SlideShare a Scribd company logo
1 of 28
Download to read offline
The Laplce Transforms - II
Review of Integral Transforms - Inverse Laplace Transforms
Vishnu V
Assistant professor, Department of Mathematics
Sree Ayyappa College, Eramallikkara
1 / 28
Definition of Inverse Laplace Transform
Inverse Laplace Transform
If the laplace transform of a function F(t) is f (s), i.e., if
L(F(t)) = f (s), then F(t) is called an inverse laplace transform
of f (s) and we write aymbolically F(t) = L−1f (s).
In other words, inverse transform of a given function f (s) is that
function F(t) whose, Laplace transform is f (s).
2 / 28
Properties of Inverse Laplace Transforms
First property
L−1(kf (t)) = kL−1(f (t)), where k is a constant.
2nd property - Linearity property
If c1 and c2 are any two constants while f1(s) & f2(s) are the
functions with Inverse Laplace transforms F1(t) & F2(t)
respectively, then
L−1
(c1f1(s) + c2f2(s)) = c1L−1
(f1(s)) + c2L−1
(f2(s))
= c1F1(t) + c2F2(t)
3 / 28
Properties of Inverse Laplace Transforms
3rd property -Translation or Shifting property
If L−1(f (s)) = F(t) then L−1(f (s − a)) = eatF(t)
4th property - Multiplication by power of t
If L−1(f (s)) = F(t), and F(0) = F′(0) = . . . F(n − 1)(0) = 0
then L−1 dn
dsn f (s)

= (−1)ntnF(t), where n = 1, 2, 3...
5th property
if L−1(f (s)) = F(t), then
L(e−asf (s)) =



F(t − a), t  a
0, t  a − − − −(1)
4 / 28
Remark
It should be noted that the right side of (1) can be written in a
different way using the Unit step function.
Let ua(t) =



1, t  a
0, t  a − − − − − (2)
From equations (1) and (2) we can wriiten in a different form
L−1
(e−as
f (s)) = F(t − a)ua(t)
.
5 / 28
Method of Convolution
Convolution Property
If F(t) andG(t) are the inverse transforms of f (s) and g(s),
respectively, the inverse transform of the product f (s)g(s) is the
convolution of F(t) and G(t), written (F ∗ G)(t) and defined by
(F ∗ G)(t) =
Z 1
0
F(t − u) G(u) du
i.e.,
L−1
(f (S)g(s)) = (F ∗ G)(t) =
Z 1
0
F(t − u) G(u) du
6 / 28
Method of Convolution
Corrollary
Putting t − u = v in the above integral, we obtain,
(F ∗ G)(t) = −
Z 0
t
F(v) G(t − v) du
=
Z t
0
G(t − v)F(v) du
= (G ∗ F)(t)
7 / 28
Remark
Properties of convolution
(F ∗ (G + H))(t) = (F ∗ G)(t) + (F ∗ H)(t)
((F ∗ G) ∗ H)(t) = (F ∗ (G ∗ H))(t)
(F ∗ 0)(t) = (0 ∗ F)(t)
8 / 28
Examples : - Partial Fractions
Use partial fractions to decompose : s+3
(s−2)(s+1)
To the linear factors s − 2 and s + 1, we associate respectively the
fractions A
(s−2) and B
(s+1) . We set
s + 3
(s − 2)(s + 1)
=
A
(s − 2)
+
B
(s + 1)
i.e., s + 3 = A(s + 1) + B(s − 2)
To find A and B, we substitute s = −1 and s = 2 into the above
equation, ⇒ A = 5
3 and B = −2
3 .
∴
s + 3
(s − 2)(s + 1)
=
5
3
(s − 2)
−
2
3
(s − 2)
9 / 28
Examples :
Find the L−1
n
s+3
(s−2)(s+1)
o
L−1

s + 3
(s − 2)(s + 1)

=
5
3
L−1

1
s − 2

−
2
3
L−1

1
s + 1

=
5
3
e2x
−
2
3
e−x
10 / 28
Example:
Find the inverse transforms of
1. 3s+7
s2−2s−3
2. 5s2−15s−11
(s+1)(s−2)3
3. 3s+1
(s−1)(s2+1)
In the problems of the above kind, we use the method of partial
fractions.
1. Resolving into partial fractions, we have
3s + 7
s2 − 2s − 3
= 4.
1
s − 3
−
1
s + 1
.
∴ L−1

3s + 7
s2 − 2s − 3

= 4L−1

1
s − 3

− L−1

1
s + 1

= 4.e3t
− e−t
11 / 28
Examples
2. Resolving into partial fraction, we have,
5s2 − 15s − 11
(s + 1)(s − 2)3
= −
1
3

1
s + 1

+
1
3

1
s − 2

+
4
(s − 2)2
−
7
(s − 2)3
∴ L−1

5s2 − 15s − 11
(s + 1)(s − 2)3

= −
1
3
L−1

1
s + 1

+
1
3
L−1

1
s − 2

+
+ 4L−1

1
(s − 2)2

− 7L−1

1
(s − 2)3

= −
1
3
e−t
+
1
3
e2t
+ 4te2t
−
7
2
t2
e2t
.
12 / 28
Examples :
3. Resolving into partial fractions, we have,
3s + 1
(s − 1)(s2 + 1)
=
2
s − 1
+
−2s + 1
s2 + 1
∴ L−1

3s + 1
(s − 1)(s2 + 1)

= 2L−1

1
s − 1

− 2L−1

s
s2 + 1

+ L−1

1
s2 + 1

= 2et
− 2 cos t + sin t.
13 / 28
Examples :
Find the inverse tranforms of,
1. 6s−4
s2−4s+20
2. s
(s−2)4
3. s2+2s+3
(s2+2s+2)(s2+2s+5)
1. Here the denominator cannot be factorised into rational factors
and hence the partial fraction method is in-applicable. However
completing the square in the denominator, we obtain,
6s − 4
s2 − 4s + 20
=
6(s − 2) + 8
(s − 2)2 + 16
= 6.
(s − 2)
(s − 2)2 + 16
+
8
(s − 2)2 + 16
∴ L−1

6s − 4
s2 − 4s + 20

= L−1

s − 2
(s − 2)2 + 16

+ 2L−1

4
(s − 2)2 + 16

= 6e2t
cos 4t + 2e2t
sin 4t 14 / 28
Examples :
2. Since the denominator contains (s − 2) as unit, rewrite the
numerator also in terms of s − 2. Thus
s
(s − 2)4
=
(s − 2) + 2
(s − 2)4
=
1
(s − 2)3
+
2
(s − 2)4
∴ L−1

s
(s − 2)4

= L−1

1
(s − 2)3

+ 2L−1

2
(s − 2)4

= e2t
.
t2
2!
+ 2e2t
.
t3
3!
=
1
3!
e2t
(3t2
+ 23
).
15 / 28
Examples :
3. By the method of partial frations
s2 + 2s + 3
(s2 + 2s + 2)(s2 + 2s + 5)
=
1
3
1
s2 + 2s + 2
+
2
3
1
s2 + 2s + 5
=
1
3
1
(s + 1)2 + 1
+
2
3
1
(s + 1)2 + 4
∴ L−1

s2 + 2s + 3
(s2 + 2s + 2)(s2 + 2s + 5)

=
1
3
L−1

1
(s + 1)2 + 1

+
1
3
L−1

1
(s + 1)2 + 4

=
1
3
e−t
sin t +
1
3
e−t
sin 2t
=
1
3
e−t
(sin t + sin2t)
16 / 28
Examples :
Find the inverse Laplace transfroms of
1. 1
(s+a)n
2. 1
(s2+a2)2
3. s2
(s2+a2)2
1. By applying 3rd property -Translation or Shifting property, we
have
L−1

1
(s + a)n

= e−at
L−1

1
sn

= e−at tn−1
(n − 1)!
2. Since we know the inverse transforms of 1
s2+a2 and s2−a2
(s2+a2)2 , we
shall rewrite the given expression in terms of these.Thus :
17 / 28
Examples :
1
(s2 + a2)2
=
1
2a2
(s2 + a2) − (s2 − a2)
(s2 + a2)2
=
1
2a2

1
s2 + a2
−
s2 − a2
(s2 + a2)2

∴ L−1

1
(s2 + a2)2

=
1
2a2

1
a
sin at − t cos at

=
1
2a3
[sin at − at cos at]
18 / 28
Examples :
3.
s3
(s2 + a2)2
=
s[(s2 + a2) − a2
(s2 + a2)2
=
s
s2 + a2
− a2 s
(s2 + a2)2
∴ L−1

s3
(s2 + a2)2

= cos at − a2
.
1
2a
t sin at
= cos at −
1
2
at sin at.
19 / 28
Examples :
Find L−1
n
e−3s
(s−1)4
o
We have
L−1

e−3s
(s − 1)4

= et
L−1

1
s4

= et t3
3!
; 3rd
property -Translation or Shifting property
=
1
6
t3
et
L−1

e−3s
(s − 1)4

=



1
6(t − 3)3et−3; t  3. Using 6th property
0; t  3
Using the remark;
= 1
6(t − 3)3et−3u3(t);
20 / 28
Examples :
Find L−1
n
eπs
s2+2s+2
o
We have
L−1

eπs
s2 + 2s + 2

= L−1

1
(s + 1)2 + 1

= e−t
L−1

1
s2 + 1

= e−t
sin t. Hence using property 6, we have
L−1

eπs
s2 + 2s + 2

=



e−t−π sin(t − π); t  π.
0; t ≤ π
21 / 28
Remark
Remark
We known that
L {tF(t)} = −
d
ds
L {F(t)}
∴ tF(t) = L−1

−
d
ds
L {F(t)}

22 / 28
Examples :
Find the inverse transforms of the log s+1
s−1
Solution : Let F(t) = L−1
n
log s+1
s−1
o
, Then L[F(t)] = log s+1
s−1
Hence from above remark,
tL−1

log

s + 1
s − 1

= L−1

−
d
ds
[log(s + 1) − log(s − 1)]

= −L−1

d
ds
log(s + 1)

+ L−1

d
ds
log(s − 1)

= −L−1

1
s + 1

+ L−1

1
s − 1

= −e−t
+ et
= 2 sinh t
∴ L−1

log

s + 1
s − 1

=
2 sinh t
t
23 / 28
Examples :
Find the inverse Laplace transforms of tan−1( 2
s2 )
Solution : Let F(t) = L−1

tan−1 2
s2
	
, Then L[F(t)] = tan−1 2
s2
Hence from above remark,
tL−1

tan−1
(
2
s2
)

= L−1

−
d
ds
[tan−1
(
2
s2
)

= L−1

4s
s2 + 4

= L−1

4s
(s2 + 2)2 − 4s2

= L−1

4s
(s2 + 2 + 2s)(s2 + 2 − 2s)

= L−1

1
s2 − 2s + 2
−
1
s2 + 2s + 2

= L−1

1
(s − 1)2 + 1
−
1
(s + 1)2 + 1

24 / 28
Examples :
= et
sin t − e−t
sin t
= 2 sin ht sin t.
∴ L−1

tan−1
(
2
s2
)

=
2 sin ht sin t
t
Using Convolution property, Find L−1
n
1
s(s2+a2)
o
Solution : We have already solved this type of problems by partial
fraction method. However convolution method the work easy.
Let f (s) = 1
s and g(s) = 1
s2+a2
Then F(t) = L−1
1
s
	
= 1 and G(t) = L−1
n
1
s2+a2
o
= 1
a sin at.
25 / 28
Examples :
∴ L−

1
s(s2 + a2)

=
Z t
0
F(t − u)G(u) du
=
Z t
0
sin au
a
du
=

− cos au
a2
t
0
=
1
a2
(1 − cos at)
Using Convolution property, Find L−1
n
1
s2(s−a)
o
Solution : Let f (s) = 1
s2 and g(s) = 1
s−a
Then F(t) = L−1
 1
s2
	
= t and G(t) = L−1
n
1
s−a
o
= eat
26 / 28
Examples :
∴ L−1

1
s2(s − a)

=
Z t
0
F(u)G(t − u) du
=
Z t
0
uea(t−u)
du
= eat
Z t
0
ue−au
du
=
1
a2
(eat
− at − 1)
27 / 28
Thank You
28 / 28

More Related Content

What's hot

Laplace transform and its applications
Laplace transform and its applicationsLaplace transform and its applications
Laplace transform and its applicationsNisarg Shah
 
Presentation on laplace transforms
Presentation on laplace transformsPresentation on laplace transforms
Presentation on laplace transformsHimel Himo
 
Complex analysis
Complex analysisComplex analysis
Complex analysissujathavvv
 
Laplace transform
Laplace transformLaplace transform
Laplace transformAmit Kundu
 
Laplace transform: UNIT STEP FUNCTION, SECOND SHIFTING THEOREM, DIRAC DELTA F...
Laplace transform: UNIT STEP FUNCTION, SECOND SHIFTING THEOREM, DIRAC DELTA F...Laplace transform: UNIT STEP FUNCTION, SECOND SHIFTING THEOREM, DIRAC DELTA F...
Laplace transform: UNIT STEP FUNCTION, SECOND SHIFTING THEOREM, DIRAC DELTA F...saahil kshatriya
 
Laplace Transform And Its Applications
Laplace Transform And Its ApplicationsLaplace Transform And Its Applications
Laplace Transform And Its ApplicationsSmit Shah
 
Laplace transform and its application
Laplace transform and its applicationLaplace transform and its application
Laplace transform and its applicationJaydrath Sindhav
 
Laplace transform
Laplace  transform   Laplace  transform
Laplace transform 001Abhishek1
 
Ordinary differential equation
Ordinary differential equationOrdinary differential equation
Ordinary differential equationJUGAL BORAH
 
Laplace Transform and its applications
Laplace Transform and its applicationsLaplace Transform and its applications
Laplace Transform and its applicationsDeepRaval7
 
Laplace Transformation & Its Application
Laplace Transformation & Its ApplicationLaplace Transformation & Its Application
Laplace Transformation & Its ApplicationChandra Kundu
 
Applications Of Laplace Transforms
Applications Of Laplace TransformsApplications Of Laplace Transforms
Applications Of Laplace TransformsKetaki_Pattani
 
Laplace transforms and problems
Laplace transforms and problemsLaplace transforms and problems
Laplace transforms and problemsVishnu V
 
Ordinary differential equations
Ordinary differential equationsOrdinary differential equations
Ordinary differential equationsAhmed Haider
 

What's hot (20)

Laplace transform and its applications
Laplace transform and its applicationsLaplace transform and its applications
Laplace transform and its applications
 
Presentation on laplace transforms
Presentation on laplace transformsPresentation on laplace transforms
Presentation on laplace transforms
 
Laplace transform
Laplace transformLaplace transform
Laplace transform
 
Complex analysis
Complex analysisComplex analysis
Complex analysis
 
Laplace transform
Laplace transformLaplace transform
Laplace transform
 
Laplace transformation
Laplace transformationLaplace transformation
Laplace transformation
 
Laplace transform
Laplace transformLaplace transform
Laplace transform
 
Laplace transform: UNIT STEP FUNCTION, SECOND SHIFTING THEOREM, DIRAC DELTA F...
Laplace transform: UNIT STEP FUNCTION, SECOND SHIFTING THEOREM, DIRAC DELTA F...Laplace transform: UNIT STEP FUNCTION, SECOND SHIFTING THEOREM, DIRAC DELTA F...
Laplace transform: UNIT STEP FUNCTION, SECOND SHIFTING THEOREM, DIRAC DELTA F...
 
Laplace Transform And Its Applications
Laplace Transform And Its ApplicationsLaplace Transform And Its Applications
Laplace Transform And Its Applications
 
Laplace transform and its application
Laplace transform and its applicationLaplace transform and its application
Laplace transform and its application
 
Inverse Laplace Transform
Inverse Laplace TransformInverse Laplace Transform
Inverse Laplace Transform
 
Laplace transform
Laplace  transform   Laplace  transform
Laplace transform
 
Ordinary differential equation
Ordinary differential equationOrdinary differential equation
Ordinary differential equation
 
Laplace
LaplaceLaplace
Laplace
 
Laplace Transform and its applications
Laplace Transform and its applicationsLaplace Transform and its applications
Laplace Transform and its applications
 
Laplace Transformation & Its Application
Laplace Transformation & Its ApplicationLaplace Transformation & Its Application
Laplace Transformation & Its Application
 
Applications Of Laplace Transforms
Applications Of Laplace TransformsApplications Of Laplace Transforms
Applications Of Laplace Transforms
 
Laplace transforms and problems
Laplace transforms and problemsLaplace transforms and problems
Laplace transforms and problems
 
Ordinary differential equations
Ordinary differential equationsOrdinary differential equations
Ordinary differential equations
 
Importance & Application of Laplace Transform
Importance & Application of Laplace TransformImportance & Application of Laplace Transform
Importance & Application of Laplace Transform
 

Similar to Inverse Laplace Transform

Similar to Inverse Laplace Transform (20)

LaplaceTransformIIT.pdf
LaplaceTransformIIT.pdfLaplaceTransformIIT.pdf
LaplaceTransformIIT.pdf
 
Laplace quad
Laplace quadLaplace quad
Laplace quad
 
NotesLaplace.pdf
NotesLaplace.pdfNotesLaplace.pdf
NotesLaplace.pdf
 
Inverse laplace
Inverse laplaceInverse laplace
Inverse laplace
 
laplace.pdf
laplace.pdflaplace.pdf
laplace.pdf
 
lec04.pdf
lec04.pdflec04.pdf
lec04.pdf
 
Unit v laplace transform(formula)
Unit v laplace transform(formula)Unit v laplace transform(formula)
Unit v laplace transform(formula)
 
PROPERTIES OF LAPLACE TRANSFORM part 2
PROPERTIES OF LAPLACE TRANSFORM part 2PROPERTIES OF LAPLACE TRANSFORM part 2
PROPERTIES OF LAPLACE TRANSFORM part 2
 
Laplace_1.ppt
Laplace_1.pptLaplace_1.ppt
Laplace_1.ppt
 
Laplace
LaplaceLaplace
Laplace
 
Laplace periodic function with graph
Laplace periodic function with graphLaplace periodic function with graph
Laplace periodic function with graph
 
Segundo teorema
Segundo teoremaSegundo teorema
Segundo teorema
 
Mca admission in india
Mca admission in indiaMca admission in india
Mca admission in india
 
final19
final19final19
final19
 
Laplace transforms
Laplace transformsLaplace transforms
Laplace transforms
 
Laplace table
Laplace tableLaplace table
Laplace table
 
Laplace table
Laplace tableLaplace table
Laplace table
 
Ece4510 notes03
Ece4510 notes03Ece4510 notes03
Ece4510 notes03
 
Ch06 2
Ch06 2Ch06 2
Ch06 2
 
transformada de lapalace universidaqd ppt para find eaño
transformada de lapalace universidaqd ppt para find eañotransformada de lapalace universidaqd ppt para find eaño
transformada de lapalace universidaqd ppt para find eaño
 

Recently uploaded

The byproduct of sericulture in different industries.pptx
The byproduct of sericulture in different industries.pptxThe byproduct of sericulture in different industries.pptx
The byproduct of sericulture in different industries.pptxShobhayan Kirtania
 
Grant Readiness 101 TechSoup and Remy Consulting
Grant Readiness 101 TechSoup and Remy ConsultingGrant Readiness 101 TechSoup and Remy Consulting
Grant Readiness 101 TechSoup and Remy ConsultingTechSoup
 
Call Girls in Dwarka Mor Delhi Contact Us 9654467111
Call Girls in Dwarka Mor Delhi Contact Us 9654467111Call Girls in Dwarka Mor Delhi Contact Us 9654467111
Call Girls in Dwarka Mor Delhi Contact Us 9654467111Sapana Sha
 
CARE OF CHILD IN INCUBATOR..........pptx
CARE OF CHILD IN INCUBATOR..........pptxCARE OF CHILD IN INCUBATOR..........pptx
CARE OF CHILD IN INCUBATOR..........pptxGaneshChakor2
 
Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...
Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...
Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...EduSkills OECD
 
Q4-W6-Restating Informational Text Grade 3
Q4-W6-Restating Informational Text Grade 3Q4-W6-Restating Informational Text Grade 3
Q4-W6-Restating Informational Text Grade 3JemimahLaneBuaron
 
Measures of Central Tendency: Mean, Median and Mode
Measures of Central Tendency: Mean, Median and ModeMeasures of Central Tendency: Mean, Median and Mode
Measures of Central Tendency: Mean, Median and ModeThiyagu K
 
Software Engineering Methodologies (overview)
Software Engineering Methodologies (overview)Software Engineering Methodologies (overview)
Software Engineering Methodologies (overview)eniolaolutunde
 
1029 - Danh muc Sach Giao Khoa 10 . pdf
1029 -  Danh muc Sach Giao Khoa 10 . pdf1029 -  Danh muc Sach Giao Khoa 10 . pdf
1029 - Danh muc Sach Giao Khoa 10 . pdfQucHHunhnh
 
Interactive Powerpoint_How to Master effective communication
Interactive Powerpoint_How to Master effective communicationInteractive Powerpoint_How to Master effective communication
Interactive Powerpoint_How to Master effective communicationnomboosow
 
Sanyam Choudhary Chemistry practical.pdf
Sanyam Choudhary Chemistry practical.pdfSanyam Choudhary Chemistry practical.pdf
Sanyam Choudhary Chemistry practical.pdfsanyamsingh5019
 
social pharmacy d-pharm 1st year by Pragati K. Mahajan
social pharmacy d-pharm 1st year by Pragati K. Mahajansocial pharmacy d-pharm 1st year by Pragati K. Mahajan
social pharmacy d-pharm 1st year by Pragati K. Mahajanpragatimahajan3
 
The Most Excellent Way | 1 Corinthians 13
The Most Excellent Way | 1 Corinthians 13The Most Excellent Way | 1 Corinthians 13
The Most Excellent Way | 1 Corinthians 13Steve Thomason
 
Advanced Views - Calendar View in Odoo 17
Advanced Views - Calendar View in Odoo 17Advanced Views - Calendar View in Odoo 17
Advanced Views - Calendar View in Odoo 17Celine George
 
Ecosystem Interactions Class Discussion Presentation in Blue Green Lined Styl...
Ecosystem Interactions Class Discussion Presentation in Blue Green Lined Styl...Ecosystem Interactions Class Discussion Presentation in Blue Green Lined Styl...
Ecosystem Interactions Class Discussion Presentation in Blue Green Lined Styl...fonyou31
 
1029-Danh muc Sach Giao Khoa khoi 6.pdf
1029-Danh muc Sach Giao Khoa khoi  6.pdf1029-Danh muc Sach Giao Khoa khoi  6.pdf
1029-Danh muc Sach Giao Khoa khoi 6.pdfQucHHunhnh
 
POINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptx
POINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptxPOINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptx
POINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptxSayali Powar
 
SOCIAL AND HISTORICAL CONTEXT - LFTVD.pptx
SOCIAL AND HISTORICAL CONTEXT - LFTVD.pptxSOCIAL AND HISTORICAL CONTEXT - LFTVD.pptx
SOCIAL AND HISTORICAL CONTEXT - LFTVD.pptxiammrhaywood
 

Recently uploaded (20)

The byproduct of sericulture in different industries.pptx
The byproduct of sericulture in different industries.pptxThe byproduct of sericulture in different industries.pptx
The byproduct of sericulture in different industries.pptx
 
Grant Readiness 101 TechSoup and Remy Consulting
Grant Readiness 101 TechSoup and Remy ConsultingGrant Readiness 101 TechSoup and Remy Consulting
Grant Readiness 101 TechSoup and Remy Consulting
 
Call Girls in Dwarka Mor Delhi Contact Us 9654467111
Call Girls in Dwarka Mor Delhi Contact Us 9654467111Call Girls in Dwarka Mor Delhi Contact Us 9654467111
Call Girls in Dwarka Mor Delhi Contact Us 9654467111
 
CARE OF CHILD IN INCUBATOR..........pptx
CARE OF CHILD IN INCUBATOR..........pptxCARE OF CHILD IN INCUBATOR..........pptx
CARE OF CHILD IN INCUBATOR..........pptx
 
Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...
Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...
Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...
 
Código Creativo y Arte de Software | Unidad 1
Código Creativo y Arte de Software | Unidad 1Código Creativo y Arte de Software | Unidad 1
Código Creativo y Arte de Software | Unidad 1
 
Q4-W6-Restating Informational Text Grade 3
Q4-W6-Restating Informational Text Grade 3Q4-W6-Restating Informational Text Grade 3
Q4-W6-Restating Informational Text Grade 3
 
Measures of Central Tendency: Mean, Median and Mode
Measures of Central Tendency: Mean, Median and ModeMeasures of Central Tendency: Mean, Median and Mode
Measures of Central Tendency: Mean, Median and Mode
 
Software Engineering Methodologies (overview)
Software Engineering Methodologies (overview)Software Engineering Methodologies (overview)
Software Engineering Methodologies (overview)
 
Mattingly "AI & Prompt Design: The Basics of Prompt Design"
Mattingly "AI & Prompt Design: The Basics of Prompt Design"Mattingly "AI & Prompt Design: The Basics of Prompt Design"
Mattingly "AI & Prompt Design: The Basics of Prompt Design"
 
1029 - Danh muc Sach Giao Khoa 10 . pdf
1029 -  Danh muc Sach Giao Khoa 10 . pdf1029 -  Danh muc Sach Giao Khoa 10 . pdf
1029 - Danh muc Sach Giao Khoa 10 . pdf
 
Interactive Powerpoint_How to Master effective communication
Interactive Powerpoint_How to Master effective communicationInteractive Powerpoint_How to Master effective communication
Interactive Powerpoint_How to Master effective communication
 
Sanyam Choudhary Chemistry practical.pdf
Sanyam Choudhary Chemistry practical.pdfSanyam Choudhary Chemistry practical.pdf
Sanyam Choudhary Chemistry practical.pdf
 
social pharmacy d-pharm 1st year by Pragati K. Mahajan
social pharmacy d-pharm 1st year by Pragati K. Mahajansocial pharmacy d-pharm 1st year by Pragati K. Mahajan
social pharmacy d-pharm 1st year by Pragati K. Mahajan
 
The Most Excellent Way | 1 Corinthians 13
The Most Excellent Way | 1 Corinthians 13The Most Excellent Way | 1 Corinthians 13
The Most Excellent Way | 1 Corinthians 13
 
Advanced Views - Calendar View in Odoo 17
Advanced Views - Calendar View in Odoo 17Advanced Views - Calendar View in Odoo 17
Advanced Views - Calendar View in Odoo 17
 
Ecosystem Interactions Class Discussion Presentation in Blue Green Lined Styl...
Ecosystem Interactions Class Discussion Presentation in Blue Green Lined Styl...Ecosystem Interactions Class Discussion Presentation in Blue Green Lined Styl...
Ecosystem Interactions Class Discussion Presentation in Blue Green Lined Styl...
 
1029-Danh muc Sach Giao Khoa khoi 6.pdf
1029-Danh muc Sach Giao Khoa khoi  6.pdf1029-Danh muc Sach Giao Khoa khoi  6.pdf
1029-Danh muc Sach Giao Khoa khoi 6.pdf
 
POINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptx
POINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptxPOINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptx
POINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptx
 
SOCIAL AND HISTORICAL CONTEXT - LFTVD.pptx
SOCIAL AND HISTORICAL CONTEXT - LFTVD.pptxSOCIAL AND HISTORICAL CONTEXT - LFTVD.pptx
SOCIAL AND HISTORICAL CONTEXT - LFTVD.pptx
 

Inverse Laplace Transform

  • 1. The Laplce Transforms - II Review of Integral Transforms - Inverse Laplace Transforms Vishnu V Assistant professor, Department of Mathematics Sree Ayyappa College, Eramallikkara 1 / 28
  • 2. Definition of Inverse Laplace Transform Inverse Laplace Transform If the laplace transform of a function F(t) is f (s), i.e., if L(F(t)) = f (s), then F(t) is called an inverse laplace transform of f (s) and we write aymbolically F(t) = L−1f (s). In other words, inverse transform of a given function f (s) is that function F(t) whose, Laplace transform is f (s). 2 / 28
  • 3. Properties of Inverse Laplace Transforms First property L−1(kf (t)) = kL−1(f (t)), where k is a constant. 2nd property - Linearity property If c1 and c2 are any two constants while f1(s) & f2(s) are the functions with Inverse Laplace transforms F1(t) & F2(t) respectively, then L−1 (c1f1(s) + c2f2(s)) = c1L−1 (f1(s)) + c2L−1 (f2(s)) = c1F1(t) + c2F2(t) 3 / 28
  • 4. Properties of Inverse Laplace Transforms 3rd property -Translation or Shifting property If L−1(f (s)) = F(t) then L−1(f (s − a)) = eatF(t) 4th property - Multiplication by power of t If L−1(f (s)) = F(t), and F(0) = F′(0) = . . . F(n − 1)(0) = 0 then L−1 dn dsn f (s) = (−1)ntnF(t), where n = 1, 2, 3... 5th property if L−1(f (s)) = F(t), then L(e−asf (s)) =    F(t − a), t a 0, t a − − − −(1) 4 / 28
  • 5. Remark It should be noted that the right side of (1) can be written in a different way using the Unit step function. Let ua(t) =    1, t a 0, t a − − − − − (2) From equations (1) and (2) we can wriiten in a different form L−1 (e−as f (s)) = F(t − a)ua(t) . 5 / 28
  • 6. Method of Convolution Convolution Property If F(t) andG(t) are the inverse transforms of f (s) and g(s), respectively, the inverse transform of the product f (s)g(s) is the convolution of F(t) and G(t), written (F ∗ G)(t) and defined by (F ∗ G)(t) = Z 1 0 F(t − u) G(u) du i.e., L−1 (f (S)g(s)) = (F ∗ G)(t) = Z 1 0 F(t − u) G(u) du 6 / 28
  • 7. Method of Convolution Corrollary Putting t − u = v in the above integral, we obtain, (F ∗ G)(t) = − Z 0 t F(v) G(t − v) du = Z t 0 G(t − v)F(v) du = (G ∗ F)(t) 7 / 28
  • 8. Remark Properties of convolution (F ∗ (G + H))(t) = (F ∗ G)(t) + (F ∗ H)(t) ((F ∗ G) ∗ H)(t) = (F ∗ (G ∗ H))(t) (F ∗ 0)(t) = (0 ∗ F)(t) 8 / 28
  • 9. Examples : - Partial Fractions Use partial fractions to decompose : s+3 (s−2)(s+1) To the linear factors s − 2 and s + 1, we associate respectively the fractions A (s−2) and B (s+1) . We set s + 3 (s − 2)(s + 1) = A (s − 2) + B (s + 1) i.e., s + 3 = A(s + 1) + B(s − 2) To find A and B, we substitute s = −1 and s = 2 into the above equation, ⇒ A = 5 3 and B = −2 3 . ∴ s + 3 (s − 2)(s + 1) = 5 3 (s − 2) − 2 3 (s − 2) 9 / 28
  • 10. Examples : Find the L−1 n s+3 (s−2)(s+1) o L−1 s + 3 (s − 2)(s + 1) = 5 3 L−1 1 s − 2 − 2 3 L−1 1 s + 1 = 5 3 e2x − 2 3 e−x 10 / 28
  • 11. Example: Find the inverse transforms of 1. 3s+7 s2−2s−3 2. 5s2−15s−11 (s+1)(s−2)3 3. 3s+1 (s−1)(s2+1) In the problems of the above kind, we use the method of partial fractions. 1. Resolving into partial fractions, we have 3s + 7 s2 − 2s − 3 = 4. 1 s − 3 − 1 s + 1 . ∴ L−1 3s + 7 s2 − 2s − 3 = 4L−1 1 s − 3 − L−1 1 s + 1 = 4.e3t − e−t 11 / 28
  • 12. Examples 2. Resolving into partial fraction, we have, 5s2 − 15s − 11 (s + 1)(s − 2)3 = − 1 3 1 s + 1 + 1 3 1 s − 2 + 4 (s − 2)2 − 7 (s − 2)3 ∴ L−1 5s2 − 15s − 11 (s + 1)(s − 2)3 = − 1 3 L−1 1 s + 1 + 1 3 L−1 1 s − 2 + + 4L−1 1 (s − 2)2 − 7L−1 1 (s − 2)3 = − 1 3 e−t + 1 3 e2t + 4te2t − 7 2 t2 e2t . 12 / 28
  • 13. Examples : 3. Resolving into partial fractions, we have, 3s + 1 (s − 1)(s2 + 1) = 2 s − 1 + −2s + 1 s2 + 1 ∴ L−1 3s + 1 (s − 1)(s2 + 1) = 2L−1 1 s − 1 − 2L−1 s s2 + 1 + L−1 1 s2 + 1 = 2et − 2 cos t + sin t. 13 / 28
  • 14. Examples : Find the inverse tranforms of, 1. 6s−4 s2−4s+20 2. s (s−2)4 3. s2+2s+3 (s2+2s+2)(s2+2s+5) 1. Here the denominator cannot be factorised into rational factors and hence the partial fraction method is in-applicable. However completing the square in the denominator, we obtain, 6s − 4 s2 − 4s + 20 = 6(s − 2) + 8 (s − 2)2 + 16 = 6. (s − 2) (s − 2)2 + 16 + 8 (s − 2)2 + 16 ∴ L−1 6s − 4 s2 − 4s + 20 = L−1 s − 2 (s − 2)2 + 16 + 2L−1 4 (s − 2)2 + 16 = 6e2t cos 4t + 2e2t sin 4t 14 / 28
  • 15. Examples : 2. Since the denominator contains (s − 2) as unit, rewrite the numerator also in terms of s − 2. Thus s (s − 2)4 = (s − 2) + 2 (s − 2)4 = 1 (s − 2)3 + 2 (s − 2)4 ∴ L−1 s (s − 2)4 = L−1 1 (s − 2)3 + 2L−1 2 (s − 2)4 = e2t . t2 2! + 2e2t . t3 3! = 1 3! e2t (3t2 + 23 ). 15 / 28
  • 16. Examples : 3. By the method of partial frations s2 + 2s + 3 (s2 + 2s + 2)(s2 + 2s + 5) = 1 3 1 s2 + 2s + 2 + 2 3 1 s2 + 2s + 5 = 1 3 1 (s + 1)2 + 1 + 2 3 1 (s + 1)2 + 4 ∴ L−1 s2 + 2s + 3 (s2 + 2s + 2)(s2 + 2s + 5) = 1 3 L−1 1 (s + 1)2 + 1 + 1 3 L−1 1 (s + 1)2 + 4 = 1 3 e−t sin t + 1 3 e−t sin 2t = 1 3 e−t (sin t + sin2t) 16 / 28
  • 17. Examples : Find the inverse Laplace transfroms of 1. 1 (s+a)n 2. 1 (s2+a2)2 3. s2 (s2+a2)2 1. By applying 3rd property -Translation or Shifting property, we have L−1 1 (s + a)n = e−at L−1 1 sn = e−at tn−1 (n − 1)! 2. Since we know the inverse transforms of 1 s2+a2 and s2−a2 (s2+a2)2 , we shall rewrite the given expression in terms of these.Thus : 17 / 28
  • 18. Examples : 1 (s2 + a2)2 = 1 2a2 (s2 + a2) − (s2 − a2) (s2 + a2)2 = 1 2a2 1 s2 + a2 − s2 − a2 (s2 + a2)2 ∴ L−1 1 (s2 + a2)2 = 1 2a2 1 a sin at − t cos at = 1 2a3 [sin at − at cos at] 18 / 28
  • 19. Examples : 3. s3 (s2 + a2)2 = s[(s2 + a2) − a2 (s2 + a2)2 = s s2 + a2 − a2 s (s2 + a2)2 ∴ L−1 s3 (s2 + a2)2 = cos at − a2 . 1 2a t sin at = cos at − 1 2 at sin at. 19 / 28
  • 20. Examples : Find L−1 n e−3s (s−1)4 o We have L−1 e−3s (s − 1)4 = et L−1 1 s4 = et t3 3! ; 3rd property -Translation or Shifting property = 1 6 t3 et L−1 e−3s (s − 1)4 =    1 6(t − 3)3et−3; t 3. Using 6th property 0; t 3 Using the remark; = 1 6(t − 3)3et−3u3(t); 20 / 28
  • 21. Examples : Find L−1 n eπs s2+2s+2 o We have L−1 eπs s2 + 2s + 2 = L−1 1 (s + 1)2 + 1 = e−t L−1 1 s2 + 1 = e−t sin t. Hence using property 6, we have L−1 eπs s2 + 2s + 2 =    e−t−π sin(t − π); t π. 0; t ≤ π 21 / 28
  • 22. Remark Remark We known that L {tF(t)} = − d ds L {F(t)} ∴ tF(t) = L−1 − d ds L {F(t)} 22 / 28
  • 23. Examples : Find the inverse transforms of the log s+1 s−1 Solution : Let F(t) = L−1 n log s+1 s−1 o , Then L[F(t)] = log s+1 s−1 Hence from above remark, tL−1 log s + 1 s − 1 = L−1 − d ds [log(s + 1) − log(s − 1)] = −L−1 d ds log(s + 1) + L−1 d ds log(s − 1) = −L−1 1 s + 1 + L−1 1 s − 1 = −e−t + et = 2 sinh t ∴ L−1 log s + 1 s − 1 = 2 sinh t t 23 / 28
  • 24. Examples : Find the inverse Laplace transforms of tan−1( 2 s2 ) Solution : Let F(t) = L−1 tan−1 2 s2 , Then L[F(t)] = tan−1 2 s2 Hence from above remark, tL−1 tan−1 ( 2 s2 ) = L−1 − d ds [tan−1 ( 2 s2 ) = L−1 4s s2 + 4 = L−1 4s (s2 + 2)2 − 4s2 = L−1 4s (s2 + 2 + 2s)(s2 + 2 − 2s) = L−1 1 s2 − 2s + 2 − 1 s2 + 2s + 2 = L−1 1 (s − 1)2 + 1 − 1 (s + 1)2 + 1 24 / 28
  • 25. Examples : = et sin t − e−t sin t = 2 sin ht sin t. ∴ L−1 tan−1 ( 2 s2 ) = 2 sin ht sin t t Using Convolution property, Find L−1 n 1 s(s2+a2) o Solution : We have already solved this type of problems by partial fraction method. However convolution method the work easy. Let f (s) = 1 s and g(s) = 1 s2+a2 Then F(t) = L−1 1 s = 1 and G(t) = L−1 n 1 s2+a2 o = 1 a sin at. 25 / 28
  • 26. Examples : ∴ L− 1 s(s2 + a2) = Z t 0 F(t − u)G(u) du = Z t 0 sin au a du = − cos au a2 t 0 = 1 a2 (1 − cos at) Using Convolution property, Find L−1 n 1 s2(s−a) o Solution : Let f (s) = 1 s2 and g(s) = 1 s−a Then F(t) = L−1 1 s2 = t and G(t) = L−1 n 1 s−a o = eat 26 / 28
  • 27. Examples : ∴ L−1 1 s2(s − a) = Z t 0 F(u)G(t − u) du = Z t 0 uea(t−u) du = eat Z t 0 ue−au du = 1 a2 (eat − at − 1) 27 / 28