas (N2) 150 L/hr
Collision gas Ar
Gas chromatograph –7890
Tinj=300ºC
Column: MXT-5 (or MXT-1), 60m × 0.25mm × 0.25 µm
Carrier gas: He
Flow rate: 1.2 mL/min
Split ratio: 1:10
Oven: 50ºC - 20ºC/min -150ºC- 2ºC/min - 350ºC (25 min)
Transfer Line: 380ºC
Injected volume: 1 μL
APPI(Ar)-GC/MS-MS. PAHs and PASHs ratios.
NIST2279 (DWH) Jul 17, 2011 Feb 8, 2012 Jan 27, 2014
С2-Phen/C2-DBT 2.9 2.8 2.3 2.8
С3-Phen/C3-DBT 1.9 1.4 1.4 1.5
С2-Phen/C2-DBT and С3-Phen/C3-DBT ratios
SAM-1 (30°17'15.0”N, 87°28'44.6”W))on 04.05.2011,
SAM-2 (30°17'14.6”N, 87°28'50.2”W) on 04.06.2011,
SAM-3 (30°14'25.6”N, 87°44'14.8”W) on 07.17.2011
SAM-4 (29°10'29.3”N, 90°04'33.2”W) on 07.17.2011,
SAM-5 (30°17'18.4”N, 87°28'37.8”W) on 07.19.2011,
SAM-6 (30°14'48.4”N, 87°41'35.2”W) on 11.27.2011
SAM-7 (30°14'25.4”N, 87°44'15.2”W) on 11.28.2011,
SAM-8 (29°56'41.0”N, 88°49'27.0”W) on 11.28.2011,
SAM-9 (29°17'35.5”N, 90°29'17.5”W) on 05.31.2010,
SAM-10 (30°19'32.1”N, 87°10'30.5”W) on 06.23.1010,
SAM-11 (30°14'60.6”N, 88°53'21.1”W) on 02.09.2012,
SAM-12 (30°18'16.4”N, 87°23'20.9”W) on 02.07.2102,
SAM-13 (30°14'34.8”N, 88°42'59.1”W) on 02.08.2012,
SAM-14 (30°14'26.3”N, 87°44'16.9”W) on 08.31.2012,
SAM-15 (30°13'54.4”N, 88°53'47.0”W) on 02.09.21012,
SAM-16 (30°18'30.8”N, 87°22'16.3”W) on 02.07.2012,
SAM-17 (29°10'30.0”N, 90°04'33.6”W) on 07.31.2011,
SAM-18 (30°15'16”N, 88°7'50”W) on 01.27.2014,
Megaplume (27°22'27.96”N, 90°30'41.34”W) - depth – 1200 m, GC600.
Blue crude oil (28°05'89.0”N, 87°59'27.0”W).
Samples’ collection sites and time
Petroleum Biomarkers. Hopanes.
Bacteriohopanetetrol
(hopanoid in prokaryotes)
Hopanes
A B
C
D
E
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19 20
21
22
23 24
25 26
27
28
29
30
31
32
33
34
35
Over 150 distinct, naturally-occurring hopanoids have been identified in soils, sediments, and other
organic matter. Hopanoids have a fixed stereochemistry and differ in the orientation about Carbon-
17 and Carbon-21 (α or β) and Carbon-22 (R or S).
17β, 21β(H) is biological configuration
The order of thermodynamic stability of the 17-21 hopane isomers is
17α(H),21β(H) > 17β(H),21α(H) > 17α(H),21α(H) > 17β(H),21β(H)
22R is biological configuration.
17α(H),21β(H) –hopanes are the most stable. 17β(H),21α(H) are called moretanes.
22S/(22S+22R) ~ 0.58-0.62 for C31-hopane
C35H62O4
Cholesterol
Petroleum Biomarkers. Steranes.
steroid in eukaryotes Steranes
A B
C D1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21 22
23
24
25 26
27
28
29
C27H46O
5α,14α,17α(H)–cholestane-20R
biological configuration
5α,14β,17β(H)
stable configuration
14β,17β(H)/[14α,17α(H) + 14β,17β(H)] ~ 0.7 – Endpoint configuration
Diasteranes (rearranged steranes) - rearrangement product from sterol precursors through
diasterenes. The rearrangement involves migration of C-10 and C-13 methyl groups to C-5 and
C-14 and is favored by acidic conditions, clay catalysis, and/or high temperatures. Diasteranes
increase relative to steranes with thermal maturation and they are low in clay-poor carbonate
source rocks and related oils.
13β(H),17α – diasteranes 20S or 20R
Assigned Hopanes
18α(H)-22,29,30-trisnorhopane (Ts),
17α(H)-22,29,30-trisnorhopane (Tm),
17α(H),21β(H)-30-norhopane (H29),
18α(H),21β(H)-30-norneohopane (C29Ts),
17α(H)-diahopane (DH30),
17β(H),21α(H)-hopane (moretane, M30),
17α(H),21β(H)-hopane (H30),
17α(H),21β(H)-22S-30-homohopane (H31S),
17α(H),21β(H)-22R-30-homohopane (H31R),
17α(H),21β(H)-22S-30,31-bishomohopane (H32S),
17α(H),21β(H)-22R-30,31-bishomohopane (H32R),
17α(H),21β(H)-22S-30,31,32-trishomohopane (H33S),
17α(H),21β(H)-22R-30,31,32-trishomohopane (H33R),
17α(H),21β(H)-22S-30,31,32,33-tetrakishomohopane (H34S),
17α(H),21β(H)-22R-30,31,32,33-tetrakishomohopane (H34R),
17α(H),21β(H)-22S-30,31,32,33,34-pentakishomohopane (H35S),
17α(H),21β(H)-22R-30,31,32,33,34-pentakishomohopane (H35R).
Assigned Steranes and Diasteranes
13β(H),17α(H)-20S-diacholestane (C27βαS),
13β(H),17α(H)-20R-diacholestane (C27βαR),
13α(H),17β(H)-20S-diacholestane (C27αβS),
13α(H),17β(H)-20R-diacholestane (C27αβR),
5α(H),14α(H),17α(H)-20S-cholestane (C27αααS),
5α(H),14β(H),17β(H)-20R-cholestane (C27αββR),
5α(H),14β(H),17β(H)-20S-cholestane (C27αββS),
5α(H),14α(H),17α(H)-20R-cholestane (C27αααR),
13β(H),17α(H)-20S-24-methyldiacholestane (C28βαS),
13β(H),17α(H)-20R-24-methyldiacholestane (C28βαR),
13α(H),17β(H)-20S-24-methyldiacholestane (C28αβS),
13α(H),17β(H)-20R-24-methyldiacholestane (C28αβR),
5α(H),14α(H),17α(H)-20S-24-methylcholestane (C28αααS),
5α(H),14β(H),17β(H)-20R-24-methylcholestane (C28αββR),
5α(H),14β(H),17β(H)-20S-24-methylcholestane (C28αββS),
5α(H),14α(H),17α(H)-20R-24-methylcholestane (C28αααR),
13β(H),17α(H)-20S-24-ethyldiacholestane (C29βαS),
13β(H),17α(H)-20R-24-ethyldiacholestane (C29βαR),
13α(H),17β(H)-20S-24-ethyldiacholestane (C29αβS),
13α(H),17β(H)-20R-24-ethyldiacholestane (C29αβR),
5α(H),14α(H),17α(H)-20S-24-ethylcholestane (C29αααS),
5α(H),14β(H),17β(H)-20R-24-ethylcholestane (C29αββR),
5α(H),14β(H),17β(H)-20S-24-ethylcholestane (C29αββS),
5α(H),14α(H),17α(H)-20R-24-ethylholestane (C29αααR).
Biomarker ratios (Ts/Tm, H29/H30, H32S/H32R, H30/Σ(H31-H35), H33S/H33R,
C27αββ/C29αββ steranes, and C27βα/C29βα diasteranes)
Sample Ts/Tm H29/H30 H32S/H32R H33S/H33R H30/Σ(H31-H35)
C27αββ/C29αββ
steranes
C27βα/C29βα
diasteranes
NIST2779 1.42±0.05 0.52±0.04 1.48±0.03 1.46±0.06 0.65±0.03 0.68±0.06 0.94±0.02
SAM-1 1.49±0.02 0.56±0.03 1.36±0.01 1.42±0.07 0.65±0.06 0.68±0.02 0.95±0.03
SAM-2 1.43±0.05 0.58±0.02 1.41±0.13 1.35±0.05 0.62±0.05 0.66±0.04 0.89±0.04
SAM-3 1.49±0.10 0.55±0.01 1.36±0.03 1.34±0.10 0.66±0.02 0.72±0.03 0.91±0.04
SAM-4 1.47±0.03 0.59±0.02 1.39±0.03 1.40±0.12 0.61±0.01 0.73±0.03 0.93±0.02
SAM-5 1.49±0.08 0.57±0.01 1.31±0.07 1.37±0.05 0.62±0.03 0.69±0.02 0.90±0.02
SAM-6 1.56±0.03 0.50±0.05 1.32±0.03 1.33±0.03 0.68±0.01 0.71±0.01 0.97±0.02
SAM-7 1.53±0.09 0.53±0.06 1.35±0.09 1.30±0.01 0.60±0.01 0.67±0.05 0.94±0.05
SAM-8 1.30±0.09 0.62±0.06 1.40±0.09 1.32±0.10 0.46±0.06 0.42±0.02 0.56±0.03
SAM-9 1.43±0.11 0.49±0.03 1.39±0.11 1.49±0.11 0.67±0.05 0.74±0.06 0.96±0.02
SAM-10 1.46±0.07 0.53±0.05 1.42±0.07 1.46±0.08 0.66±0.06 0.64±0.07 0.90±0.08
SAM-11 1.42±0.10 0.52±0.05 1.41±0.08 1.32±0.12 0.60±0.02 0.66±0.07 0.91±0.09
SAM-12 1.48±0.08 0.56±0.06 1.50±0.12 1.39±0.11 0.54±0.05 0.58±0.06 0.89±0.08
SAM-13 1.50±0.07 0.51±0.05 1.46±0.08 1.36±0.09 0.60±0.07 0.62±0.06 0.96±0.06
SAM-14 1.49±0.09 0.49±0.05 1.45±0.13 1.52±0.14 0.63±0.06 0.64±0.05 1.00±0.07
SAM-15 1.33±0.05 0.59±0.05 1.57±0.15 1.52±0.15 0.55±0.05 0.58±0.06 0.92±0.09
SAM-16 1.49±0.10 0.54±0.06 1.46±0.14 1.40±0.12 0.60±0.06 0.54±0.05 0.92±0.07
SAM-17 1.37±0.05 0.54±0.03 1.41±0.09 1.49±0.07 0.46±0.04 0.40±0.03 0.60±0.04
SAM-18 1.47±0.12 0.59±0.06 1.52±0.09 1.45±0.14 0.55±0.05 0.59±0.06 0.81±0.80
Megaplume 1.00±0.05 1.01±0.05 1.48±0.05 1.44±0.08 0.52±0.04 0.84±0.07 0.82±0.08
Blue crude 0.15±0.04 0.74±0.05 0.54±0.05 0.94±0.05 2.00±0.10 0.11±0.03 0.84±0.06
M+•
4% of TIC
C27H46
EI mass spectrum of 17α (H)-22,29,30-tris-norhopane
M+•
7% of TIC
C27H48
EI mass spectrum of ααα 20R-cholestane
GC/MS of NIST 2779 (Macondo crude oil)
(Ion Chromatogram at m/z 191 and 217)
Ion Chromatogram at m/z 191
Ion Chromatogram at m/z 217
Hopanes
C30
C31
C32
C33
C29
C34
C35
Steranes
C28
C29
C29
C27
C29
C27
C29
C30
C27 C28 C29
C29
m/z 217
m/z 191Ts
Tm
Constant neutral loss scan
Multiple reaction monitoring mode
Precursor (parent) ion scan
Product (daughter) ion scan
MS/MS Modes
CH3
CH3
CH3
CH3CH3
R
M+•
+
•
•
+
+
R= H m/z 217
R= CH3 m/z 231
R= C2H5 m/z 245
R= C3H7 m/z 259
CH3
CH3
R
CH3
CH3
CH3
CH3
CH3
R
CH3
CH3
CH3
CH3
CH3
R
H
Fragmentation scheme for steranes
APCI-GC/MS-MS of 17α(H)-22,29,30-trisnorhopane
Product (daughter) scan from M+• (m/z 370)
M+•
Collision energy: 20 eV
Collision gas: Ar
C27H46
m/z
50 70 90 110 130 150 170 190 210 230 250 270 290 310 330 350 370
%
0
100
191
95
81
69
149
109
135
121
163
177
355 370
50 70 90 110 130 150 170 190 210 230 250 270 290 310 330 350 370
%
0
100
217
121
95
81
73
107 135
149
175
161
189 203
357
262 372
APCI-GC/MS-MS of ααα 20R-cholestane
Product (daughter) scan from M+• (m/z 372)
M+•
Collision energy: 20 eV
Collision gas: Ar
C27H48
m/z
MS/MS spectrum of ααα 20R-cholestane
MS/MS spectrum
from m/z 372
NIST library EI mass spectrum
of Cholestane
The first match
C35H72
C14H30
C16H34
C18H38
C25H52
C30H62
C20H42
Pr
Ph
Isoprenoid indices
Pr/Ph=1.33
n-C17/Pr=1.58
n-C18/Ph=1.67
Reported Pr/Ph ratio for MC252 is 0.9
Environ. Res. Lett. 2012, 7, 035302
GC/MS of “Macondo crude oil” NIST 2779
(Total Ion Chromatogram)
+
+
•
R= H m/z 217
R= CH3 m/z 231
R= C2H5 m/z 245
R= C3H7 m/z 259
R= H m/z 218
R= CH3 m/z 232
R= C2H5 m/z 246
R= C3H7 m/z 260
M+•
CH3
CH3
R
CH3
CH3
R
CH3
CH3
CH3
CH3CH3
R
Characteristic ions for steranes
(+) APPI FT-ICR MS of Macondo crude oil
25,500 peaks
150 < m/z < 850
850750650550450350250150
m/z
Relative Abundance (% total)
Carbon Number
10
15
5
0
20
DBE
10 20 30 40 50 60
25
30
HC class (M+•)
DBE=10
(+) APPI FT-ICR MS of Macondo crude oil
C1-phenathrene has 5 isomers
R
CH3CH3
1-methylphenanthrene 2-methylphenanthrene
CH3
3-methylphenanthrene
CH3
4-methylphenanthrene
CH3
9-methylphenanthrene
C2-phenanthrene has 30 isomers:
25 isomers for dimethyl-
phenanthrenes
5 isomers for ethyl-phenanthrenes
C#= 25-30
DBE
HC class (M+•)
DBE Distribution
Relative Abundance (% total)
Carbon Number
10
15
5
0
20
DBE
10 20 30 40
S class (M+•)
50 60
C#=19
DBE=12
DBE=6
S
R
25
30
S
C3
S
R
(+) APPI FT-ICR MS of Macondo crude oil
DBE=12
DBE=9
S
R
C2-dibenzothiophenes (26 isomers):
22 dimethyl-dibenzotiophene isomers and
4 ethyl-dibenzotiophene isomers
S
CH3
Isomeric structure for S-compounds
S
CH3
C1-dibenzothiophenes (4 isomers)
S
CH3
S
CH3
1-methyl-dibenzothiophene 4-methyl-dibenzothiophene3-methyl-dibenzothiophene2-methyl-dibenzothiophene
C1-benzothiophenes (6 isomers)
C2-dibenzothiophenes (26 isomers):
22 dimethyl-dibenzotiophene isomers and 4 ethyl-dibenzotiophene isomers
S
CH3
S
CH3
2-methyl-
benzothiophene
S
CH3
S
CH3
3-methyl-
benzothiophene
4-methyl-
benzothiophene
5-methyl-
benzothiophene
SCH3
6-methyl-
benzothiophene
S
CH3
7-methyl-
benzothiophene
Benzonaphthotiophenes
S
S S
Benzo[b]naphtho[1,2-d]thiopheneBenzo[b]naphtho[2,3-d]thiopheneBenzo[b]naphtho[2,1-d]thiophene
DBE
S class (M+•)
DBE Distribution
S
R
DBE=12
S
R
DBE=9
DBE=6
S
R
DBE=3
S
R
Steranes
Hopanes
Cholesterol
Petroleum Biomarkers
EukaryotesProkaryotes
APCI. Mechanism of Ionization (I)
Charge Transfer
• The nitrogen in the source is ionized by corona discharge by the
following series of reactions:
N2 + e ¯ → N2
+• + 2e ¯
N2
+• + 2N2 → N4
+• + N2
• If the nitrogen is dry the N2
+• and N4
+• act as reagent ions with charge
transfer being the most likely pathway for ionization.
N2
+•/ N4
+• + A → A+• + xN2 charge transfer
Where A represents an analyte molecule
• Charge transfer results in the formation of radical cations and is
particularly useful for the ionization of non-polars.
APCI. Mechanism of Ionization (II)
Proton Transfer
• In the presence of water vapour the following reactions then occur to
generate ionized water clusters:
N4
+• + H2O → H2O+• + 2 N2
H2O+• + H2O → H3O+ + OH•
H3O+ + H2O + N2 → H+(H2O)2 + N2
H2O + H+(H2O)2 → H+(H2O)3 + N2
• The last reaction can then proceed further with successive additions
of water
• Ionization of the analyte then occurs by proton transfer
H3O+ + A → AH+ + H2O proton transfer
• Proton transfer is the main ionization pathway associated with APCI
in LC/MS.
30 40 50 60 70 80 90 100 110 120 130 140 150 160 170
%
0
100
152
128
178
APPI-GC/MS-MS of Phenanthrene (m/z 178)
m/z
M+•
[M-C2H2]+•
[C10H8]+•
C14H10
-C2H2
Collision energy (Ekin) = 27 eV
Collision gas - Ar
Eint =Ekin
Mgas
Mion + Mgas
Product (daughter) scan from M+• (m/z 178)
MS/MS spectrum of Phenanthrene (m/z 178)
MS/MS spectrum
from m/z 178
NIST library EI mass spectrum
of Phenanthrene
The first match
Wavelength Transmission/Absorption Range
0.11 ‒ 7.5 µm
N2 < 0.1 O3 0.17-0.35 0.45-0.75
O2 < 0.245 H2O < 0.21 0.6-0.72
Gas Absorption wavelengths (μm)
MgF2 (window) wavelength transmission range
Sum of 7 MRM transitions
APPI(Ar)-GC/MS-MS of NIST2266
(hopanes & steranes standard)
20.00 30.00 40.00 50.00 60.00 70.00 80.00 90.00 100.00
%
0
100
time
IE(Alkanes) ~ 10 eV
αββ 20R-cholestane
ααα 20R-cholestane
17α (H)-22,29,30-
trisnorhopane
αββ 20R 24S-
methylcholestane
αββ 20R 24R-
ethylcholestane
17α(H),21β(H)-30-
hopane
17α(H),21β(H)-30-
norhopane
ααα 20R 24R-
ethylsholestane
17α(H),21β(H)-
22S-homophane
17α(H),21β(H)-22R-
homopane
20.00 30.00 40.00 50.00 60.00 70.00 80.00 90.00 100.00
%
0
100
time
Ar-lamp
hν =11.7 eV
S
17α(H),21β(H)-hopane
50 ng/mL
Peak area - 218
50 ng/mL
Peak area - 218
m/z 412 → m/z 191
dwell time – 250 ms
m/z 178 → m/z 152
dwell time – 250 ms
m/z 184 → m/z 152
dwell time – 250 ms
585 ng/mL
Peak area - 4900
APPI(Ar)-GC/MS-MS of Phenanthrene,
Dibenzothiophene, and 17α(H),21β(H)hopane
DBE
Carbon number
0 70 80 90605040302010 100 110 120
80
60
40
20
100
120
0
C# = 112
DBE = 100
C# = 54
DBE = 46
C# = 24
DBE = 19
C20
DBE = C –
H
2
N
2
+ + 1
Double Bond Equivalent (DBE)
n-hexane, C6H14, DBE=0 Cyclohexane, C6H12, DBE=1 Benzene, C6H6, DBE=4
V.V. Lobodin, et al. Anal. Chem. 2012, 84, 3410-3416

More Related Content

Viewers also liked

Rapid analysis of polymers and petroleum by Ion-mobility mass spectrometry
Rapid analysis of polymers and petroleum by Ion-mobility mass spectrometryRapid analysis of polymers and petroleum by Ion-mobility mass spectrometry
Rapid analysis of polymers and petroleum by Ion-mobility mass spectrometryWaters Corporation - Chemical Materials
 
Shale Oil: A new age of abundance?
Shale Oil: A new age of abundance?Shale Oil: A new age of abundance?
Shale Oil: A new age of abundance?APPGOPO
 
Defense Presentation 2014 October 14 New
Defense Presentation 2014 October 14 NewDefense Presentation 2014 October 14 New
Defense Presentation 2014 October 14 NewAmanda Jameer
 
Bài giảng mass spectrometer đhtp7
Bài giảng mass spectrometer đhtp7Bài giảng mass spectrometer đhtp7
Bài giảng mass spectrometer đhtp7Nhat Tam Nhat Tam
 
Designing Teams for Emerging Challenges
Designing Teams for Emerging ChallengesDesigning Teams for Emerging Challenges
Designing Teams for Emerging ChallengesAaron Irizarry
 

Viewers also liked (10)

Rapid analysis of polymers and petroleum by Ion-mobility mass spectrometry
Rapid analysis of polymers and petroleum by Ion-mobility mass spectrometryRapid analysis of polymers and petroleum by Ion-mobility mass spectrometry
Rapid analysis of polymers and petroleum by Ion-mobility mass spectrometry
 
Icp ms
Icp msIcp ms
Icp ms
 
Shale Oil: A new age of abundance?
Shale Oil: A new age of abundance?Shale Oil: A new age of abundance?
Shale Oil: A new age of abundance?
 
LCMS
LCMSLCMS
LCMS
 
Defense Presentation 2014 October 14 New
Defense Presentation 2014 October 14 NewDefense Presentation 2014 October 14 New
Defense Presentation 2014 October 14 New
 
Bài giảng mass spectrometer đhtp7
Bài giảng mass spectrometer đhtp7Bài giảng mass spectrometer đhtp7
Bài giảng mass spectrometer đhtp7
 
ICP-MS
ICP-MSICP-MS
ICP-MS
 
ABG Interpretation
ABG InterpretationABG Interpretation
ABG Interpretation
 
Mass spectrometry
Mass spectrometryMass spectrometry
Mass spectrometry
 
Designing Teams for Emerging Challenges
Designing Teams for Emerging ChallengesDesigning Teams for Emerging Challenges
Designing Teams for Emerging Challenges
 

Similar to APCI and APPI GC/MSMS for Characterization of the Macondo Wellhead Crude Oil and the Oil Spill

JCE - PNA - PANIC-2015 - Final 3x4 Poster 2-5-15
JCE - PNA - PANIC-2015 - Final 3x4 Poster  2-5-15JCE - PNA - PANIC-2015 - Final 3x4 Poster  2-5-15
JCE - PNA - PANIC-2015 - Final 3x4 Poster 2-5-15John Edwards
 
Native and IM-MS characterization of ADCs
Native and IM-MS characterization of ADCsNative and IM-MS characterization of ADCs
Native and IM-MS characterization of ADCsWaters Corporation
 
27a febex dp collaboration overview and related sfwst r and d activities zhen...
27a febex dp collaboration overview and related sfwst r and d activities zhen...27a febex dp collaboration overview and related sfwst r and d activities zhen...
27a febex dp collaboration overview and related sfwst r and d activities zhen...leann_mays
 
Edwards - NMR Presentation
Edwards - NMR PresentationEdwards - NMR Presentation
Edwards - NMR PresentationJohn Edwards
 
Polysaccharides based nanoparticles for drug delivery application
Polysaccharides based nanoparticles for drug delivery applicationPolysaccharides based nanoparticles for drug delivery application
Polysaccharides based nanoparticles for drug delivery applicationTomsk Polytechnic University
 
Combustion Turbine Efficiency Impact
Combustion Turbine Efficiency ImpactCombustion Turbine Efficiency Impact
Combustion Turbine Efficiency ImpactKatherine Corcoran
 
High Efficiency Multidimensional Gas Chromatography Coupled to Isotope Ratio ...
High Efficiency Multidimensional Gas Chromatography Coupled to Isotope Ratio ...High Efficiency Multidimensional Gas Chromatography Coupled to Isotope Ratio ...
High Efficiency Multidimensional Gas Chromatography Coupled to Isotope Ratio ...Elementar Analysensysteme GmbH
 
KEMET Webinar - Extended series for axial electrolytic capacitors
KEMET Webinar - Extended series for axial electrolytic capacitorsKEMET Webinar - Extended series for axial electrolytic capacitors
KEMET Webinar - Extended series for axial electrolytic capacitorsIvana Ivanovska
 
Improved Sensitivity and Dynamic Range Using the Clarus SQ 8 GC/MS System for...
Improved Sensitivity and Dynamic Range Using the Clarus SQ 8 GC/MS System for...Improved Sensitivity and Dynamic Range Using the Clarus SQ 8 GC/MS System for...
Improved Sensitivity and Dynamic Range Using the Clarus SQ 8 GC/MS System for...PerkinElmer, Inc.
 
John Edwards Online NMR - 1st PANIC - 10-16-12
John Edwards   Online NMR - 1st PANIC - 10-16-12John Edwards   Online NMR - 1st PANIC - 10-16-12
John Edwards Online NMR - 1st PANIC - 10-16-12John Edwards
 

Similar to APCI and APPI GC/MSMS for Characterization of the Macondo Wellhead Crude Oil and the Oil Spill (20)

JCE - PNA - PANIC-2015 - Final 3x4 Poster 2-5-15
JCE - PNA - PANIC-2015 - Final 3x4 Poster  2-5-15JCE - PNA - PANIC-2015 - Final 3x4 Poster  2-5-15
JCE - PNA - PANIC-2015 - Final 3x4 Poster 2-5-15
 
Chromatography: Meeting the Challenges of EU regulations with up-to-date Conf...
Chromatography: Meeting the Challenges of EU regulations with up-to-date Conf...Chromatography: Meeting the Challenges of EU regulations with up-to-date Conf...
Chromatography: Meeting the Challenges of EU regulations with up-to-date Conf...
 
Native and IM-MS characterization of ADCs
Native and IM-MS characterization of ADCsNative and IM-MS characterization of ADCs
Native and IM-MS characterization of ADCs
 
27a febex dp collaboration overview and related sfwst r and d activities zhen...
27a febex dp collaboration overview and related sfwst r and d activities zhen...27a febex dp collaboration overview and related sfwst r and d activities zhen...
27a febex dp collaboration overview and related sfwst r and d activities zhen...
 
POSTER FARAH-
POSTER FARAH-POSTER FARAH-
POSTER FARAH-
 
Edwards - NMR Presentation
Edwards - NMR PresentationEdwards - NMR Presentation
Edwards - NMR Presentation
 
Polysaccharides based nanoparticles for drug delivery application
Polysaccharides based nanoparticles for drug delivery applicationPolysaccharides based nanoparticles for drug delivery application
Polysaccharides based nanoparticles for drug delivery application
 
PhD work
PhD workPhD work
PhD work
 
Combustion Turbine Efficiency Impact
Combustion Turbine Efficiency ImpactCombustion Turbine Efficiency Impact
Combustion Turbine Efficiency Impact
 
High Efficiency Multidimensional Gas Chromatography Coupled to Isotope Ratio ...
High Efficiency Multidimensional Gas Chromatography Coupled to Isotope Ratio ...High Efficiency Multidimensional Gas Chromatography Coupled to Isotope Ratio ...
High Efficiency Multidimensional Gas Chromatography Coupled to Isotope Ratio ...
 
Robert Healy IAC 2010
Robert Healy IAC 2010Robert Healy IAC 2010
Robert Healy IAC 2010
 
KEMET Webinar - Extended series for axial electrolytic capacitors
KEMET Webinar - Extended series for axial electrolytic capacitorsKEMET Webinar - Extended series for axial electrolytic capacitors
KEMET Webinar - Extended series for axial electrolytic capacitors
 
hema h.pptx
hema h.pptxhema h.pptx
hema h.pptx
 
Advantage of HRAM
Advantage of HRAMAdvantage of HRAM
Advantage of HRAM
 
Improved Sensitivity and Dynamic Range Using the Clarus SQ 8 GC/MS System for...
Improved Sensitivity and Dynamic Range Using the Clarus SQ 8 GC/MS System for...Improved Sensitivity and Dynamic Range Using the Clarus SQ 8 GC/MS System for...
Improved Sensitivity and Dynamic Range Using the Clarus SQ 8 GC/MS System for...
 
2003-05-09_Ispra-ITALY
2003-05-09_Ispra-ITALY2003-05-09_Ispra-ITALY
2003-05-09_Ispra-ITALY
 
Chemistry
ChemistryChemistry
Chemistry
 
Rotor Insertion Flow Meter Technical Information
Rotor Insertion Flow Meter Technical InformationRotor Insertion Flow Meter Technical Information
Rotor Insertion Flow Meter Technical Information
 
John Edwards Online NMR - 1st PANIC - 10-16-12
John Edwards   Online NMR - 1st PANIC - 10-16-12John Edwards   Online NMR - 1st PANIC - 10-16-12
John Edwards Online NMR - 1st PANIC - 10-16-12
 
LPG SPEC k
LPG SPEC kLPG SPEC k
LPG SPEC k
 

More from Waters Corporation - Chemical Materials

Harnessing the power of CCS for routine screening applications on the UNIFI i...
Harnessing the power of CCS for routine screening applications on the UNIFI i...Harnessing the power of CCS for routine screening applications on the UNIFI i...
Harnessing the power of CCS for routine screening applications on the UNIFI i...Waters Corporation - Chemical Materials
 
Enhancing separations performance for chemicals and polymers presentation
Enhancing separations performance for chemicals and polymers presentationEnhancing separations performance for chemicals and polymers presentation
Enhancing separations performance for chemicals and polymers presentationWaters Corporation - Chemical Materials
 
Ion mobility & PetroOrg software : Novel techniques for petroleomics investig...
Ion mobility & PetroOrg software : Novel techniques for petroleomics investig...Ion mobility & PetroOrg software : Novel techniques for petroleomics investig...
Ion mobility & PetroOrg software : Novel techniques for petroleomics investig...Waters Corporation - Chemical Materials
 
Hyphenating Convergence Chromatography with UV and MS Detection for Compositi...
Hyphenating Convergence Chromatography with UV and MS Detection for Compositi...Hyphenating Convergence Chromatography with UV and MS Detection for Compositi...
Hyphenating Convergence Chromatography with UV and MS Detection for Compositi...Waters Corporation - Chemical Materials
 
Source, age, maturity and alteration characteristics of oil reservoirs using ...
Source, age, maturity and alteration characteristics of oil reservoirs using ...Source, age, maturity and alteration characteristics of oil reservoirs using ...
Source, age, maturity and alteration characteristics of oil reservoirs using ...Waters Corporation - Chemical Materials
 
Ion Mobility Petroleomics: Towards Isomeric Compositional Space Elucidation v...
Ion Mobility Petroleomics: Towards Isomeric Compositional Space Elucidation v...Ion Mobility Petroleomics: Towards Isomeric Compositional Space Elucidation v...
Ion Mobility Petroleomics: Towards Isomeric Compositional Space Elucidation v...Waters Corporation - Chemical Materials
 

More from Waters Corporation - Chemical Materials (15)

Analysis of Allergens in Perfumes, Cosmetics and Personal Care Products
Analysis of Allergens in Perfumes, Cosmetics and Personal Care ProductsAnalysis of Allergens in Perfumes, Cosmetics and Personal Care Products
Analysis of Allergens in Perfumes, Cosmetics and Personal Care Products
 
Mass Detection for the Cosmetics Industry
Mass Detection for the Cosmetics IndustryMass Detection for the Cosmetics Industry
Mass Detection for the Cosmetics Industry
 
Latest Advancements for Developing Next Generation Agrochemicals
Latest Advancements for Developing Next Generation AgrochemicalsLatest Advancements for Developing Next Generation Agrochemicals
Latest Advancements for Developing Next Generation Agrochemicals
 
Harnessing the power of CCS for routine screening applications on the UNIFI i...
Harnessing the power of CCS for routine screening applications on the UNIFI i...Harnessing the power of CCS for routine screening applications on the UNIFI i...
Harnessing the power of CCS for routine screening applications on the UNIFI i...
 
APGC-MS, ASAP-MS, and MAI-MS: Expanding the Horizons of API-MS
APGC-MS, ASAP-MS, and MAI-MS: Expanding the Horizons of API-MSAPGC-MS, ASAP-MS, and MAI-MS: Expanding the Horizons of API-MS
APGC-MS, ASAP-MS, and MAI-MS: Expanding the Horizons of API-MS
 
Enhancing separations performance for chemicals and polymers presentation
Enhancing separations performance for chemicals and polymers presentationEnhancing separations performance for chemicals and polymers presentation
Enhancing separations performance for chemicals and polymers presentation
 
Ion mobility & PetroOrg software : Novel techniques for petroleomics investig...
Ion mobility & PetroOrg software : Novel techniques for petroleomics investig...Ion mobility & PetroOrg software : Novel techniques for petroleomics investig...
Ion mobility & PetroOrg software : Novel techniques for petroleomics investig...
 
Hyphenating Convergence Chromatography with UV and MS Detection for Compositi...
Hyphenating Convergence Chromatography with UV and MS Detection for Compositi...Hyphenating Convergence Chromatography with UV and MS Detection for Compositi...
Hyphenating Convergence Chromatography with UV and MS Detection for Compositi...
 
Source, age, maturity and alteration characteristics of oil reservoirs using ...
Source, age, maturity and alteration characteristics of oil reservoirs using ...Source, age, maturity and alteration characteristics of oil reservoirs using ...
Source, age, maturity and alteration characteristics of oil reservoirs using ...
 
Ion Mobility Petroleomics: Towards Isomeric Compositional Space Elucidation v...
Ion Mobility Petroleomics: Towards Isomeric Compositional Space Elucidation v...Ion Mobility Petroleomics: Towards Isomeric Compositional Space Elucidation v...
Ion Mobility Petroleomics: Towards Isomeric Compositional Space Elucidation v...
 
50 years of size exclusion chromatography
50 years of size exclusion chromatography50 years of size exclusion chromatography
50 years of size exclusion chromatography
 
PetroOrg - Waters and Omics LLC collaborate to unlock Petroleomics
PetroOrg - Waters and Omics LLC collaborate to unlock PetroleomicsPetroOrg - Waters and Omics LLC collaborate to unlock Petroleomics
PetroOrg - Waters and Omics LLC collaborate to unlock Petroleomics
 
Routine impurity analysis with UPLC/MS and UPC2/MS
Routine impurity analysis with UPLC/MS and UPC2/MSRoutine impurity analysis with UPLC/MS and UPC2/MS
Routine impurity analysis with UPLC/MS and UPC2/MS
 
Understanding complex materials using high definition mass spectrometry
Understanding complex materials using high definition mass spectrometryUnderstanding complex materials using high definition mass spectrometry
Understanding complex materials using high definition mass spectrometry
 
Innovation in size based polymer separations
Innovation in size based polymer separationsInnovation in size based polymer separations
Innovation in size based polymer separations
 

Recently uploaded

Botany 4th semester file By Sumit Kumar yadav.pdf
Botany 4th semester file By Sumit Kumar yadav.pdfBotany 4th semester file By Sumit Kumar yadav.pdf
Botany 4th semester file By Sumit Kumar yadav.pdfSumit Kumar yadav
 
Biopesticide (2).pptx .This slides helps to know the different types of biop...
Biopesticide (2).pptx  .This slides helps to know the different types of biop...Biopesticide (2).pptx  .This slides helps to know the different types of biop...
Biopesticide (2).pptx .This slides helps to know the different types of biop...RohitNehra6
 
Work, Energy and Power for class 10 ICSE Physics
Work, Energy and Power for class 10 ICSE PhysicsWork, Energy and Power for class 10 ICSE Physics
Work, Energy and Power for class 10 ICSE Physicsvishikhakeshava1
 
Traditional Agroforestry System in India- Shifting Cultivation, Taungya, Home...
Traditional Agroforestry System in India- Shifting Cultivation, Taungya, Home...Traditional Agroforestry System in India- Shifting Cultivation, Taungya, Home...
Traditional Agroforestry System in India- Shifting Cultivation, Taungya, Home...jana861314
 
Lucknow 💋 Russian Call Girls Lucknow Finest Escorts Service 8923113531 Availa...
Lucknow 💋 Russian Call Girls Lucknow Finest Escorts Service 8923113531 Availa...Lucknow 💋 Russian Call Girls Lucknow Finest Escorts Service 8923113531 Availa...
Lucknow 💋 Russian Call Girls Lucknow Finest Escorts Service 8923113531 Availa...anilsa9823
 
Recombinant DNA technology (Immunological screening)
Recombinant DNA technology (Immunological screening)Recombinant DNA technology (Immunological screening)
Recombinant DNA technology (Immunological screening)PraveenaKalaiselvan1
 
Labelling Requirements and Label Claims for Dietary Supplements and Recommend...
Labelling Requirements and Label Claims for Dietary Supplements and Recommend...Labelling Requirements and Label Claims for Dietary Supplements and Recommend...
Labelling Requirements and Label Claims for Dietary Supplements and Recommend...Lokesh Kothari
 
SOLUBLE PATTERN RECOGNITION RECEPTORS.pptx
SOLUBLE PATTERN RECOGNITION RECEPTORS.pptxSOLUBLE PATTERN RECOGNITION RECEPTORS.pptx
SOLUBLE PATTERN RECOGNITION RECEPTORS.pptxkessiyaTpeter
 
Call Us ≽ 9953322196 ≼ Call Girls In Mukherjee Nagar(Delhi) |
Call Us ≽ 9953322196 ≼ Call Girls In Mukherjee Nagar(Delhi) |Call Us ≽ 9953322196 ≼ Call Girls In Mukherjee Nagar(Delhi) |
Call Us ≽ 9953322196 ≼ Call Girls In Mukherjee Nagar(Delhi) |aasikanpl
 
Analytical Profile of Coleus Forskohlii | Forskolin .pdf
Analytical Profile of Coleus Forskohlii | Forskolin .pdfAnalytical Profile of Coleus Forskohlii | Forskolin .pdf
Analytical Profile of Coleus Forskohlii | Forskolin .pdfSwapnil Therkar
 
Presentation Vikram Lander by Vedansh Gupta.pptx
Presentation Vikram Lander by Vedansh Gupta.pptxPresentation Vikram Lander by Vedansh Gupta.pptx
Presentation Vikram Lander by Vedansh Gupta.pptxgindu3009
 
All-domain Anomaly Resolution Office U.S. Department of Defense (U) Case: “Eg...
All-domain Anomaly Resolution Office U.S. Department of Defense (U) Case: “Eg...All-domain Anomaly Resolution Office U.S. Department of Defense (U) Case: “Eg...
All-domain Anomaly Resolution Office U.S. Department of Defense (U) Case: “Eg...Sérgio Sacani
 
Grafana in space: Monitoring Japan's SLIM moon lander in real time
Grafana in space: Monitoring Japan's SLIM moon lander  in real timeGrafana in space: Monitoring Japan's SLIM moon lander  in real time
Grafana in space: Monitoring Japan's SLIM moon lander in real timeSatoshi NAKAHIRA
 
Nanoparticles synthesis and characterization​ ​
Nanoparticles synthesis and characterization​  ​Nanoparticles synthesis and characterization​  ​
Nanoparticles synthesis and characterization​ ​kaibalyasahoo82800
 
Isotopic evidence of long-lived volcanism on Io
Isotopic evidence of long-lived volcanism on IoIsotopic evidence of long-lived volcanism on Io
Isotopic evidence of long-lived volcanism on IoSérgio Sacani
 
Discovery of an Accretion Streamer and a Slow Wide-angle Outflow around FUOri...
Discovery of an Accretion Streamer and a Slow Wide-angle Outflow around FUOri...Discovery of an Accretion Streamer and a Slow Wide-angle Outflow around FUOri...
Discovery of an Accretion Streamer and a Slow Wide-angle Outflow around FUOri...Sérgio Sacani
 
Stunning ➥8448380779▻ Call Girls In Panchshil Enclave Delhi NCR
Stunning ➥8448380779▻ Call Girls In Panchshil Enclave Delhi NCRStunning ➥8448380779▻ Call Girls In Panchshil Enclave Delhi NCR
Stunning ➥8448380779▻ Call Girls In Panchshil Enclave Delhi NCRDelhi Call girls
 
Formation of low mass protostars and their circumstellar disks
Formation of low mass protostars and their circumstellar disksFormation of low mass protostars and their circumstellar disks
Formation of low mass protostars and their circumstellar disksSérgio Sacani
 

Recently uploaded (20)

9953056974 Young Call Girls In Mahavir enclave Indian Quality Escort service
9953056974 Young Call Girls In Mahavir enclave Indian Quality Escort service9953056974 Young Call Girls In Mahavir enclave Indian Quality Escort service
9953056974 Young Call Girls In Mahavir enclave Indian Quality Escort service
 
Botany 4th semester file By Sumit Kumar yadav.pdf
Botany 4th semester file By Sumit Kumar yadav.pdfBotany 4th semester file By Sumit Kumar yadav.pdf
Botany 4th semester file By Sumit Kumar yadav.pdf
 
Biopesticide (2).pptx .This slides helps to know the different types of biop...
Biopesticide (2).pptx  .This slides helps to know the different types of biop...Biopesticide (2).pptx  .This slides helps to know the different types of biop...
Biopesticide (2).pptx .This slides helps to know the different types of biop...
 
Work, Energy and Power for class 10 ICSE Physics
Work, Energy and Power for class 10 ICSE PhysicsWork, Energy and Power for class 10 ICSE Physics
Work, Energy and Power for class 10 ICSE Physics
 
Traditional Agroforestry System in India- Shifting Cultivation, Taungya, Home...
Traditional Agroforestry System in India- Shifting Cultivation, Taungya, Home...Traditional Agroforestry System in India- Shifting Cultivation, Taungya, Home...
Traditional Agroforestry System in India- Shifting Cultivation, Taungya, Home...
 
Lucknow 💋 Russian Call Girls Lucknow Finest Escorts Service 8923113531 Availa...
Lucknow 💋 Russian Call Girls Lucknow Finest Escorts Service 8923113531 Availa...Lucknow 💋 Russian Call Girls Lucknow Finest Escorts Service 8923113531 Availa...
Lucknow 💋 Russian Call Girls Lucknow Finest Escorts Service 8923113531 Availa...
 
Recombinant DNA technology (Immunological screening)
Recombinant DNA technology (Immunological screening)Recombinant DNA technology (Immunological screening)
Recombinant DNA technology (Immunological screening)
 
Labelling Requirements and Label Claims for Dietary Supplements and Recommend...
Labelling Requirements and Label Claims for Dietary Supplements and Recommend...Labelling Requirements and Label Claims for Dietary Supplements and Recommend...
Labelling Requirements and Label Claims for Dietary Supplements and Recommend...
 
SOLUBLE PATTERN RECOGNITION RECEPTORS.pptx
SOLUBLE PATTERN RECOGNITION RECEPTORS.pptxSOLUBLE PATTERN RECOGNITION RECEPTORS.pptx
SOLUBLE PATTERN RECOGNITION RECEPTORS.pptx
 
Call Us ≽ 9953322196 ≼ Call Girls In Mukherjee Nagar(Delhi) |
Call Us ≽ 9953322196 ≼ Call Girls In Mukherjee Nagar(Delhi) |Call Us ≽ 9953322196 ≼ Call Girls In Mukherjee Nagar(Delhi) |
Call Us ≽ 9953322196 ≼ Call Girls In Mukherjee Nagar(Delhi) |
 
Engler and Prantl system of classification in plant taxonomy
Engler and Prantl system of classification in plant taxonomyEngler and Prantl system of classification in plant taxonomy
Engler and Prantl system of classification in plant taxonomy
 
Analytical Profile of Coleus Forskohlii | Forskolin .pdf
Analytical Profile of Coleus Forskohlii | Forskolin .pdfAnalytical Profile of Coleus Forskohlii | Forskolin .pdf
Analytical Profile of Coleus Forskohlii | Forskolin .pdf
 
Presentation Vikram Lander by Vedansh Gupta.pptx
Presentation Vikram Lander by Vedansh Gupta.pptxPresentation Vikram Lander by Vedansh Gupta.pptx
Presentation Vikram Lander by Vedansh Gupta.pptx
 
All-domain Anomaly Resolution Office U.S. Department of Defense (U) Case: “Eg...
All-domain Anomaly Resolution Office U.S. Department of Defense (U) Case: “Eg...All-domain Anomaly Resolution Office U.S. Department of Defense (U) Case: “Eg...
All-domain Anomaly Resolution Office U.S. Department of Defense (U) Case: “Eg...
 
Grafana in space: Monitoring Japan's SLIM moon lander in real time
Grafana in space: Monitoring Japan's SLIM moon lander  in real timeGrafana in space: Monitoring Japan's SLIM moon lander  in real time
Grafana in space: Monitoring Japan's SLIM moon lander in real time
 
Nanoparticles synthesis and characterization​ ​
Nanoparticles synthesis and characterization​  ​Nanoparticles synthesis and characterization​  ​
Nanoparticles synthesis and characterization​ ​
 
Isotopic evidence of long-lived volcanism on Io
Isotopic evidence of long-lived volcanism on IoIsotopic evidence of long-lived volcanism on Io
Isotopic evidence of long-lived volcanism on Io
 
Discovery of an Accretion Streamer and a Slow Wide-angle Outflow around FUOri...
Discovery of an Accretion Streamer and a Slow Wide-angle Outflow around FUOri...Discovery of an Accretion Streamer and a Slow Wide-angle Outflow around FUOri...
Discovery of an Accretion Streamer and a Slow Wide-angle Outflow around FUOri...
 
Stunning ➥8448380779▻ Call Girls In Panchshil Enclave Delhi NCR
Stunning ➥8448380779▻ Call Girls In Panchshil Enclave Delhi NCRStunning ➥8448380779▻ Call Girls In Panchshil Enclave Delhi NCR
Stunning ➥8448380779▻ Call Girls In Panchshil Enclave Delhi NCR
 
Formation of low mass protostars and their circumstellar disks
Formation of low mass protostars and their circumstellar disksFormation of low mass protostars and their circumstellar disks
Formation of low mass protostars and their circumstellar disks
 

APCI and APPI GC/MSMS for Characterization of the Macondo Wellhead Crude Oil and the Oil Spill

  • 1. APCI- and APPI-GC/MS-MS for Characterization of the Macondo Wellhead Crude Oil and the Oil Spill Vlad Lobodin 1 National High Magnetic Field Laboratory, Tallahassee, FL Future Fuels Institute, Florida State University, Tallahassee, FL
  • 3. April 22, 2010 Gerald Herbert, AP
  • 4. NASA May 24, 2010 ~5 million barrels of crude oil have leaked from the Macondo well
  • 5. Michael Spooneybarger, AP Pensacola Beach, Florida June 23, 2010
  • 6. the inside of tarballs is saturated with less weathered petroleum compounds Tarballs collected from beach
  • 7. 400 600 800 1000 m/z Macondo Wellhead Oil 13,700 ± 80 Peaks ≥ 6σ (+) ESI 9.4 FT-ICR MS Pensacola Beach 32,232 ± 488 Peaks ≥ 6σ (+) ESI 9.4 FT-ICR MS High Resolution FT-ICR Mass Spectrometry: 20 < C# < 100 Biomarker Region Biomarker Region 1920 6920 16920 11920 8 6 4 2 0 1920 6920 16920 11920 8 6 4 2 0 1st Dimension Retention Time (seconds) 2nd Dimension Retention Time (seconds) Pensacola Beach Macondo Wellhead Oil Comprehensive Two-dimensional Gas Chromatography (GC×GC) C8-C37, Volatiles B.M. Ruddy et. al., Energy Fuels, 2014, 28 (6), pp 4043–4050
  • 8. m/z 500.5500.4500.3 N1O1 N1 O1S1 13C1 N1O1 N1 N1O1 N1S1 A) Macondo Well Oil 10 Peaks across 250 mDa O1 13C1 O2 13C1N1O2 H1C1 13C1O1 13C1 O2 13C1 N1O2 N1O3 O3 13C1 B) Pensacola Beach 32 Peaks across 250 mDa (+) ESI 9.4 T FT-ICR MS
  • 9. C14H30 C16H34 C18H38 C25H52 C30H62 C20H42 50ºC(3 min)- 3ºC/min- 300ºC GC/MS of “Macondo crude oil” NIST 2779 (Total Ion Chromatogram)
  • 10. GCxGC/TOF-MS of “Macondo crude oil” NIST 2779
  • 11. Simulated Distillation for Macondo Well Petroleum (ASTM D-7169) Temperature (°C) %Recovered 0 10 20 30 40 50 60 70 80 90 100 0 100 200 300 400 500 600 700 800 More than 40 % of the Macondo petroleum components cannot be characterized by conventional GC-based techniques FT-ICR MS Reddy, C.M., et al., PNAS, 2011, 1-6 GC Amenable
  • 12. biomarkers 74% saturated 16% aromatic 10% polar Macondo well (Deepwater Horizon) saturated aromatic polar (resins / asphaltene) Reddy et al. (2011) PNAS “Petroleome” Elemental composition Structure MW distribution S- 0.3% V- 52 ppm Ni- 24 ppm
  • 13. 9.4 Tesla FT-ICR MS 14.5 Tesla FT-ICR MS FT-ICR FACILITIES
  • 14. N HN N S COOH (+) (-) (4X difference in pKa) Analyte Ionization (+) ESI and (-) ESI
  • 15. 500 m/z 105,817 peaks > 6σ 500 < m/z < 2000 750 1000 1250 1500 1750 2000 (+) ESI FT-ICR MS of De-Asphalted Oil”
  • 16. 700.70700.65700.60700.55700.50700.45700.40 93.9 mDa m/z 1,000900800700600500400300 (+) ESI FT-ICR MS Crude Oil 36.4 mDa 8.2 mDa 3.4 mDa 17.1 mDa C3 / SH4 N / 13CH C / H12 O / CH4 13C2 / C2H2 N13C / C2H3 8.9 mDa Broadband Positive ESI FT-ICR Mass Spectrum of Crude Oil
  • 17. 462.1345 m/z 464463462 m/z 462.13489 [ C27 H24 N4 58Ni ]+• (+80ppb) m/z 462.13432 [ C30 H24 N1 S2 ]+• (+300ppb) 570 µDa Theoretical Abundance 2.6% Experimental Abundance 1.9% N N N N OV DBE = 18 58Ni Mass e- 548 µDa Direct Speciation of Metalloporphyrins in Crude Oil
  • 18. 1H = 1.007825 12C= 12.00000 Mass Defect 1 H 2 H 13 C 14 N 15 N12 C 16 O 19 F 17 O 18 O 31 P 32 S 33 S 34 S 36 S 35 Cl 37 Cl 79 Br 81 Br 127 I Nuclide Massdefect,mDa 14N = 14.003074 16O= 15.994915
  • 19. 1. Carbon Number 2. Heteroatom Composition 3. Aromaticity m/z 704.53510 [C50H72S1]+• 800700600500400 * m/z m/Δm50% 100 - 400 ppb DBE = C – H 2 N 2 + + 1 McLafferty & Turecek Int. Mass Spectra, 1993 [Z = -2(DBE) + n + 2] Carbon Number DBE S1 Class Relative Abundance (% total) 40 30 20 10 0 20 40 60 80 Workflow for High Resolution “Petroleomics”
  • 20. S CH3 Isomeric structure for S-compounds S CH3 C1-dibenzothiophenes (4 isomers) S CH3 S CH3 1-methyl-dibenzothiophene 4-methyl-dibenzothiophene3-methyl-dibenzothiophene2-methyl-dibenzothiophene C1-benzothiophenes (6 isomers) C2-dibenzothiophenes (26 isomers): 22 dimethyl-dibenzotiophene isomers and 4 ethyl-dibenzotiophene isomers S CH3 S CH3 2-methyl- benzothiophene S CH3 S CH3 3-methyl- benzothiophene 4-methyl- benzothiophene 5-methyl- benzothiophene SCH3 6-methyl- benzothiophene S CH3 7-methyl- benzothiophene Benzonaphthotiophenes S S S Benzo[b]naphtho[1,2-d]thiopheneBenzo[b]naphtho[2,3-d]thiopheneBenzo[b]naphtho[2,1-d]thiophene
  • 21. Petroleum Biomarkers: Hopanes and Steranes Bacteriohopanetetrol (hopanoid in prokaryotes) Hopanes A B C D E 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 30 29 31 32 33 34 35 C35H62O4 Cholesterol steroid in eukaryotes Steranes A B C D1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 C27H46O ============================================================ 29
  • 22. M+• 4% of TIC C27H46 EI mass spectrum of 17α (H)-22,29,30-tris-norhopane
  • 23. Petroleum Biomarkers SteranesHopanes Multiple reaction monitoring mode (MRM) m/z 191 m/z 217 M+• → m/z 191 M+• → m/z 217
  • 25. Ion Source Diagram of APCI-GC/MS-MS Corona Pin Capillary GC Column Ionization Chamber Adapted from Waters Corporation Ion source Housing Mass Spec Heated Transfer Line N2 +• + M M+• + N2 (Atmospheric Pressure)
  • 27. Phenanthrene 100 pg 100 105 110 115 120 125 130 135 140 145 150 155 160 165 170 175 180 185 % 0 100 100 105 110 115 120 125 130 135 140 145 150 155 160 165 170 175 180 185 % 0 100 100 105 110 115 120 125 130 135 140 145 150 155 160 165 170 175 180 185 % 0 100 179 178 178 179 178 179 m/z Ionization mechanisms: Charge Transfer vs. Protonation “wet” source “wet” source “dry” source M+• [M+H]+ MW 178 Phenanthrene M+• [M+H]+ M+•
  • 28. APCI-GC/MS-MS of 17α(H)-22,29,30-trisnorhopane Product (daughter) scan from M+• (m/z 370) M+• Collision energy: 15 eV Collision gas: Ar C27H46 m/z 50 70 90 110 130 150 170 190 210 230 250 270 290 310 330 350 370 % 0 100 191 95 81 69 149 109 135 121 163 177 355 370 MRM transition: m/z 370 → 191
  • 29. MS/MS spectrum of 17α(H)-22,29,30-trisnorhopane MS/MS spectrum from m/z 370 NIST library EI mass spectrum 17β(H)-22,29,30-trisnorhopane The first match
  • 30. Sum of 7 MRM transitions 17α(H)-22,29,30-trisnorhopane C27H46 17α(H),21β(H)-30-norhopane C29H50 17α(H),21β(H)-30-hopane C30H52 ααα 20R-cholestane C27H48 αββ 20R-cholestane C27H48 αββ 20R 24S-methylcholestane C28H50 ααα 20R 24R-ethylsholestane C29H52 17α(H),21β(H)-22R-homohopane C31H54 17α(H),21β(H)-22S-homohopane C31H54 αββ 20R 24R- ethylcholestane C29H52 APCI-GC/MS-MS of NIST2266 (hopanes & steranes standard) R² = 0.9998 0 500000 1000000 1500000 2000000 0 100 200 300 400 500 600 pg Calibration curve 17α(H),21β(H)-30-hopane
  • 32. αββ 20R-cholestane ααα 20R-cholestane αββ 20R 24S-methylcholestane αββ 20R 24R- ethylcholestane ααα 20R 24R-ethylsholestane APCI-GC/MS-MS of NIST2266. Steranes. m/z 372 → 217 m/z 386 → 217 m/z 400 → 217
  • 33. NIST2779 (Macondo crude oil) Pricey samples from BP oil spill being sold to scientists http://www.nola.com/news/gulf-oil-spill/index.ssf/2012/03/federal_government_sells_price.html By Mark Schleifstein, NOLA.com | The Times-Picayune. March 08, 2012 It's likely to be one of the oddest ironies to emerge from the BP oil spill: the federal government is selling tiny containers of oil siphoned from the Macondo well at a price equal to $76.3 million a barrel. By comparison, a barrel of crude oil was selling for $106 on Wednesday. Of course, the BP oil is not being sold by the barrel. The National Institute of Standards and Technology, an agency of the U.S. Department of Commerce, is selling 1.2 milliliter bottles of the oil to scientists who need it for comparison with materials collected as part of the federal Natural Resources Damage Assessment process. The price: $480 for a set of five.
  • 34. MS/MS conditions for acquisition of MRM transitions Compound class MRM transition Dwell time, ms Collision energy, eV C27-Hopanes 370.30 > 191.10 50 15 C27-Steranes 372.30 > 217.10 50 20 C27-Steranes 372.30 > 218.10 50 20 C27-Steranes 372.30 > 259.20 50 20 C28-Hopanes 384.30 > 191.10 50 15 C28-Steranes 386.30 > 217.10 50 20 C28-Steranes 386.30 > 218.10 50 20 C28-Steranes 386.30 > 259.20 50 20 C29-Hopanes 398.30 > 191.10 50 15 C29-Steranes 400.30 > 217.10 50 20 C29-Steranes 400.30 > 218.10 50 20 C29-Steranes 400.30 > 259.10 50 20 C30-Hopanes 412.30 > 191.10 50 20 C30-Steranes 414.30 > 217.10 50 20 C31-Hopanes 426.30 > 191.10 50 20 C32-Hopanes 440.40 > 191.10 50 20 C33-Hopanes 454.40 > 191.10 50 20 C34-Hopanes 468.40 > 191.10 50 20 C35-Hopanes 482.40 > 191.10 50 20
  • 35. APCI/GC-MS/MS of NIST2779 (Macondo crude oil) Time, min 50.00 60.00 70.00 80.00 90.00 100.00 110.00 120.00 RA,% 0 100 Time 80.00 82.00 84.00 86.00 88.00 90.00 92.00 94.00 Hopanes: Summed Signals for C27-C35 (M+• → m/z 191) C35 C34 C33 C32 C31 H30 H29 Ts Tm H31S H31R H32S H32R H33S H33R H34S H34R H35R H35S A B C D E 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 C29Ts DH30 M30
  • 36. m/z 372 → 217 m/z 386 → 217 m/z 372 → 217 βα βα αβ αβ βα βα αβ αβ αααS βα βα αβ αααS αααR αβ Time 50.00 55.00 60.00 65.00 70.00 75.00 80.00 50.00 55.00 60.00 65.00 70.00 75.00 80.00 % 100 50.00 55.00 60.00 65.00 70.00 75.00 80.00 50.00 55.00 60.00 65.00 70.00 75.00 80.00 0 % 100 0 % 100 % 100 0 0 APCI/GC-MS/MS of NIST2779 (Macondo crude oil) C27 -Diasteranes C27-Steranes C28 -Diasteranes C28-Steranes C29 -Diasteranes C29-Steranes Sum of C27-C29 Steranes/Diasteranes A B C D1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 αααS αββR αααR αββS αββR αββS αααR αββR αββS
  • 39. "Megaplume" in the GC600 lease block: Lat: 27° 22.466' N Long: 90° 30.689'W water depth: 1382m Natural Oil Seeps (GC600, Megaplume)
  • 40. Natural oils seeps in the Gulf of Mexico - 140,000 tonnes per year (range of 80,000 to 200,000 tonnes). Natural Oil Seeps. The Gulf of Mexico. from www.sarsea.org
  • 43. 0 0.5 1 1.5 2 0 0.5 1 1.5 2 0 0.5 1 1.5 2 0 0.5 1 1.5 2 SAM-1 SAM-2 SAM-3 SAM-4 SAM-6 0 0.5 1 1.5 2 SAM-7 0 0.5 1 1.5 2 SAM-8 0 0.5 1 1.5 2 0 0.5 1 1.5 2 SAM-5 βαC27/βαC29 Diasteranes Ts/Tm H29/H30 H32S/H32R H33S/H33RH30/ΣH31‒H35 C27βα/C29βα Diasteranes Ts/Tm H29/H30 H32S/H32R H33S/H33RH30/ΣH31‒H35 C27βα/C29βα Diasteranes Ts/Tm H29/H30 H32S/H32R H33S/H33RH30/ΣH31‒H35 C27βα/C29βα Diasteranes H29/H30 H32S/H32R H33S/H33RH30/ΣH31‒H35 Ts/Tm Ts/Tm C27βα/C29βα Diasteranes H29/H30 H32S/H32R H33S/H33RH30/ΣH31‒H35 C27βα/C29βα Diasteranes H29/H30 H32S/H32R H33S/H33RH30/ΣH31‒H35 Ts/Tm C27βα/C29βα Diasteranes H29/H30 H32S/H32R H33S/H33RH30/ΣH31‒H35 Ts/Tm Ts/Tm βαC27/βαC29 Diasteranes H29/H30 H32S/H32R H33S/H33RH30/ΣH31‒H35 C27αββ/C29αββ Steranes C27αββ/C29αββ Steranes C27αββ/C29αββ Steranes C27αββ/C29αββ Steranes C27αββ/C29αββ Steranes C27αββ/C29αββ Steranes C27αββ/C29αββ Steranes C27αββ/C29αββ Steranes 0 0.5 1 1.5 2 SAM-9 C27βα/C29βα Diasteranes H29/H30 H32S/H32R H33S/H33RH30/ΣH31‒H35 Ts/Tm C27αββ/C29αββ Steranes
  • 44. 0 0.5 1 1.5 2 SAM-10 0 0.5 1 1.5 2 SAM-11 0 0.5 1 1.5 2 SAM-12 0 0.5 1 1.5 2 SAM-13 0 0.5 1 1.5 2 SAM-14 0 0.5 1 1.5 2 SAM-15 SAM-16 0 0.5 1 1.5 2 0 0.5 1 1.5 2 SAM-17 C27βα/C29βα Diasteranes H29/H30 H32S/H32R H33S/H33RH30/ΣH31‒H35 Ts/Tm Ts/Tm C27βα/C29βα Diasteranes H29/H30 H32S/H32R H33S/H33RH30/ΣH31‒H35 C27βα/C29βα Diasteranes H29/H30 H32S/H32R H33S/H33RH30/ΣH31‒H35 Ts/Tm C27βα/C29βα Diasteranes H29/H30 H32S/H32R H33S/H33RH30/ΣH31‒H35 Ts/Tm Ts/Tm C27βα/C29βα Diasteranes H29/H30 H32S/H32R H33S/H33RH30/ΣH31‒H35 C27βα/C29βα Diasteranes H29/H30 H32S/H32R H33S/H33RH30/ΣH31‒H35 Ts/Tm C27βα/C29βα Diasteranes H29/H30 H32S/H32R H33S/H33RH30/ΣH31‒H35 Ts/Tm Ts/Tm C27βα/C29βα Diasteranes H29/H30 H32S/H32R H33S/H33RH30/ΣH31‒H35 C27αββ/C29αββ Steranes C27αββ/C29αββ Steranes C27αββ/C29αββ Steranes C27αββ/C29αββ Steranes C27αββ/C29αββ Steranes C27αββ/C29αββ Steranes C27αββ/C29αββ Steranes C27αββ/C29αββ Steranes 0 0.5 1 1.5 2 SAM-18 C27βα/C29βα Diasteranes H29/H30 H32S/H32R H33S/H33RH30/ΣH31‒H35 Ts/Tm C27αββ/C29αββ Steranes
  • 45. 0 0.4 0.8 1.2 1.6 2 βαC27/βαC29 Diasteranes Ts/Tm H29/H30 H32S/H32R H33S/H33R αββC27/αββC29 Steranes H30/H31+H32+H33+H34+H35 NIST2779 (Macondo crude oil) Blue crude (Independence Hub) Megaplume oil seep (GC600) SAM-10 (Pensacola Beach) Overlaid spider diagrams
  • 47. Other case studies: Exxon Valdez oil spill from www.uaf.edu Prince William Sound, Alaska March 24, 1989. 258,000 barrels
  • 48. 25,500 peaks 150 < m/z < 850 850750650550450350250150 m/z (+) APPI FT-ICR MS of Macondo crude oil
  • 49. Relative Abundance (% total) Carbon Number 10 15 5 0 20 DBE 10 20 30 40 S class (M+•) 50 60 DBE=12 S DBE=9 R 10 20 30 40 50 60 25 30 HC class (M+•) DBE=10 S R R (+) APPI FT-ICR MS of Macondo crude oil
  • 50. Mass Spec UV-lamp (Atmospheric Pressure) Heated Transfer Line Capillary GC Column Ionization Chamber Ion source Housing APPI-GC/MS Ion Source Diagram
  • 51. Kr UV-lamp Atmospheric Pressure PhotoIonization (APPI) Spectral distribution of a Krypton lamp E=10.6 eV, λ= 117 nm E=10.0 eV, λ= 124 nm M+•M hν hν > IE(M) Ionization energies, IE (eV) IE(N2) = 15.6 eV IE(H2O)= 12.6 eV IE(O2) = 12.1 eV IE(C6H6) = 9.2 eV IE(Toluene)= 8.8 eV IE(Naphthalene) = 8.1 eV IE (Phenanthrene) = 7.9 eV IE (Thiophene) = 8.9 eV IE (DBT) = 8.0 eV IE(Alkanes) ~ 10 eV - ē
  • 52. 100 105 110 115 120 125 130 135 140 145 150 155 160 165 170 175 180 185 190 % 0 100 178 m/z APPI-GC/MS. Mass Spectrum of Phenanthrene M+• MW 178 IE = 7.9 eV Phenanthrene (20 pg injected) M+•M hν
  • 53. time 5.00 6.00 7.00 8.00 9.00 10.00 11.00 12.00 13.00 14.00 15.00 16.00 17.00 % 0 100 5.00 6.00 7.00 8.00 9.00 10.00 11.00 12.00 13.00 14.00 15.00 16.00 17.00 % 0 100 APPI-GC/MS vs APCI-GC/MS of Phenanthrene APCI-GC/MS m/z 178 →m/z 152 APPI-GC/MS m/z 178 → m/z 152 S/N 4160 S/N 32830
  • 54. APPI-GC/MS of Aromatic compounds M+• M+• M+• MW 168 IE = 8.1 eV MW 167 IE = 7.6 eV MW 184 IE = 7.9 eV
  • 55. Time 10.00 20.00 30.00 40.00 50.00 60.00 70.00 80.00 90.00 % 0 100 Acenaphthylene Naphthalene Acenaphthene Fluorene Anthracene Benz[a]anthracene Fluoranthene Pyrene Phenanthrene Chrysene Benzo[b]fluoranthene Benzo[k]fluoranthene Dibenz[a,h]anthracene Benzo[g,h,i]perylene Benzo[a]pyrene Indeno[1,2,3-cd]pyrene Boiling T 500 °C APPI-GC/MS of 610 PAH Calibration Mix A 610 PAH Calibration Std (x 1000 dilution) Final concentration: 500-1000 ng/mL
  • 56. APPI/GC-MS/MS of NIST2779 (Macondo crude oil) S Me Me S
  • 57. APPI with Argon lamp Ar UV-lamp E=11.6 eV, λ= 106.7 nm E=11.8 eV, λ= 104.8 nm Spectral distribution of Ar lamp 0.105 ‒ 9 µm LiF wavelength transmission range 17α(H),21β(H)-30-hopane as internal standard Environ. Sci. Technol. 1994, 28, 142-145
  • 59. Depletion of PAHs and PASHs in Environmental samples from AL-MS shore line. Phen DBT C2-Phen C2-DBT C3-Phen C3-DBT Chrys ≈ 100 NIST 2779 (DWH) Jul, 2011 Feb, 2012 Jan, 2014 Depletion is relative to 17α(H),21β(H)-30-hopane (C30-Hopane)
  • 60.  We first utilized AP-GC/MS for a trace analysis of petroleum biomarkers from the Macondo crude oil and environmental samples.  We describe an Atmospheric Pressure PhotoIonization (APPI) source that in combination with GC separation and MS/MS analysis is an efficient method for characterization of aromatic compounds in wellhead and spilled oil.  Analysis of petroleum compounds with APGC/MS-MS provides a sensitive analytical tool for targeted analysis, source identification of the oil spill, and tracking a fate of oil spill residues. SUMMARY
  • 63. (-) UniSpray TQS mass spectrum of Macondo crude oil (NIST 2779) m/z 200 300 400 500 600 700 800 900 1000 1100 1200 1300 1400 1500 1600 1700 1800 1900 % 0 100 NEG_UNISPRAY-DWH_1%NH3_B 20 (0.335) Cm (14:143) MS2 ES- 1.28e5421.26 294.15 247.13 490.32 566.38 684.51 790.66 858.68 dioctyl sodium sulfosuccinate (DOSS) [M-H]-
  • 64. m/z 60 80 100 120 140 160 180 200 220 240 260 280 300 320 340 360 380 400 420 440 % 0 100 NEG_UNISPRAY-DWH_MS-MS-421 121 (2.028) Cm (116:128) Daughters of 421ES- 3.73e4421 81 m/z 120 140 160 180 200 220 240 260 280 300 320 340 360 380 400 % 0 100 NEG_UNISPRAY-DWH_MS-MS-421 121 (2.028) Cm (116:128) Daughters of 421ES- 904367 227 187 219 291 265 279 338313 298 391 375 404 (-) UniSpray MS/MS spectrum for [M-H]- ion of dioctyl sodium sulfosuccinate (DOSS) CID: 20 V; Collision gas: Ar [M-H]- [HSO3]-
  • 65. m/z 200 300 400 500 600 700 800 900 1000 1100 1200 1300 1400 1500 1600 1700 1800 1900 % 0 100 POS_UNISPRAY_DWH_1%HCOOH_A 23 (0.386) Cm (23:84) MS2 ES+ 1.82e6360 227 338 305 431 499 478450 567 520 635 586 703 677 839771 (+) UniSpray TQS mass spectrum of Macondo crude oil (NIST 2779) 1 mg/mL Tol:MeOH (50:50)- 1% HCOOH
  • 66. APCI-GC/MS conditions Mass spectrometer – Waters Xevo TQ-S Tsource 150ºC Corona 2.5 μA Cone voltage 30V Source offset 50V Auxilliary gas (N2) 200 L/hr Cone gas (N2) 250 L/hr Collision gas Ar Gas chromatograph –7890 Tinj=300ºC Column: MXT-5 (or MXT-1), 60m × 0.25mm × 0.25 µm Carrier gas: He Flow rate: 1.2 mL/min Split ratio: 1:10 Oven: 50ºC - 20ºC/min -150ºC- 2ºC/min - 350ºC (25 min) Transfer Line: 380ºC Injected volume: 1 μL
  • 67. APPI-GC/MS conditions Mass spectrometer – Waters Xevo TQ-S Tsource 150ºC Kr UV lamp 10 eV (or Ar UV lamp 11.7 eV) Cone voltage 30V Source offset 50V Auxiliary gas (N2) 200 L/hr Cone gas (N2) 150 L/hr Collision gas Ar Gas chromatograph –7890 Tinj=300ºC Column: MXT-5 (or MXT-1), 60m × 0.25mm × 0.25 µm Carrier gas: He Flow rate: 1.2 mL/min Split ratio: 1:10 Oven: 50ºC - 20ºC/min -150ºC- 2ºC/min - 350ºC (25 min) Transfer Line: 380ºC Injected volume: 1 μL
  • 68. APPI(Ar)-GC/MS-MS. PAHs and PASHs ratios. NIST2279 (DWH) Jul 17, 2011 Feb 8, 2012 Jan 27, 2014 С2-Phen/C2-DBT 2.9 2.8 2.3 2.8 С3-Phen/C3-DBT 1.9 1.4 1.4 1.5 С2-Phen/C2-DBT and С3-Phen/C3-DBT ratios
  • 69. SAM-1 (30°17'15.0”N, 87°28'44.6”W))on 04.05.2011, SAM-2 (30°17'14.6”N, 87°28'50.2”W) on 04.06.2011, SAM-3 (30°14'25.6”N, 87°44'14.8”W) on 07.17.2011 SAM-4 (29°10'29.3”N, 90°04'33.2”W) on 07.17.2011, SAM-5 (30°17'18.4”N, 87°28'37.8”W) on 07.19.2011, SAM-6 (30°14'48.4”N, 87°41'35.2”W) on 11.27.2011 SAM-7 (30°14'25.4”N, 87°44'15.2”W) on 11.28.2011, SAM-8 (29°56'41.0”N, 88°49'27.0”W) on 11.28.2011, SAM-9 (29°17'35.5”N, 90°29'17.5”W) on 05.31.2010, SAM-10 (30°19'32.1”N, 87°10'30.5”W) on 06.23.1010, SAM-11 (30°14'60.6”N, 88°53'21.1”W) on 02.09.2012, SAM-12 (30°18'16.4”N, 87°23'20.9”W) on 02.07.2102, SAM-13 (30°14'34.8”N, 88°42'59.1”W) on 02.08.2012, SAM-14 (30°14'26.3”N, 87°44'16.9”W) on 08.31.2012, SAM-15 (30°13'54.4”N, 88°53'47.0”W) on 02.09.21012, SAM-16 (30°18'30.8”N, 87°22'16.3”W) on 02.07.2012, SAM-17 (29°10'30.0”N, 90°04'33.6”W) on 07.31.2011, SAM-18 (30°15'16”N, 88°7'50”W) on 01.27.2014, Megaplume (27°22'27.96”N, 90°30'41.34”W) - depth – 1200 m, GC600. Blue crude oil (28°05'89.0”N, 87°59'27.0”W). Samples’ collection sites and time
  • 70. Petroleum Biomarkers. Hopanes. Bacteriohopanetetrol (hopanoid in prokaryotes) Hopanes A B C D E 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 Over 150 distinct, naturally-occurring hopanoids have been identified in soils, sediments, and other organic matter. Hopanoids have a fixed stereochemistry and differ in the orientation about Carbon- 17 and Carbon-21 (α or β) and Carbon-22 (R or S). 17β, 21β(H) is biological configuration The order of thermodynamic stability of the 17-21 hopane isomers is 17α(H),21β(H) > 17β(H),21α(H) > 17α(H),21α(H) > 17β(H),21β(H) 22R is biological configuration. 17α(H),21β(H) –hopanes are the most stable. 17β(H),21α(H) are called moretanes. 22S/(22S+22R) ~ 0.58-0.62 for C31-hopane C35H62O4
  • 71. Cholesterol Petroleum Biomarkers. Steranes. steroid in eukaryotes Steranes A B C D1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 C27H46O 5α,14α,17α(H)–cholestane-20R biological configuration 5α,14β,17β(H) stable configuration 14β,17β(H)/[14α,17α(H) + 14β,17β(H)] ~ 0.7 – Endpoint configuration Diasteranes (rearranged steranes) - rearrangement product from sterol precursors through diasterenes. The rearrangement involves migration of C-10 and C-13 methyl groups to C-5 and C-14 and is favored by acidic conditions, clay catalysis, and/or high temperatures. Diasteranes increase relative to steranes with thermal maturation and they are low in clay-poor carbonate source rocks and related oils. 13β(H),17α – diasteranes 20S or 20R
  • 72. Assigned Hopanes 18α(H)-22,29,30-trisnorhopane (Ts), 17α(H)-22,29,30-trisnorhopane (Tm), 17α(H),21β(H)-30-norhopane (H29), 18α(H),21β(H)-30-norneohopane (C29Ts), 17α(H)-diahopane (DH30), 17β(H),21α(H)-hopane (moretane, M30), 17α(H),21β(H)-hopane (H30), 17α(H),21β(H)-22S-30-homohopane (H31S), 17α(H),21β(H)-22R-30-homohopane (H31R), 17α(H),21β(H)-22S-30,31-bishomohopane (H32S), 17α(H),21β(H)-22R-30,31-bishomohopane (H32R), 17α(H),21β(H)-22S-30,31,32-trishomohopane (H33S), 17α(H),21β(H)-22R-30,31,32-trishomohopane (H33R), 17α(H),21β(H)-22S-30,31,32,33-tetrakishomohopane (H34S), 17α(H),21β(H)-22R-30,31,32,33-tetrakishomohopane (H34R), 17α(H),21β(H)-22S-30,31,32,33,34-pentakishomohopane (H35S), 17α(H),21β(H)-22R-30,31,32,33,34-pentakishomohopane (H35R).
  • 73. Assigned Steranes and Diasteranes 13β(H),17α(H)-20S-diacholestane (C27βαS), 13β(H),17α(H)-20R-diacholestane (C27βαR), 13α(H),17β(H)-20S-diacholestane (C27αβS), 13α(H),17β(H)-20R-diacholestane (C27αβR), 5α(H),14α(H),17α(H)-20S-cholestane (C27αααS), 5α(H),14β(H),17β(H)-20R-cholestane (C27αββR), 5α(H),14β(H),17β(H)-20S-cholestane (C27αββS), 5α(H),14α(H),17α(H)-20R-cholestane (C27αααR), 13β(H),17α(H)-20S-24-methyldiacholestane (C28βαS), 13β(H),17α(H)-20R-24-methyldiacholestane (C28βαR), 13α(H),17β(H)-20S-24-methyldiacholestane (C28αβS), 13α(H),17β(H)-20R-24-methyldiacholestane (C28αβR), 5α(H),14α(H),17α(H)-20S-24-methylcholestane (C28αααS), 5α(H),14β(H),17β(H)-20R-24-methylcholestane (C28αββR), 5α(H),14β(H),17β(H)-20S-24-methylcholestane (C28αββS), 5α(H),14α(H),17α(H)-20R-24-methylcholestane (C28αααR), 13β(H),17α(H)-20S-24-ethyldiacholestane (C29βαS), 13β(H),17α(H)-20R-24-ethyldiacholestane (C29βαR), 13α(H),17β(H)-20S-24-ethyldiacholestane (C29αβS), 13α(H),17β(H)-20R-24-ethyldiacholestane (C29αβR), 5α(H),14α(H),17α(H)-20S-24-ethylcholestane (C29αααS), 5α(H),14β(H),17β(H)-20R-24-ethylcholestane (C29αββR), 5α(H),14β(H),17β(H)-20S-24-ethylcholestane (C29αββS), 5α(H),14α(H),17α(H)-20R-24-ethylholestane (C29αααR).
  • 74. Biomarker ratios (Ts/Tm, H29/H30, H32S/H32R, H30/Σ(H31-H35), H33S/H33R, C27αββ/C29αββ steranes, and C27βα/C29βα diasteranes) Sample Ts/Tm H29/H30 H32S/H32R H33S/H33R H30/Σ(H31-H35) C27αββ/C29αββ steranes C27βα/C29βα diasteranes NIST2779 1.42±0.05 0.52±0.04 1.48±0.03 1.46±0.06 0.65±0.03 0.68±0.06 0.94±0.02 SAM-1 1.49±0.02 0.56±0.03 1.36±0.01 1.42±0.07 0.65±0.06 0.68±0.02 0.95±0.03 SAM-2 1.43±0.05 0.58±0.02 1.41±0.13 1.35±0.05 0.62±0.05 0.66±0.04 0.89±0.04 SAM-3 1.49±0.10 0.55±0.01 1.36±0.03 1.34±0.10 0.66±0.02 0.72±0.03 0.91±0.04 SAM-4 1.47±0.03 0.59±0.02 1.39±0.03 1.40±0.12 0.61±0.01 0.73±0.03 0.93±0.02 SAM-5 1.49±0.08 0.57±0.01 1.31±0.07 1.37±0.05 0.62±0.03 0.69±0.02 0.90±0.02 SAM-6 1.56±0.03 0.50±0.05 1.32±0.03 1.33±0.03 0.68±0.01 0.71±0.01 0.97±0.02 SAM-7 1.53±0.09 0.53±0.06 1.35±0.09 1.30±0.01 0.60±0.01 0.67±0.05 0.94±0.05 SAM-8 1.30±0.09 0.62±0.06 1.40±0.09 1.32±0.10 0.46±0.06 0.42±0.02 0.56±0.03 SAM-9 1.43±0.11 0.49±0.03 1.39±0.11 1.49±0.11 0.67±0.05 0.74±0.06 0.96±0.02 SAM-10 1.46±0.07 0.53±0.05 1.42±0.07 1.46±0.08 0.66±0.06 0.64±0.07 0.90±0.08 SAM-11 1.42±0.10 0.52±0.05 1.41±0.08 1.32±0.12 0.60±0.02 0.66±0.07 0.91±0.09 SAM-12 1.48±0.08 0.56±0.06 1.50±0.12 1.39±0.11 0.54±0.05 0.58±0.06 0.89±0.08 SAM-13 1.50±0.07 0.51±0.05 1.46±0.08 1.36±0.09 0.60±0.07 0.62±0.06 0.96±0.06 SAM-14 1.49±0.09 0.49±0.05 1.45±0.13 1.52±0.14 0.63±0.06 0.64±0.05 1.00±0.07 SAM-15 1.33±0.05 0.59±0.05 1.57±0.15 1.52±0.15 0.55±0.05 0.58±0.06 0.92±0.09 SAM-16 1.49±0.10 0.54±0.06 1.46±0.14 1.40±0.12 0.60±0.06 0.54±0.05 0.92±0.07 SAM-17 1.37±0.05 0.54±0.03 1.41±0.09 1.49±0.07 0.46±0.04 0.40±0.03 0.60±0.04 SAM-18 1.47±0.12 0.59±0.06 1.52±0.09 1.45±0.14 0.55±0.05 0.59±0.06 0.81±0.80 Megaplume 1.00±0.05 1.01±0.05 1.48±0.05 1.44±0.08 0.52±0.04 0.84±0.07 0.82±0.08 Blue crude 0.15±0.04 0.74±0.05 0.54±0.05 0.94±0.05 2.00±0.10 0.11±0.03 0.84±0.06
  • 75. M+• 4% of TIC C27H46 EI mass spectrum of 17α (H)-22,29,30-tris-norhopane
  • 76. M+• 7% of TIC C27H48 EI mass spectrum of ααα 20R-cholestane
  • 77. GC/MS of NIST 2779 (Macondo crude oil) (Ion Chromatogram at m/z 191 and 217) Ion Chromatogram at m/z 191 Ion Chromatogram at m/z 217 Hopanes C30 C31 C32 C33 C29 C34 C35 Steranes C28 C29 C29 C27 C29 C27 C29 C30 C27 C28 C29 C29 m/z 217 m/z 191Ts Tm
  • 78. Constant neutral loss scan Multiple reaction monitoring mode Precursor (parent) ion scan Product (daughter) ion scan MS/MS Modes
  • 79. CH3 CH3 CH3 CH3CH3 R M+• + • • + + R= H m/z 217 R= CH3 m/z 231 R= C2H5 m/z 245 R= C3H7 m/z 259 CH3 CH3 R CH3 CH3 CH3 CH3 CH3 R CH3 CH3 CH3 CH3 CH3 R H Fragmentation scheme for steranes
  • 80. APCI-GC/MS-MS of 17α(H)-22,29,30-trisnorhopane Product (daughter) scan from M+• (m/z 370) M+• Collision energy: 20 eV Collision gas: Ar C27H46 m/z 50 70 90 110 130 150 170 190 210 230 250 270 290 310 330 350 370 % 0 100 191 95 81 69 149 109 135 121 163 177 355 370
  • 81. 50 70 90 110 130 150 170 190 210 230 250 270 290 310 330 350 370 % 0 100 217 121 95 81 73 107 135 149 175 161 189 203 357 262 372 APCI-GC/MS-MS of ααα 20R-cholestane Product (daughter) scan from M+• (m/z 372) M+• Collision energy: 20 eV Collision gas: Ar C27H48 m/z
  • 82. MS/MS spectrum of ααα 20R-cholestane MS/MS spectrum from m/z 372 NIST library EI mass spectrum of Cholestane The first match
  • 83. C35H72 C14H30 C16H34 C18H38 C25H52 C30H62 C20H42 Pr Ph Isoprenoid indices Pr/Ph=1.33 n-C17/Pr=1.58 n-C18/Ph=1.67 Reported Pr/Ph ratio for MC252 is 0.9 Environ. Res. Lett. 2012, 7, 035302 GC/MS of “Macondo crude oil” NIST 2779 (Total Ion Chromatogram)
  • 84.
  • 85. + + • R= H m/z 217 R= CH3 m/z 231 R= C2H5 m/z 245 R= C3H7 m/z 259 R= H m/z 218 R= CH3 m/z 232 R= C2H5 m/z 246 R= C3H7 m/z 260 M+• CH3 CH3 R CH3 CH3 R CH3 CH3 CH3 CH3CH3 R Characteristic ions for steranes
  • 86. (+) APPI FT-ICR MS of Macondo crude oil 25,500 peaks 150 < m/z < 850 850750650550450350250150 m/z
  • 87. Relative Abundance (% total) Carbon Number 10 15 5 0 20 DBE 10 20 30 40 50 60 25 30 HC class (M+•) DBE=10 (+) APPI FT-ICR MS of Macondo crude oil C1-phenathrene has 5 isomers R CH3CH3 1-methylphenanthrene 2-methylphenanthrene CH3 3-methylphenanthrene CH3 4-methylphenanthrene CH3 9-methylphenanthrene C2-phenanthrene has 30 isomers: 25 isomers for dimethyl- phenanthrenes 5 isomers for ethyl-phenanthrenes C#= 25-30
  • 88. DBE HC class (M+•) DBE Distribution
  • 89. Relative Abundance (% total) Carbon Number 10 15 5 0 20 DBE 10 20 30 40 S class (M+•) 50 60 C#=19 DBE=12 DBE=6 S R 25 30 S C3 S R (+) APPI FT-ICR MS of Macondo crude oil DBE=12 DBE=9 S R C2-dibenzothiophenes (26 isomers): 22 dimethyl-dibenzotiophene isomers and 4 ethyl-dibenzotiophene isomers
  • 90. S CH3 Isomeric structure for S-compounds S CH3 C1-dibenzothiophenes (4 isomers) S CH3 S CH3 1-methyl-dibenzothiophene 4-methyl-dibenzothiophene3-methyl-dibenzothiophene2-methyl-dibenzothiophene C1-benzothiophenes (6 isomers) C2-dibenzothiophenes (26 isomers): 22 dimethyl-dibenzotiophene isomers and 4 ethyl-dibenzotiophene isomers S CH3 S CH3 2-methyl- benzothiophene S CH3 S CH3 3-methyl- benzothiophene 4-methyl- benzothiophene 5-methyl- benzothiophene SCH3 6-methyl- benzothiophene S CH3 7-methyl- benzothiophene Benzonaphthotiophenes S S S Benzo[b]naphtho[1,2-d]thiopheneBenzo[b]naphtho[2,3-d]thiopheneBenzo[b]naphtho[2,1-d]thiophene
  • 91. DBE S class (M+•) DBE Distribution S R DBE=12 S R DBE=9 DBE=6 S R DBE=3 S R
  • 93. APCI. Mechanism of Ionization (I) Charge Transfer • The nitrogen in the source is ionized by corona discharge by the following series of reactions: N2 + e ¯ → N2 +• + 2e ¯ N2 +• + 2N2 → N4 +• + N2 • If the nitrogen is dry the N2 +• and N4 +• act as reagent ions with charge transfer being the most likely pathway for ionization. N2 +•/ N4 +• + A → A+• + xN2 charge transfer Where A represents an analyte molecule • Charge transfer results in the formation of radical cations and is particularly useful for the ionization of non-polars.
  • 94. APCI. Mechanism of Ionization (II) Proton Transfer • In the presence of water vapour the following reactions then occur to generate ionized water clusters: N4 +• + H2O → H2O+• + 2 N2 H2O+• + H2O → H3O+ + OH• H3O+ + H2O + N2 → H+(H2O)2 + N2 H2O + H+(H2O)2 → H+(H2O)3 + N2 • The last reaction can then proceed further with successive additions of water • Ionization of the analyte then occurs by proton transfer H3O+ + A → AH+ + H2O proton transfer • Proton transfer is the main ionization pathway associated with APCI in LC/MS.
  • 95. 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 % 0 100 152 128 178 APPI-GC/MS-MS of Phenanthrene (m/z 178) m/z M+• [M-C2H2]+• [C10H8]+• C14H10 -C2H2 Collision energy (Ekin) = 27 eV Collision gas - Ar Eint =Ekin Mgas Mion + Mgas Product (daughter) scan from M+• (m/z 178)
  • 96. MS/MS spectrum of Phenanthrene (m/z 178) MS/MS spectrum from m/z 178 NIST library EI mass spectrum of Phenanthrene The first match
  • 97. Wavelength Transmission/Absorption Range 0.11 ‒ 7.5 µm N2 < 0.1 O3 0.17-0.35 0.45-0.75 O2 < 0.245 H2O < 0.21 0.6-0.72 Gas Absorption wavelengths (μm) MgF2 (window) wavelength transmission range
  • 98. Sum of 7 MRM transitions APPI(Ar)-GC/MS-MS of NIST2266 (hopanes & steranes standard) 20.00 30.00 40.00 50.00 60.00 70.00 80.00 90.00 100.00 % 0 100 time IE(Alkanes) ~ 10 eV αββ 20R-cholestane ααα 20R-cholestane 17α (H)-22,29,30- trisnorhopane αββ 20R 24S- methylcholestane αββ 20R 24R- ethylcholestane 17α(H),21β(H)-30- hopane 17α(H),21β(H)-30- norhopane ααα 20R 24R- ethylsholestane 17α(H),21β(H)- 22S-homophane 17α(H),21β(H)-22R- homopane
  • 99. 20.00 30.00 40.00 50.00 60.00 70.00 80.00 90.00 100.00 % 0 100 time Ar-lamp hν =11.7 eV S 17α(H),21β(H)-hopane 50 ng/mL Peak area - 218 50 ng/mL Peak area - 218 m/z 412 → m/z 191 dwell time – 250 ms m/z 178 → m/z 152 dwell time – 250 ms m/z 184 → m/z 152 dwell time – 250 ms 585 ng/mL Peak area - 4900 APPI(Ar)-GC/MS-MS of Phenanthrene, Dibenzothiophene, and 17α(H),21β(H)hopane
  • 100. DBE Carbon number 0 70 80 90605040302010 100 110 120 80 60 40 20 100 120 0 C# = 112 DBE = 100 C# = 54 DBE = 46 C# = 24 DBE = 19 C20 DBE = C – H 2 N 2 + + 1 Double Bond Equivalent (DBE) n-hexane, C6H14, DBE=0 Cyclohexane, C6H12, DBE=1 Benzene, C6H6, DBE=4 V.V. Lobodin, et al. Anal. Chem. 2012, 84, 3410-3416