Seu SlideShare estĂĄ sendo baixado. ×

AnĂșncio
AnĂșncio
AnĂșncio
AnĂșncio
AnĂșncio
AnĂșncio
AnĂșncio
AnĂșncio
AnĂșncio
AnĂșncio

1 de 27 AnĂșncio

# 9th class maths MCQs by Ustani G.docx

akjhxkjkjxcbkj

akjhxkjkjxcbkj

AnĂșncio
AnĂșncio

AnĂșncio

### 9th class maths MCQs by Ustani G.docx

1. 1. (a) (b) (a) {0} (a) (c) đ„7 MULTIPLE CHOICE QUESTIONS CHAPTER 01 REAL AND COMPLEX NUMBERS Choose the correct answer from the options given in each question. â1 â 2 (c) đ (d) âđ 8. Every real number is (a) a positive integer (b) a rational number (c) A negative integer (d) a complex number 9. Real part of 2đđ(đ + đ2) is (a) 2ab (b) â2ab (c) 2abđ (d) â2abđ 10. Imaginary part of âđ(3đ + 2) is (a) â2 (b) 2 (c) 3 (d) â3 11. Which of the following sets have the closure property w. r. t. addition 1. (27đ„ 3 âđ„2 ) 3 = âđ„3 (b) {0, â1} 9 3 âđ„2 (b) 9 âđ„3 (c) {0,1} (d) {1, 1 â2 , 1 } 2 (c) 8 (d) 8 12. Name the property of real numbers used in (â â5) Ă 1 = â â5 2 2 2. Write 7âđ„ in exponential form (a) đ„ (b) đ„7 (a) Additive identity (b) Additive inverse (c) Multiplicative identity (d) Multiplicative inverse 1 2 3. Write 43 with radical sign 7 (d) đ„2 13. If đ„, đŠ, đ§ â R and đ§ < 0 then đ„ < đŠ â (a) đ„đ§ < đŠđ§ đ„đ§ > đŠđ§ 3â42 (c) 2â43 4. In 3â35 the radicand is (b) â43 (d) â46 (c) đ„đ§ = đŠđ§ (d) none of these 14. If đ, đ â R then only one of đ = đ or đ < đ or đ > đ holds is called (a) Trichotomy property (b) Transitive property (c) Additive property (d) Multiplicative property (a) 3 (b) 1 3 (d) none of these 1 25 â 15. A non-terminating non-recurring decimal represents: (a) a natural number (b) A rational number (c) An irrational number (d) A prime number 5. ( ) 16 2 = 16. The union of the set of rational numbers and irrational number is known (a) 5 4 (c) â 5 4 6. The conjugate of 5 + 4đ is (d) â 4 5 as set of (a) rational number (b) irrational (c) real number (d) whole number 17. â3. â3 is a number (a) â5 + 4đ (b) â5 â 4đ (c) 5 â 4đ (d) 5 + 4đ 7. The value of đ9 is (a) rational (b) irrational (c) real (d) none 18. đâđđ = (a) 1 (b) â1 đ âđ đ âđ (b) âđ âđ (b) 4 5 (a) (c) 35
2. 2. 1 a 2 c 3 a 4 c 5 b 6 c 7 c 8 d 9 b 10 a 11 a 12 c 13 b 14 a 15 c 16 c 17 c 18 a 19 a 20 a 21 a 22 a 23 b 24 a 25 a 26 a 27 c 28 a 29 c 30 b (c) đ âđ âđ (d) âđ đ âđ 19. 5ââ8 = 1 (a) (â8)5 (b) (â8)5 1 (c) â8 (d) (8)5 20. The value of đ10 is: (a) â1 (b) 1 (c) âđ (d) đ 21. The conjugate of 2 + 3đ is (a) 2 â 3đ (b) â2 â 3đ (c) â2 + 3đ (d) 2 + 3đ 2 22. Real part of (â1 + ââ2) is: (a) â1 (b) â2â2 (c) 1 (d) 2â2 2 23. Imaginary part of (â1 + ââ2) is: (a) â1 (b) â2â2 (c) 1 (d) 2â2 (a) đ„ = 4, đŠ = â3 (b) đ„ = 3, đŠ = 3 (c) đ„ = 3, đŠ = â3 (d) đ„ = 5, đŠ = â3 30. đ from of 0. 3 is đ (a) 3 10 (c) 0.33 (d) 10 3 24. đ is a/an đ number (a) irrational (b) rational (c) natural (d) whole 25. The value of đ (iota) is (a) ââ1 (b) â1 (c) 1 (d) (â1)2 26. In â2 + 3đ, 3 is called (a) imaginary part (b) real part (c) negative part (d) complex number 27. The set of natural number is (a) {0,1,2,3, âŠ } (b) {2,4,6, âŠ } (c) {1,2,3, âŠ } (d) {2,3,5,7, âŠ } 28. đ, đ, â2, â3 and â5 are called (a) irrational numbers (b) rational numbers (c) natural numbers (d) complex numbers 29. If đ„ + đđŠ + 1 = 4 â 3đ, then (b) 1 3
3. 3. đ CHAPTER 02 LOGARITHMS 9. logđ đ Ă logđ đ can be written as (a) logđ đ (b) logđ đ (c) logđ đ (d) logđ đ 10. logđŠ đ„ will be equal to (a) logđ§ đ„ logđŠ đ§ (c) logđ§ đ„ logđ§ đŠ (b) logđ„ đ§ logđŠ đ§ (d) logđ§ đŠ logđ§ đ„ Choose the correct answer from the options given in each question. 11. For common logarithm, the base is 1. If đđ„ = đ, then (a) 2 (b) 10 (a) đ = logđ„ đ (c) đ„ = logđ đ 2. The relation of đŠ = logđ§ đ„ implies (b) đ„ = logđ đ (d) đ = logđ đ„ (c) đ 12. For natural logarithm, the base is (a) 10 (d) 1 (b) đ (a) đŠđ„ = đ§ (b) đ§đŠ = đ„ (c) 2 (d) 1 (c) đ„đ§ = đŠ (d) đŠđ§ = đ„ 3. The logarithm of unity to any base is (a) 1 (b) 10 (c) đ (d) 0 4. The logarithm to any number to itself as base is (a) 1 (b) 0 (c) â1 (d) 10 5. log đ = where đ â 2.718 (a) 0 (b) 0.4343 (c) â (d) 1 13. The integral part of the common logarithm of a number is called the (a) characteristic (b) mantissa (c) logarithm (d) none of these 14. The decimal part of the common logarithm of a number is called the (a) characteristic (b) mantissa (c) logarithm (d) none of these 15. If đ„ = log đŠ, then đŠ is called the (a) antilogarithm (b) logarithm (c) characteristic (d) none of these 6. The value of log ( ) is đ 16. 30600 in scientific notation is (a) 3.06 Ă 104 (b) 3.006 Ă 104 log đ â log đ (b) log đ log đ (c) log đ + log đ (d) log đ â log đ 7. log đ â log đ is same as: (a) log ( đ ) (b) log(đ â đ) đ (c) 30.6 Ă 104 (d) 306 Ă 104 17. 6.35 Ă 106 in ordinary notation is (a) 6350000 (b) 635000 (c) 6350 (d) 63500 18. A number written in the form of đ Ă 10đ, where 1 â€ đ â€ 10 and đ is (c) log đ log đ 8. log đđ can be written as (d) log đ đ an integer is called (a) scientific notation (b) ordinary notation (a) (log đ)đ (b) đ log đ (c) đ log đ (d) log(đđ) (c) logarithmic notation (d) none of these 19. common logarithm is also known as logarithm. (a) natural (b) simple MULTIPLE CHOICE QUESTIONS (a)
4. 4. 1 c 2 b 3 d 4 a 5 b 6 a 7 d 8 c 9 a 10 c 11 b 12 b 13 a 14 b 15 a 16 a 17 a 18 a 19 d 20 d 21 d 22 a 23 a 24 b MULTIPLE CHOICE QUESTIONS (c) scientific 20. logđ đ + logđ đ is same as: decadic (a) logđ(đ + đ) (b) logđ(đ Ă đ) (c) logđ đ Ă logđ đ đ logđ (đ ) ALGEBRAIC EXPRESSION 21. John Napier prepared the logarithm tables to the base . (a) 0 (b) 1 (c) 10 (d) đ 22. log2 3 in common log is written as . AND FORMULAS (a) log 3 log 2 (c) log 3 2 23. logđ 10 = (b) log 2 log 3 (d) log 23 Choose the correct answer from the options given in each question. 1. 4đ„ + 3đŠ â 2 is an algebraic (a) expression (b) sentence (a) 2.3026 (b) 0.4343 (c) đ10 (d) 10 24. If log2 đ„ = 5 then đ„ is: (a) 25 (b) 32 (c) 10 (d) 25đ„ (c) equation (d) inequation 2. The degree of polynomial 4đ„4 + 2đ„2đŠ is 6. 1 đâđ â 1 đ+đ is equal to (a) 2đ đ2âđ2 (c) â2đ đ2âđ2 7. đ 2âđ2 is equal to đ+đ (a) (đ â đ)2 (c) đ + đ 8. (âđ + âđ)(âđ â âđ) is equal to 2đ đ2âđ2 (d) â2đ đ2âđ2 (đ + đ)2 đ â đ (b) (d) (b) (d) (d) CHAPTER 03 (a) 1 (c) 3 3. đ3 + đ3 is equal to (b) 2 (d) 4 (a) (đ â đ)(đ2 + đđ + đ2) (b) (đ + đ)(đ2 â đđ + đ2) (c) (đ â đ)(đ2 â đđ + đ2) (d) (đ + đ)(đ2 + đđ â đ2) 4. (3 + â2)(3 â â2) is equal to (a) 7 (b) â7 (c) â1 (d) 1 5. Conjugate of Surd đ + âđ is (a) âđ + âđ (b) đ â âđ (c) âđ + âđ (d) âđ â âđ
5. 5. 1 a 2 d 3 b 4 a 5 b 6 b 7 d 8 c 9 a 10 a 11 a 12 a 13 b 14 a 15 b 16 b 17 c 18 c 19 d 20 a 21 d (a) đ2 + đ2 (b) đ2 â đ2 (c) đ â đ (d) đ + đ 9. The degree of the polynomial đ„2đŠ2 + 3đ„đŠ + đŠ3 is (a) 4 (b) 5 (c) 6 (d) 2 10. đ„2 â 4 = (a) (đ„ â 2)(đ„ + 2) (b) (đ„ â 2)(đ„ â 2) (c) (đ„ + 2)(đ„ + 2) (d) (đ„ â 2)2 11. đ„3 + 1 1 ( ) 19. Which of the following is not surd? (a) â2 (b) â3 (c) â2 + 5 (d) âđ 20. In the polynomial with the variable đ„, all the powers of đ„ are integers. (a) non-negative (b) negative (c) non-positive (d) none of these 21. Polynomial means an expression with: (a) one term (b) two terms đ„3 = (đ„ + đ„ ) (a) đ„2 â 1 + 1 đ„2 (c) đ„2 + 1 â 1 đ„2 âŠ âŠ âŠ âŠ âŠ (b) đ„2 + 1 + 1 đ„2 (d) đ„2 â 1 â 1 đ„2 (c) three terms (d) many term 12. 1 = 2ââ3 (a) 2 + â3 (b) 2 â â3 (c) â2 + â3 (d) â2 â â3 13. (đ + đ)2 â (đ â đ)2 = (a) 2(đ2 + đ2) (b) 4đđ (c) 2đđ (d) 3đđ 14. A surd which contains a single term is called surd. (a) monomial (b) binomial (c) trinomial (d) conjugate 15. What is the leading coefficient of polynomial 3đ„2 + 8đ„ + 5? (a) 2 (b) 3 (c) 5 (d) 8 16. A surd which contains two terms is called surd. (a) monomial (b) binomial (c) trinomial (d) conjugate 17. Which of the following is polynomial? (a) 3đ„2 + 1 đ„ (b) 4đ„2 â 3âđ„ (c) đ„2 â 3đ„ + â2 (d) 2đ„2 + 3đ„â1 18. (3 + â3)(3 â â3) = (a) 12 (b) 9 (c) 6 (d) 3
6. 6. (c) 1 2 1 1 2 1 (3đ„ â ) (9đ„ đ„ â 3 + đ„2) (d) (3đ„ + đ„ ) ( 9 đ„ â 3 + đ„2) FACTORIZATION 9. If đ„ â 2 is a factor of đ(đ„) = đ„2 + 2đđ„ + 8, then đ = (a) â3 (b) 3 (c) 4 (d) 5 10. 4đ2 + 4đđ + (âŠ ) is a complete square (a) đ2 (b) 2đ (c) đ2 (d) 4đ2 Choose the correct answer from the options given in each question. đ„2 đŠ2 1. The factor đ„2 â 5đ„ + 6 are 11. đŠ2 â 2 + đ„2 = (a) đ„ + 1, đ„ â 6 (b) đ„ â 2, đ„ â 3 (c) đ„ + 6, đ„ â 1 (d) đ„ + 2, đ„ + 3 ( đ„ đŠ đ„ â đŠ ) đ„ đŠ 3 (b) ( đ„ đŠ đ„ + đŠ ) đ„ đŠ 3 2. Factors 8đ„3 + 27đŠ3 are (c) ( â ) đŠ đ„ (d) ( + ) đŠ đ„ (3đ„ â ) ( 9 đ„ đ„ đ„3 + 3 + đ„2) (b) (3đ„ + đ„ ) ( 9 đ„ + 3 + đ„2) MULTIPLE CHOICE QUESTIONS (a) 2 2 CHAPTER 04 (a) (2đ„ + 3đŠ)(4đ„2 â 9đŠ2) 12. (đ„ + đŠ)(đ„2 â đ„đŠ + đŠ2) = (b) (2đ„ â 3đŠ)(4đ„2 â 9đŠ2) (a) đ„3 â đŠ3 (b) đ„3 + đŠ3 (c) (2đ„ + 3đŠ)(4đ„2 â 6đ„đŠ + 9đŠ2) (c) (đ„ + đŠ)3 (d) (đ„ â đŠ)3 (d) (2đ„ â 3đŠ)(4đ„2 + 6đ„đŠ + 9đŠ2) 13. Factors of đ„4 â 16 is 3. Factors 3đ„2 â đ„ â 2 are (a) (đ„ â 2)2 (b) (đ„ â 2)(đ„ + 2)(đ„2 + 4) (c) (đ„ â 2)(đ„ + 2) (d) (đ„ + 2)2 (a) (đ„ + 1)(3đ„ â 2) (b) (đ„ + 1)(3đ„ + 2) 14. Factors of 3đ„ â 3đ + đ„đŠ â đđŠ are (c) (đ„ â 1)(3đ„ â 2) 4. Factors of đ4 â 4đ4 are (a) (đ â đ)(đ + đ)(đ2 + 4đ2) (d) (đ„ â 1)(3đ„ + 2) (b) (đ2 â 2đ2)(đ2 + 2đ2) (a) (3 + đŠ)(đ„ â đ) (c) (3 â đŠ)(đ„ â đ) 15. Factors of đđđ + đđ2 â đđ2 â đ3 is (b) (3 â đŠ)(đ„ + đ) (d) (3 + đŠ)(đ„ + đ) (c) (đ â đ)(đ + đ)(đ2 â 4đ2) (d) (đ â 2đ)(đ2 + 2đ2) (a) đ(đ + đ)(đ â đ) (b) đ(đ â đ)(đ + đ) 5. What will be added to complete the square of 9đ2 â 12đđ? (c) đ(đ â đ)(đ â đ) (d) đ(đ + đ)(đ + đ) (a) â16đ2 (b) 16đ2 16. What is the value of đ(đ„) = 6đ„4 + 2đ„3 â đ„ + 2 at đ„ = 0? (c) 4đ2 (d) â4đ2 (a) 9 (b) 8 6. Find đ so that đ„2 + 4đ„ + đ is a complete square: (c) 2 (d) 7 (a) 8 (b) â8 17. đ„2 + 5đ„ + 6 = (c) 4 (d) 16 (a) (đ„ + 1)(đ„ â 1) (b) (đ„ â 2)(đ„ â 3) 7. Factors of 5đ„2 â 17đ„đŠ â 12đŠ2 are (c) (đ„ + 6)(đ„ â 1) (d) (đ„ + 2)(đ„ + 3) (a) (đ„ + 4đŠ)(5đ„ + 3đŠ) (b) (đ„ â 4đŠ)(5đ„ â 3đŠ) 18. 4đ2 â 16 = (c) (đ„ â 4đŠ)(5đ„ + 3đŠ) (d) (5đ„ â 4đŠ)(đ„ + 3đŠ) (a) (2đ + 8)(2đ â 8) (b) 4(đ + 2)(đ â 2) 8. Factors of 27đ„3 â 1 are (a) 1 2 1 1 2 1 (c) 4(đ + 2)2 (d) 4(đ â 2)2 19. How many factors of a cubic expression are there?
7. 7. 1 b 2 c 3 d 4 b 5 c 6 c 7 c 8 a 9 a 10 a 11 a 12 b 13 b 14 a 15 a 16 c 17 d 18 b 19 d 20 a (b) 1 (d) 3 (a) zero (c) 2 20. (đ„ â đŠ)(đ„2 + đ„đŠ + đŠ2) = (a) đ„3 â đŠ3 (b) đ„3 + đŠ3 (c) (đ„ + đŠ)3 (d) (đ„ â đŠ)3 CHAPTER 05 ALGEBRAIC MANIPULATION Choose the correct answer from the options given in each question. 1. H.C.F. of đ3đ â đđ3 and đ5đ2 â đ2đ5 is (a) đđ(đ2 â đ2) (b) đđ(đ â đ) (c) đ2đ2(đ â đ) (d) đđ(đ3 â đ3) 2. H.C.F. of 5đ„2đŠ2 and 20đ„3đŠ3 is: (a) 5đ„2đŠ2 (b) 20đ„3đŠ3 (c) 100đ„5đŠ5 (d) 5đ„đŠ 3. H.C.F. of (đ„ â 2) and (đ„2 + đ„ â 6) is (a) đ„2 + đ„ â 6 (b) đ„ + 2 (c) đ„ â 2 (d) đ„ + 3 4. H.C.F. of (đ3 + đ3) and (đ2 â đđ + đ2) is (a) đ + đ (b) đ2 â đđ + đ2 (c) (đ â đ)2 (d) đ2 + đ2 5. H.C.F. of (đ„2 â 5đ„ + 6) and (đ„2 â đ„ â 6) is: (a) đ„ â 3 (b) đ„ + 2 (c) đ„2 â 4 (d) đ„ â 2 6. H.C.F. of (đ2 â đ2) and (đ3 â đ3) is: (a) đ â đ (b) đ + đ (c) đ2 + đđ + đ2 (d) đ2 â đđ + đ2 7. H.C.F. of (đ„2 + 3đ„ + 2) and (đ„2 + 4đ„ + 3) is: (a) đ„ + 1 (b) (đ„ + 1)(đ„ + 2) (c) (đ„ + 3) (d) (đ„ + 4)(đ„ + 1) 8. L.C.M. of 15đ„2, 45đ„đŠ and 30đ„đŠđ§ is: (a) 90đ„đŠđ§ (b) 90đ„2đŠđ§ (c) 15đ„đŠđ§ (d) 15đ„2đŠđ§ MULTIPLE CHOICE QUESTIONS
8. 8. đ (c) 1 đ (d) 9. L.C.M. of đ2 + đ2 and đ4 â đ4 is: (a) đ2 + đ2 (b) đ2 â đ2 (c) đ4 â đ4 (d) đ â đ (a) Â±(2đ„ â 3) (b) Â±(2đ„ + 3) (c) (2đ„ + 3)2 (d) (2đ„ â 3)2 19. L.C.M. = 10. The product of two algebraic expression is equal to the H.C.F. and L.C.M. (a) sum (b) difference (c) product (d) quotient of their (a) đ(đ„)Ăđ(đ„) H.C.F (c) đ(đ„) đ(đ„)ĂH.C.F 20. H.C.F. = (b) đ(đ„)Ăđ(đ„) L.C.M (d) đ(đ„) đ(đ„)ĂH.C.F 11. đ 9đ2âđ2 (a) 4đ 9đ2âđ2 4đ+đ 9đ2âđ2 + 1 = 3đâđ (b) 4đâđ 9đ2âđ2 (d) đ 9đ2âđ2 (a) đ(đ„)Ăđ(đ„) L.C.M (c) đ(đ„) đ(đ„)ĂL.C.M 21. L. C. M Ă H. C. F. = (b) đ(đ„)Ăđ(đ„) H.C.F (d) L.C.M đ(đ„)Ăđ(đ„) 12. đ2+5đâ14 Ă đ+3 = đ2â3đâ18 đâ2 (a) đ+7 đâ6 (c) đ+3 đâ6 13. đ3âđ3 Ă· ( đ2+đđ+đ2 ) = (b) đ+7 đâ2 (d) đâ2 đ+3 (a) đ(đ„) Ă đ(đ„) (b) đ(đ„) Ă H. C. F. (c) đ(đ„) Ă L. C. M (d) none of these 22. Any unknown expression may be found if of them are known by using the relation L. C. M Ă H. C. F = p(đ„) Ă đ(đ„) (a) two (b) three đ4âđ4 1 đ+đ (c) đâđ đ2+đ2 đ2+đ2 (b) 1 đâđ (d) đ+đ đ2+đ2 (c) four (d) none of these 23. The H.C.F of đ„2 â 4, đ„2 + 4đ„ + 4 and 2đ„2 + đ„ â 6 is: (a) đ„ â 2 (b) đ„ + 2 (c) 2đ„ â 3 (d) (đ„ â 2)(đ„ + 2)(2đ„ â 3) 14. ( 2đ„+đŠ â 1) Ă· (1 â đ„ ) = đ+đ đ2âđđ (a) (c) đ„+đŠ đ„ đ„+đŠ đŠ đ„+đŠ (b) đŠ đ„+đŠ đ„ 24. đ2âđ2 Ă· đ2â2đđ+đ2 (a) đ (b) đ đ đ„ đŠ 15. The square root of đ2 â 2đ + 1 is 25. If đŽ = đ+đ , then 1 is: (d) đ (a) Â±(đ + 1) (b) Â±(đ â 1) (c) đ â 1 (d) đ + 1 16. What should be added to complete the square of đ„4 + 64? (a) 8đ„2 (b) â8đ„2 (a) đâđ đ+đ (c) đâđ đâđ đâđ đŽ (b) đ+đ đâđ (d) đ+đ đ+đ (c) 16đ„2 (d) 4đ„2 17. The square root of đ„4 + 1 + 2 is: đ„4 26. How many methods are used to find H.C.F of given expression? (a) one (b) two (c) three (d) four (a) 1 Â± (đ„ + ) đ„ Â± (đ„2 + 1 ) đ„2 27. How many methods are used to find square root of given expression? (a) one (b) two (c) Â± (đ„ â 1 ) (d) Â± (đ„2 â 1 ) đ„ 18. The square root of 4đ„2 â 12đ„ + 9 is: đ„2 (c) three (d) four 28. If đ(đ„). đ(đ„) = đ(đ„), then đ(đ„) is called of đ(đ„). (b) (a) (c)
9. 9. 1 b 2 a 3 c 4 b 5 a 6 a 7 a 8 b 9 c 10 c 11 c 12 a 13 a 14 d 15 b 16 c 17 b 18 a 19 a 20 a 21 a 22 b 23 b 24 c 25 a 26 c 27 c 28 b (b) (a) square (b) square root (c) L.C.M (d) H.C.F CHAPTER 06 LINEAR EQUATION AND LINEAR INEQUALITIES Choose the correct answer from the options given in each question. 1. Which of the following is the solution of the inequality 3 â 4đ„ â€ 11? (a) đ„ â„ â8 (c) đ„ â„ â 14 3 đ„ â„ â2 (d) none of these 2. A statement involving any of the symbols <, >, â€ or â„ is called (a) equation (b) identity (c) inequality (d) linear equation 3. đ„ = is a solution of the inequality â2 < đ„ < 3 2 (a) â5 (b) 3 (d) 5 2 4. If đ„ is no larger than 10, then: (a) đ„ â„ 8 (b) đ„ â€ 10 (c) đ„ < 10 (d) đ„ > 10 5. If the capacity x of an elevator is at most 1600 pounds, then (a) đ < 1600 (c) đ â€ 1600 6. đ„ = 0 is a solution of the inequality: (b) đ â„ 1600 (d) đ > 1600 (a) đ„ > 0 (b) 3đ„ + 5 > 0 (c) đ„ + 2 < 0 (d) đ„ â 2 < 0 7. The linear equation in one variable đ„ is: (a) đđ„ + đ = 0 (b) đđ„2 + đđ„ + đ = 0 (c) đđ„ + đđŠ + đ = 0 (d) đđ„2 + đđŠ2 + đ = 0 8. An inconsistent equation is that whose solution set is: (a) empty (b) not empty (c) zero (d) positive MULTIPLE CHOICE QUESTIONS (c) 0
10. 10. 9. |đ„| = đ is equivalent to: (a) đ„ = đ or đ„ = âđ (b) đ„ = 1 or đ„ = â 1 18. |đ„| = 0 has only solution (a) one (b) two (c) đ„ = đ or đ„ = â 1 đ 10. A linear inequality in one variable đ„ is: đ đ (d) none of these (c) three (d) none of these 19. The equation |đ„| = 2 is equivalent to: (a) đ„ = 2 or đ„ = â2 (b) đ„ = â2 or đ„ = â2 (a) đđ„ + đ > 0, đ â  0 (b) đđ„2 + đđ„ + đ < 0, đ â  0 (c) đ„ = 2 or đ„ = 1 2 (d) đ„ = 2 or đ„ = â 1 2 (c) đđ„ + đđŠ + đ > 0, đ â  0 (d) đđ„2 + đđŠ2 + đ < 0, đ â  0 11. Law of trichotomy is . (đ, đ â R) (a) đ < đ or đ = đ or đ > đ (b) đ < đ or đ = đ (c) đ < đ or đ > đ (d) none of these 12. Transitive law is (a) đ < đ and đ < đ, then đ < đ (b) đ > đ and đ < đ, then đ > đ (c) đ > đ and đ < đ, then đ = đ (d) none of these 13. If đ > đ, đ > 0 then: (a) đđ < đđ (b) đđ > đđ (c) đđ = đđ (d) đđ â€ đđ 14. If đ > đ, đ > 0 then 20. A/an is equation that is satisfied by every number for which both sides are defined: (a) identity (b) conditional (c) inconsistent (d) inequation 21. A/an equation is an equation whose solution set is the empty set: (a) identity (b) conditional (c) inconsistent (d) none 22. A/an equation is an equation that is satisfied by at least one number but is not an identity: (a) identity (b) conditional (c) inconsistent (d) none 23. đ„ + 4 = 4 + đ„ is equation: (a) identity (b) conditional (c) inconsistent (d) none (a) đ > đ (b) đ < đ 24. 2đ„ + 1 = 9 is equation: đ đ đ đ (c) đ = đ đ đ 15. If đ > đ, đ < 0 then (a) đ < đ (d) đ â  đ đ đ (b) đ > đ (a) identity (b) conditional (c) inconsistent (d) none 25. đ„ = đ„ + 5 is equation: (a) identity (b) conditional đ đ đ đ (c) đ = đ (d) đ â€ đ (c) inconsistent (d) none đ đ đ đ 16. If đ, đ â R, đ â  0 then 26. Equations having exactly the same solution are called solution. đ | | = đ |đ| |đ| (b) |đđ| = |đ| |đ| (a) equivalent (b) linear (c) inconsistent (d) inequation (c) |đ + đ| = |đ| + |đ| (d) |đ â đ| = |đ| â |đ| 17. When the variable in an equation occurs under a radical, the equation is called equation. (a) radical (b) absolute value (c) linear (d) none of these 27. A solution that does not satisfy the original equation is called solution. (a) extraneous (b) root (c) general (d) proper (a)
11. 11. 1 b 2 c 3 c 4 b 5 c 6 d 7 a 8 a 9 a 10 a 11 a 12 a 13 b 14 a 15 a 16 a 17 a 18 a 19 a 20 a 21 c 22 c 23 a 24 b 25 c 26 a 27 a (b) (d) CHAPTER 07 LINEAR GRAPH AND THEIR APPLICATION Choose the correct answer from the options given in each question. 1. If (đ„ â 1, đŠ + 1) = (0,0), then (đ„, đŠ) is: (a) (1, â1) (b) (â1,1) (c) (1,1) (d) (â1, â1) 2. If (đ„, 0) = (0, đŠ), then (đ„, đŠ) is: (a) (0,1) (b) (1,0) (c) (0,0) (d) (1,1) 3. Point (2, â3) lies in quadrant. (a) I (b) II (c) III (d) IV 4. Point (â3, â3) lies in quadrant. (a) I (b) II (c) III (d) IV 5. If đŠ = 2đ„ + 1, đ„ = 2 then đŠ is: (a) 2 3 (c) 4 5 6. Which ordered pair satisfy the equation đŠ = 2đ„: (a) (1,2) (b) (2,1) (c) (2,2) (d) (0,1) 7. The real number đ„, đŠ of the ordered pair (đ„, đŠ) are called of point đ(đ„, đŠ) in a plane. (a) co-ordinate (b) đ„ co-ordinate (c) đŠ-co-ordinate (d) ordinate 8. Cartesian plane is divided into quadrants. (a) two (b) three (c) four (d) five MULTIPLE CHOICE QUESTIONS
12. 12. 1 a 2 c 3 d 4 c 5 d 6 a 7 a 8 c 9 a 10 b 11 d 12 a 13 a 14 a 15 b 16 a 17 d 18 c 19 d 20 a 9. The point of intersection of two coordinate axes is called: (a) origin (b) centre (c) đ„-coordinate (d) ordinate 10. The đ„-coordinate of a point is called (a) origin (b) abscissa (c) đŠ-coordinate (d) ordinate 11. The đŠ-coordinate of a point is called (a) origin (b) đ„-coordinate (c) đŠ-coordinate (d) ordinate 12. The set of points which lie on the same line are called points. (a) collinear (b) similar (c) common (d) none of these 13. The plane formed by two straight lines perpendicular to each other is called: (a) cartesian plane (b) coordinate axes (c) plane (d) none of these 14. An ordered pair is a pair of elements in which elements are written in specific: (a) order (b) array (c) point (d) none 15. Point (â1,2) lies in quadrant. (a) I (b) II (c) III (d) IV 16. Point (1,1) lies in quadrant. (a) I (b) II (c) III (d) IV 17. Point (1, â3) lies in quadrant. (a) I (b) II (c) III (d) IV 18. Which of the following points is one the origin? (a) (0,0) (b) (â2, â3) (c) (0,2) (d) (4,0) 19. Which of the following lines is parallel to đ„-axis? (a) đ„ = 0 (b) đ„ = â3 (c) đ„ = 3 (d) đŠ = â3 20. Which of the following lines is parallel to đŠ-axis? (a) đŠ = 2đ„ (b) đ„ = â3 (c) đŠ = 3 (d) đŠ = 4đ„ + 1