AI_Session 7 Greedy Best first search algorithm.pptx

A
Asst.Prof. M.GokilavaniProfessor em KL university
ARTIFICAL INTELLIGENCE
(R18 III(II Sem))
Department of computer science and
engineering (AI/ML)
Session 7
by
Asst.Prof.M.Gokilavani
VITS
3/1/2023 Department of CSE (AI/ML) 1
TEXTBOOK:
• Artificial Intelligence A modern Approach, Third
Edition, Stuart Russell and Peter Norvig, Pearson
Education.
REFERENCES:
• Artificial Intelligence, 3rd Edn, E. Rich and K.Knight
(TMH).
• Artificial Intelligence, 3rd Edn, Patrick Henny
Winston, Pearson Education.
• Artificial Intelligence, Shivani Goel, Pearson
Education.
• Artificial Intelligence and Expert Systems- Patterson,
Pearson Education.
3/1/2023 Department of CSE (AI/ML) 2
Topics covered in session 7
3/1/2023 Department of CSE (AI/ML) 3
• Problem solving by search-I: Introduction to AI, Intelligent
Agents.
• Problem solving by search-II: Problem solving agents,
searching for solutions
• Uniformed search strategies: BFS, Uniform cost search,
DFS, Iterative deepening Depth-first search, Bidirectional
search,
• Informed ( Heuristic) search strategies: Greedy best-first
search, A* search, Heuristic functions
• Beyond classical search: Hill- climbing Search, Simulated
annealing search, Local search in continuous spaces, Searching
with non-deterministic Actions, searching with partial
observations, online search agents and unknown environments.
Informed search algorithm
• Informed search algorithm contains an array of knowledge
such as how far we are from the goal, path cost, how to reach
to goal node, etc. This knowledge help agents to explore less
to the search space and find more efficiently the goal node.
Example Tree: node with information (weight )
3/1/2023 4
Department of CSE (AI/ML)
Heuristics function
• The informed search algorithm is more useful for large
search space. Informed search algorithm uses the idea of
heuristic, so it is also called Heuristic search.
• Heuristics function: Heuristic is a function which is used
in Informed Search, and it finds the most promising path.
• It takes the current state of the agent as its input and
produces the estimation of how close agent is from the
goal.
• The heuristic method, however, might not always give the
best solution, but it guaranteed to find a good solution in
reasonable time. Heuristic function estimates how close a
state is to the goal.
3/1/2023 5
Department of CSE (AI/ML)
Heuristics function
• It is represented by h(n), and it calculates the cost of
an optimal path between the pair of states. The value
of the heuristic function is always positive.
Where,
h(n) <= h*(n)
Here h(n) is heuristic cost,
h*(n) is the estimated cost.
Hence heuristic cost should be less than or equal to
the estimated cost.
3/1/2023 Department of CSE (AI/ML) 6
Types of informed search algorithm
In the informed search we will discuss two main
algorithms which are given below:
• Best First Search Algorithm(Greedy search)
• A* Search Algorithm
3/1/2023 Department of CSE (AI/ML) 7
What is Best First Search?
• BFS uses the concept of a Priority queue and heuristic search.
To search the graph space, the BFS method uses two lists for
tracking the traversal.
• An ‘Open’ list that keeps track of the current ‘immediate’
nodes available for traversal and a ‘CLOSED’ list that keeps
track of the nodes already traversed.
• In the best first search algorithm, we expand the node which
is closest to the goal node and the closest cost is estimated
by heuristic function,
• Where,
f(n)= g(n)
G(n) path distance
3/1/2023 8
Department of CSE (AI/ML)
Algorithm
1. Create 2 empty lists: OPEN and CLOSED
2. Start from the initial node (say N) and put it in the ‘ordered’ OPEN
list
3. Repeat the next steps until the GOAL node is reached
1. If the OPEN list is empty, then EXIT the loop returning ‘False’
2. Select the first/top node (say N) in the OPEN list and move it
to the CLOSED list. Also, capture the information of the
parent node
3. If N is a GOAL node, then move the node to the Closed list
and exit the loop returning ‘True’. The solution can be found
by backtracking the path
4. If N is not the GOAL node, expand node N to generate the
‘immediate’ next nodes linked to node N and add all those to
the OPEN list
5. Reorder the nodes in the OPEN list in ascending order
according to an evaluation function f(n).
3/1/2023 9
Department of CSE (AI/ML)
Best First Search Example
3/1/2023 Department of CSE (AI/ML) 10
Expand the nodes of S and put in the CLOSED
list
• Initialization: Open [A, B], Closed [S]
• Iteration 1: Open [A], Closed [S, B]
• Iteration 2: Open [E, F, A], Closed [S, B]
: Open [E, A], Closed [S, B, F]
• Iteration 3: Open [I, G, E, A], Closed [S, B, F]
: Open [I, E, A], Closed [S, B, F, G]
• Hence the final solution path will be:
S----> B----->F----> G
3/1/2023 Department of CSE (AI/ML) 11
Example 2
3/1/2023 Department of CSE (AI/ML) 12
Example 3
3/1/2023 Department of CSE (AI/ML) 13
• Advantages:
– Best first search can switch between BFS and DFS
by gaining the advantages of both the algorithms.
– This algorithm is more efficient than BFS and DFS
algorithms.
• Disadvantages:
– It can behave as an unguided depth-first search in
the worst case scenario.
– It can get stuck in a loop as DFS.
– This algorithm is not optimal.
3/1/2023 Department of CSE (AI/ML) 14
Topics to be covered in next session 8
• A* Search Algorithm
3/1/2023 Department of CSE (AI/ML) 15
Thank you!!!
1 de 15

Recomendados

I.BEST FIRST SEARCH IN AI por
I.BEST FIRST SEARCH IN AII.BEST FIRST SEARCH IN AI
I.BEST FIRST SEARCH IN AIvikas dhakane
2.2K visualizações7 slides
Hill climbing algorithm por
Hill climbing algorithmHill climbing algorithm
Hill climbing algorithmDr. C.V. Suresh Babu
2.9K visualizações14 slides
AI Greedy and A-STAR Search por
AI Greedy and A-STAR SearchAI Greedy and A-STAR Search
AI Greedy and A-STAR SearchAndrew Ferlitsch
6.2K visualizações13 slides
A* Search Algorithm por
A* Search AlgorithmA* Search Algorithm
A* Search Algorithmvikas dhakane
3.3K visualizações14 slides
Artificial Intelligence -- Search Algorithms por
Artificial Intelligence-- Search Algorithms Artificial Intelligence-- Search Algorithms
Artificial Intelligence -- Search Algorithms Syed Ahmed
4.3K visualizações110 slides
Heuristic Search Techniques {Artificial Intelligence} por
Heuristic Search Techniques {Artificial Intelligence}Heuristic Search Techniques {Artificial Intelligence}
Heuristic Search Techniques {Artificial Intelligence}FellowBuddy.com
32.6K visualizações22 slides

Mais conteúdo relacionado

Mais procurados

I.INFORMED SEARCH IN ARTIFICIAL INTELLIGENCE II. HEURISTIC FUNCTION IN AI III... por
I.INFORMED SEARCH IN ARTIFICIAL INTELLIGENCE II. HEURISTIC FUNCTION IN AI III...I.INFORMED SEARCH IN ARTIFICIAL INTELLIGENCE II. HEURISTIC FUNCTION IN AI III...
I.INFORMED SEARCH IN ARTIFICIAL INTELLIGENCE II. HEURISTIC FUNCTION IN AI III...vikas dhakane
387 visualizações12 slides
Hill climbing por
Hill climbingHill climbing
Hill climbingMohammad Faizan
67.9K visualizações49 slides
Search problems in Artificial Intelligence por
Search problems in Artificial IntelligenceSearch problems in Artificial Intelligence
Search problems in Artificial Intelligenceananth
4.1K visualizações36 slides
Artificial Intelligence Searching Techniques por
Artificial Intelligence Searching TechniquesArtificial Intelligence Searching Techniques
Artificial Intelligence Searching TechniquesDr. C.V. Suresh Babu
3.2K visualizações38 slides
Lecture 14 Heuristic Search-A star algorithm por
Lecture 14 Heuristic Search-A star algorithmLecture 14 Heuristic Search-A star algorithm
Lecture 14 Heuristic Search-A star algorithmHema Kashyap
16.3K visualizações18 slides
Hill climbing algorithm in artificial intelligence por
Hill climbing algorithm in artificial intelligenceHill climbing algorithm in artificial intelligence
Hill climbing algorithm in artificial intelligencesandeep54552
5.6K visualizações7 slides

Mais procurados(20)

I.INFORMED SEARCH IN ARTIFICIAL INTELLIGENCE II. HEURISTIC FUNCTION IN AI III... por vikas dhakane
I.INFORMED SEARCH IN ARTIFICIAL INTELLIGENCE II. HEURISTIC FUNCTION IN AI III...I.INFORMED SEARCH IN ARTIFICIAL INTELLIGENCE II. HEURISTIC FUNCTION IN AI III...
I.INFORMED SEARCH IN ARTIFICIAL INTELLIGENCE II. HEURISTIC FUNCTION IN AI III...
vikas dhakane387 visualizações
Hill climbing por Mohammad Faizan
Hill climbingHill climbing
Hill climbing
Mohammad Faizan67.9K visualizações
Search problems in Artificial Intelligence por ananth
Search problems in Artificial IntelligenceSearch problems in Artificial Intelligence
Search problems in Artificial Intelligence
ananth4.1K visualizações
Artificial Intelligence Searching Techniques por Dr. C.V. Suresh Babu
Artificial Intelligence Searching TechniquesArtificial Intelligence Searching Techniques
Artificial Intelligence Searching Techniques
Dr. C.V. Suresh Babu3.2K visualizações
Lecture 14 Heuristic Search-A star algorithm por Hema Kashyap
Lecture 14 Heuristic Search-A star algorithmLecture 14 Heuristic Search-A star algorithm
Lecture 14 Heuristic Search-A star algorithm
Hema Kashyap16.3K visualizações
Hill climbing algorithm in artificial intelligence por sandeep54552
Hill climbing algorithm in artificial intelligenceHill climbing algorithm in artificial intelligence
Hill climbing algorithm in artificial intelligence
sandeep545525.6K visualizações
Uninformed search por Megha Sharma
Uninformed searchUninformed search
Uninformed search
Megha Sharma117 visualizações
Uninformed search /Blind search in AI por Kirti Verma
Uninformed search /Blind search in AIUninformed search /Blind search in AI
Uninformed search /Blind search in AI
Kirti Verma1.1K visualizações
AI: Learning in AI por DataminingTools Inc
AI: Learning in AI AI: Learning in AI
AI: Learning in AI
DataminingTools Inc41.1K visualizações
Informed and Uninformed search Strategies por Amey Kerkar
Informed and Uninformed search StrategiesInformed and Uninformed search Strategies
Informed and Uninformed search Strategies
Amey Kerkar49.4K visualizações
P, NP, NP-Complete, and NP-Hard por Animesh Chaturvedi
P, NP, NP-Complete, and NP-HardP, NP, NP-Complete, and NP-Hard
P, NP, NP-Complete, and NP-Hard
Animesh Chaturvedi3.4K visualizações
Back tracking and branch and bound class 20 por Kumar
Back tracking and branch and bound class 20Back tracking and branch and bound class 20
Back tracking and branch and bound class 20
Kumar 20.6K visualizações
Uninformed Search technique por Kapil Dahal
Uninformed Search techniqueUninformed Search technique
Uninformed Search technique
Kapil Dahal5.1K visualizações
Control Strategies in AI por Amey Kerkar
Control Strategies in AIControl Strategies in AI
Control Strategies in AI
Amey Kerkar28.9K visualizações
AI_Session 11: searching with Non-Deterministic Actions and partial observati... por Asst.Prof. M.Gokilavani
AI_Session 11: searching with Non-Deterministic Actions and partial observati...AI_Session 11: searching with Non-Deterministic Actions and partial observati...
AI_Session 11: searching with Non-Deterministic Actions and partial observati...
Asst.Prof. M.Gokilavani1.5K visualizações
Greedy Algorihm por Muhammad Amjad Rana
Greedy AlgorihmGreedy Algorihm
Greedy Algorihm
Muhammad Amjad Rana16.3K visualizações
AI - Local Search - Hill Climbing por Andrew Ferlitsch
AI - Local Search - Hill ClimbingAI - Local Search - Hill Climbing
AI - Local Search - Hill Climbing
Andrew Ferlitsch2.5K visualizações
Backtracking por Vikas Sharma
Backtracking  Backtracking
Backtracking
Vikas Sharma5.6K visualizações
Problem Solving por Amar Jukuntla
Problem Solving Problem Solving
Problem Solving
Amar Jukuntla8.1K visualizações

Similar a AI_Session 7 Greedy Best first search algorithm.pptx

AI3391 Session 9 Greedy Best first search algorithm.pptx por
AI3391 Session 9 Greedy Best first search algorithm.pptxAI3391 Session 9 Greedy Best first search algorithm.pptx
AI3391 Session 9 Greedy Best first search algorithm.pptxAsst.Prof. M.Gokilavani
4 visualizações15 slides
AI_Session 10 Local search in continious space.pptx por
AI_Session 10 Local search in continious space.pptxAI_Session 10 Local search in continious space.pptx
AI_Session 10 Local search in continious space.pptxAsst.Prof. M.Gokilavani
791 visualizações16 slides
AI_Session 8 A searching algorithm .pptx por
AI_Session 8 A searching algorithm .pptxAI_Session 8 A searching algorithm .pptx
AI_Session 8 A searching algorithm .pptxAsst.Prof. M.Gokilavani
45 visualizações17 slides
AI_Session 5 DFS.pptx por
AI_Session 5 DFS.pptxAI_Session 5 DFS.pptx
AI_Session 5 DFS.pptxAsst.Prof. M.Gokilavani
27 visualizações12 slides
AI3391 ARTIFICIAL INTELLIGENCE UNIT II notes.pdf por
AI3391 ARTIFICIAL INTELLIGENCE UNIT II notes.pdfAI3391 ARTIFICIAL INTELLIGENCE UNIT II notes.pdf
AI3391 ARTIFICIAL INTELLIGENCE UNIT II notes.pdfAsst.Prof. M.Gokilavani
17 visualizações34 slides
AI unit-2 lecture notes.docx por
AI unit-2 lecture notes.docxAI unit-2 lecture notes.docx
AI unit-2 lecture notes.docxCS50Bootcamp
31 visualizações32 slides

Similar a AI_Session 7 Greedy Best first search algorithm.pptx(20)

AI3391 Session 9 Greedy Best first search algorithm.pptx por Asst.Prof. M.Gokilavani
AI3391 Session 9 Greedy Best first search algorithm.pptxAI3391 Session 9 Greedy Best first search algorithm.pptx
AI3391 Session 9 Greedy Best first search algorithm.pptx
Asst.Prof. M.Gokilavani4 visualizações
AI_Session 10 Local search in continious space.pptx por Asst.Prof. M.Gokilavani
AI_Session 10 Local search in continious space.pptxAI_Session 10 Local search in continious space.pptx
AI_Session 10 Local search in continious space.pptx
Asst.Prof. M.Gokilavani791 visualizações
AI_Session 8 A searching algorithm .pptx por Asst.Prof. M.Gokilavani
AI_Session 8 A searching algorithm .pptxAI_Session 8 A searching algorithm .pptx
AI_Session 8 A searching algorithm .pptx
Asst.Prof. M.Gokilavani45 visualizações
AI3391 ARTIFICIAL INTELLIGENCE UNIT II notes.pdf por Asst.Prof. M.Gokilavani
AI3391 ARTIFICIAL INTELLIGENCE UNIT II notes.pdfAI3391 ARTIFICIAL INTELLIGENCE UNIT II notes.pdf
AI3391 ARTIFICIAL INTELLIGENCE UNIT II notes.pdf
Asst.Prof. M.Gokilavani17 visualizações
AI unit-2 lecture notes.docx por CS50Bootcamp
AI unit-2 lecture notes.docxAI unit-2 lecture notes.docx
AI unit-2 lecture notes.docx
CS50Bootcamp31 visualizações
Unit1_AI&ML_leftover (2).pptx por sahilshah890338
Unit1_AI&ML_leftover (2).pptxUnit1_AI&ML_leftover (2).pptx
Unit1_AI&ML_leftover (2).pptx
sahilshah8903382 visualizações
AI3391 ARTIFICIAL INTELLIGENCE Session 6 Search algorithm.pptx por Asst.Prof. M.Gokilavani
AI3391 ARTIFICIAL INTELLIGENCE Session 6 Search algorithm.pptxAI3391 ARTIFICIAL INTELLIGENCE Session 6 Search algorithm.pptx
AI3391 ARTIFICIAL INTELLIGENCE Session 6 Search algorithm.pptx
Asst.Prof. M.Gokilavani3 visualizações
AI_Session 4 Uniformed search strategies.pptx por Asst.Prof. M.Gokilavani
AI_Session 4 Uniformed search strategies.pptxAI_Session 4 Uniformed search strategies.pptx
AI_Session 4 Uniformed search strategies.pptx
Asst.Prof. M.Gokilavani47 visualizações
CSA 2001 (Module-2).pptx por PranjalKhare13
CSA 2001 (Module-2).pptxCSA 2001 (Module-2).pptx
CSA 2001 (Module-2).pptx
PranjalKhare1318 visualizações
AI_Session 6 Iterative deepening Depth-first and bidirectional search.pptx por Asst.Prof. M.Gokilavani
AI_Session 6 Iterative deepening Depth-first and bidirectional search.pptxAI_Session 6 Iterative deepening Depth-first and bidirectional search.pptx
AI_Session 6 Iterative deepening Depth-first and bidirectional search.pptx
Asst.Prof. M.Gokilavani40 visualizações
AI3391 ARTIFICIAL INTELLIGENCE Session 8 Iterative deepening DFS and Bidirect... por Asst.Prof. M.Gokilavani
AI3391 ARTIFICIAL INTELLIGENCE Session 8 Iterative deepening DFS and Bidirect...AI3391 ARTIFICIAL INTELLIGENCE Session 8 Iterative deepening DFS and Bidirect...
AI3391 ARTIFICIAL INTELLIGENCE Session 8 Iterative deepening DFS and Bidirect...
Asst.Prof. M.Gokilavani6 visualizações
AI3391 ARTIFICIAL INTELLIGENCE Session 7 Uniformed search strategies.pptx por Asst.Prof. M.Gokilavani
AI3391 ARTIFICIAL INTELLIGENCE Session 7 Uniformed search strategies.pptxAI3391 ARTIFICIAL INTELLIGENCE Session 7 Uniformed search strategies.pptx
AI3391 ARTIFICIAL INTELLIGENCE Session 7 Uniformed search strategies.pptx
Asst.Prof. M.Gokilavani4 visualizações
AI3391 Session 10 A searching algorithm.pptx por Asst.Prof. M.Gokilavani
AI3391 Session 10 A searching algorithm.pptxAI3391 Session 10 A searching algorithm.pptx
AI3391 Session 10 A searching algorithm.pptx
Asst.Prof. M.Gokilavani5 visualizações
Heuristic search-in-artificial-intelligence por grinu
Heuristic search-in-artificial-intelligenceHeuristic search-in-artificial-intelligence
Heuristic search-in-artificial-intelligence
grinu3.7K visualizações
Artificial Intelligence_Searching.pptx por Ratnakar Mikkili
Artificial Intelligence_Searching.pptxArtificial Intelligence_Searching.pptx
Artificial Intelligence_Searching.pptx
Ratnakar Mikkili9 visualizações
Jarrar.lecture notes.aai.2011s.ch3.uniformedsearch por PalGov
Jarrar.lecture notes.aai.2011s.ch3.uniformedsearchJarrar.lecture notes.aai.2011s.ch3.uniformedsearch
Jarrar.lecture notes.aai.2011s.ch3.uniformedsearch
PalGov537 visualizações
ADSA orientation.pptx por Kiran Babar
ADSA orientation.pptxADSA orientation.pptx
ADSA orientation.pptx
Kiran Babar17 visualizações
Comparative Analysis: Effective Information Retrieval Using Different Learnin... por RSIS International
Comparative Analysis: Effective Information Retrieval Using Different Learnin...Comparative Analysis: Effective Information Retrieval Using Different Learnin...
Comparative Analysis: Effective Information Retrieval Using Different Learnin...
RSIS International72 visualizações
AI_Session 26 Algorithm for state space.pptx por Asst.Prof. M.Gokilavani
AI_Session 26 Algorithm for state space.pptxAI_Session 26 Algorithm for state space.pptx
AI_Session 26 Algorithm for state space.pptx
Asst.Prof. M.Gokilavani16 visualizações

Mais de Asst.Prof. M.Gokilavani

AI3391 ARTIFICIAL INTELLIGENCE Assignment 1 questions.pdf por
AI3391 ARTIFICIAL INTELLIGENCE Assignment 1 questions.pdfAI3391 ARTIFICIAL INTELLIGENCE Assignment 1 questions.pdf
AI3391 ARTIFICIAL INTELLIGENCE Assignment 1 questions.pdfAsst.Prof. M.Gokilavani
9 visualizações16 slides
AI3391 ARTIFICIAL INTELLIGENCE Unit I notes.pdf por
AI3391 ARTIFICIAL INTELLIGENCE Unit I notes.pdfAI3391 ARTIFICIAL INTELLIGENCE Unit I notes.pdf
AI3391 ARTIFICIAL INTELLIGENCE Unit I notes.pdfAsst.Prof. M.Gokilavani
12 visualizações33 slides
AI3391 Session 13 searching with Non-Deterministic Actions and partial observ... por
AI3391 Session 13 searching with Non-Deterministic Actions and partial observ...AI3391 Session 13 searching with Non-Deterministic Actions and partial observ...
AI3391 Session 13 searching with Non-Deterministic Actions and partial observ...Asst.Prof. M.Gokilavani
9 visualizações17 slides
AI3391 Session 12 Local search in continious space.pptx por
AI3391 Session 12 Local search in continious space.pptxAI3391 Session 12 Local search in continious space.pptx
AI3391 Session 12 Local search in continious space.pptxAsst.Prof. M.Gokilavani
7 visualizações16 slides
AI3391 Session 11 Hill climbing algorithm.pptx por
AI3391 Session 11 Hill climbing algorithm.pptxAI3391 Session 11 Hill climbing algorithm.pptx
AI3391 Session 11 Hill climbing algorithm.pptxAsst.Prof. M.Gokilavani
4 visualizações22 slides
AI3391 ARTIFICAL INTELLIGENCE Session 5 Problem Solving Agent and searching f... por
AI3391 ARTIFICAL INTELLIGENCE Session 5 Problem Solving Agent and searching f...AI3391 ARTIFICAL INTELLIGENCE Session 5 Problem Solving Agent and searching f...
AI3391 ARTIFICAL INTELLIGENCE Session 5 Problem Solving Agent and searching f...Asst.Prof. M.Gokilavani
4 visualizações21 slides

Mais de Asst.Prof. M.Gokilavani(20)

AI3391 ARTIFICIAL INTELLIGENCE Assignment 1 questions.pdf por Asst.Prof. M.Gokilavani
AI3391 ARTIFICIAL INTELLIGENCE Assignment 1 questions.pdfAI3391 ARTIFICIAL INTELLIGENCE Assignment 1 questions.pdf
AI3391 ARTIFICIAL INTELLIGENCE Assignment 1 questions.pdf
Asst.Prof. M.Gokilavani9 visualizações
AI3391 ARTIFICIAL INTELLIGENCE Unit I notes.pdf por Asst.Prof. M.Gokilavani
AI3391 ARTIFICIAL INTELLIGENCE Unit I notes.pdfAI3391 ARTIFICIAL INTELLIGENCE Unit I notes.pdf
AI3391 ARTIFICIAL INTELLIGENCE Unit I notes.pdf
Asst.Prof. M.Gokilavani12 visualizações
AI3391 Session 13 searching with Non-Deterministic Actions and partial observ... por Asst.Prof. M.Gokilavani
AI3391 Session 13 searching with Non-Deterministic Actions and partial observ...AI3391 Session 13 searching with Non-Deterministic Actions and partial observ...
AI3391 Session 13 searching with Non-Deterministic Actions and partial observ...
Asst.Prof. M.Gokilavani9 visualizações
AI3391 Session 12 Local search in continious space.pptx por Asst.Prof. M.Gokilavani
AI3391 Session 12 Local search in continious space.pptxAI3391 Session 12 Local search in continious space.pptx
AI3391 Session 12 Local search in continious space.pptx
Asst.Prof. M.Gokilavani7 visualizações
AI3391 Session 11 Hill climbing algorithm.pptx por Asst.Prof. M.Gokilavani
AI3391 Session 11 Hill climbing algorithm.pptxAI3391 Session 11 Hill climbing algorithm.pptx
AI3391 Session 11 Hill climbing algorithm.pptx
Asst.Prof. M.Gokilavani4 visualizações
AI3391 ARTIFICAL INTELLIGENCE Session 5 Problem Solving Agent and searching f... por Asst.Prof. M.Gokilavani
AI3391 ARTIFICAL INTELLIGENCE Session 5 Problem Solving Agent and searching f...AI3391 ARTIFICAL INTELLIGENCE Session 5 Problem Solving Agent and searching f...
AI3391 ARTIFICAL INTELLIGENCE Session 5 Problem Solving Agent and searching f...
Asst.Prof. M.Gokilavani4 visualizações
AI3391 ARTIFICAL INTELLIGENCE Session 4 Structure of agent .pptx por Asst.Prof. M.Gokilavani
AI3391 ARTIFICAL INTELLIGENCE Session 4 Structure of agent .pptxAI3391 ARTIFICAL INTELLIGENCE Session 4 Structure of agent .pptx
AI3391 ARTIFICAL INTELLIGENCE Session 4 Structure of agent .pptx
Asst.Prof. M.Gokilavani4 visualizações
AI3391 ARTIFICAL INTELLIGENCE Session 3 Nature of environment.pptx por Asst.Prof. M.Gokilavani
AI3391 ARTIFICAL INTELLIGENCE Session 3 Nature of environment.pptxAI3391 ARTIFICAL INTELLIGENCE Session 3 Nature of environment.pptx
AI3391 ARTIFICAL INTELLIGENCE Session 3 Nature of environment.pptx
Asst.Prof. M.Gokilavani5 visualizações
AI3391 ARTIFICIAL INTELLIGENCE Session 2 Types of Agent .pptx por Asst.Prof. M.Gokilavani
AI3391 ARTIFICIAL INTELLIGENCE Session 2 Types of Agent .pptxAI3391 ARTIFICIAL INTELLIGENCE Session 2 Types of Agent .pptx
AI3391 ARTIFICIAL INTELLIGENCE Session 2 Types of Agent .pptx
Asst.Prof. M.Gokilavani4 visualizações
AI3391 ARTIFICIAL INTELLIGENCE Session 1A Agents and Enviroments.pptx por Asst.Prof. M.Gokilavani
AI3391 ARTIFICIAL INTELLIGENCE Session 1A Agents and Enviroments.pptxAI3391 ARTIFICIAL INTELLIGENCE Session 1A Agents and Enviroments.pptx
AI3391 ARTIFICIAL INTELLIGENCE Session 1A Agents and Enviroments.pptx
Asst.Prof. M.Gokilavani5 visualizações
AI3391 ARTIFICIAL INTELLIGENCE Session 1 Introduction to AI.pptx por Asst.Prof. M.Gokilavani
AI3391 ARTIFICIAL INTELLIGENCE Session 1 Introduction to AI.pptxAI3391 ARTIFICIAL INTELLIGENCE Session 1 Introduction to AI.pptx
AI3391 ARTIFICIAL INTELLIGENCE Session 1 Introduction to AI.pptx
Asst.Prof. M.Gokilavani10 visualizações
CCS334 BIG DATA ANALYTICS Session 3 Distributed models.pptx por Asst.Prof. M.Gokilavani
CCS334 BIG DATA ANALYTICS Session 3 Distributed models.pptxCCS334 BIG DATA ANALYTICS Session 3 Distributed models.pptx
CCS334 BIG DATA ANALYTICS Session 3 Distributed models.pptx
Asst.Prof. M.Gokilavani145 visualizações
CCS334 BIG DATA ANALYTICS Session 2 Types NoSQL.pptx por Asst.Prof. M.Gokilavani
CCS334 BIG DATA ANALYTICS Session 2 Types NoSQL.pptxCCS334 BIG DATA ANALYTICS Session 2 Types NoSQL.pptx
CCS334 BIG DATA ANALYTICS Session 2 Types NoSQL.pptx
Asst.Prof. M.Gokilavani22 visualizações
CS403PC Operating System Lec 11 operation of process.pptx por Asst.Prof. M.Gokilavani
CS403PC Operating System Lec 11 operation of process.pptxCS403PC Operating System Lec 11 operation of process.pptx
CS403PC Operating System Lec 11 operation of process.pptx
Asst.Prof. M.Gokilavani3 visualizações
CS403PC Operating System Lec 10 context switching.pptx por Asst.Prof. M.Gokilavani
CS403PC Operating System Lec 10 context switching.pptxCS403PC Operating System Lec 10 context switching.pptx
CS403PC Operating System Lec 10 context switching.pptx
Asst.Prof. M.Gokilavani3 visualizações
CS403PC Operating System Lec 9 scheculing concepts.pptx por Asst.Prof. M.Gokilavani
CS403PC Operating System Lec 9 scheculing concepts.pptxCS403PC Operating System Lec 9 scheculing concepts.pptx
CS403PC Operating System Lec 9 scheculing concepts.pptx
Asst.Prof. M.Gokilavani2 visualizações
CS403 Operating system Lec 8 - Process concepts.pptx por Asst.Prof. M.Gokilavani
CS403 Operating system Lec 8 - Process concepts.pptxCS403 Operating system Lec 8 - Process concepts.pptx
CS403 Operating system Lec 8 - Process concepts.pptx
Asst.Prof. M.Gokilavani2 visualizações
CS403: Operating System : Unit I _merged.pdf por Asst.Prof. M.Gokilavani
CS403: Operating System :  Unit I _merged.pdfCS403: Operating System :  Unit I _merged.pdf
CS403: Operating System : Unit I _merged.pdf
Asst.Prof. M.Gokilavani78 visualizações
CS403: Operating System : Lec 3 Popular types of OS (2).pptx por Asst.Prof. M.Gokilavani
CS403: Operating System : Lec 3 Popular types of OS (2).pptxCS403: Operating System : Lec 3 Popular types of OS (2).pptx
CS403: Operating System : Lec 3 Popular types of OS (2).pptx
Asst.Prof. M.Gokilavani8 visualizações

Último

REACTJS.pdf por
REACTJS.pdfREACTJS.pdf
REACTJS.pdfArthyR3
37 visualizações16 slides
Web Dev Session 1.pptx por
Web Dev Session 1.pptxWeb Dev Session 1.pptx
Web Dev Session 1.pptxVedVekhande
17 visualizações22 slides
Pitchbook Repowerlab.pdf por
Pitchbook Repowerlab.pdfPitchbook Repowerlab.pdf
Pitchbook Repowerlab.pdfVictoriaGaleano
6 visualizações12 slides
Renewal Projects in Seismic Construction por
Renewal Projects in Seismic ConstructionRenewal Projects in Seismic Construction
Renewal Projects in Seismic ConstructionEngineering & Seismic Construction
5 visualizações8 slides
Créativité dans le design mécanique à l’aide de l’optimisation topologique por
Créativité dans le design mécanique à l’aide de l’optimisation topologiqueCréativité dans le design mécanique à l’aide de l’optimisation topologique
Créativité dans le design mécanique à l’aide de l’optimisation topologiqueLIEGE CREATIVE
8 visualizações84 slides
AWS A5.18 A5.18M-2021.pdf por
AWS A5.18 A5.18M-2021.pdfAWS A5.18 A5.18M-2021.pdf
AWS A5.18 A5.18M-2021.pdfThinhNguyen455948
7 visualizações48 slides

Último(20)

REACTJS.pdf por ArthyR3
REACTJS.pdfREACTJS.pdf
REACTJS.pdf
ArthyR337 visualizações
Web Dev Session 1.pptx por VedVekhande
Web Dev Session 1.pptxWeb Dev Session 1.pptx
Web Dev Session 1.pptx
VedVekhande17 visualizações
Pitchbook Repowerlab.pdf por VictoriaGaleano
Pitchbook Repowerlab.pdfPitchbook Repowerlab.pdf
Pitchbook Repowerlab.pdf
VictoriaGaleano6 visualizações
Créativité dans le design mécanique à l’aide de l’optimisation topologique por LIEGE CREATIVE
Créativité dans le design mécanique à l’aide de l’optimisation topologiqueCréativité dans le design mécanique à l’aide de l’optimisation topologique
Créativité dans le design mécanique à l’aide de l’optimisation topologique
LIEGE CREATIVE8 visualizações
AWS A5.18 A5.18M-2021.pdf por ThinhNguyen455948
AWS A5.18 A5.18M-2021.pdfAWS A5.18 A5.18M-2021.pdf
AWS A5.18 A5.18M-2021.pdf
ThinhNguyen4559487 visualizações
dummy.pptx por JamesLamp
dummy.pptxdummy.pptx
dummy.pptx
JamesLamp5 visualizações
Design of machine elements-UNIT 3.pptx por gopinathcreddy
Design of machine elements-UNIT 3.pptxDesign of machine elements-UNIT 3.pptx
Design of machine elements-UNIT 3.pptx
gopinathcreddy37 visualizações
Design_Discover_Develop_Campaign.pptx por ShivanshSeth6
Design_Discover_Develop_Campaign.pptxDesign_Discover_Develop_Campaign.pptx
Design_Discover_Develop_Campaign.pptx
ShivanshSeth649 visualizações
CPM Schedule Float.pptx por Mathew Joseph
CPM Schedule Float.pptxCPM Schedule Float.pptx
CPM Schedule Float.pptx
Mathew Joseph6 visualizações
BCIC - Manufacturing Conclave - Technology-Driven Manufacturing for Growth por Innomantra
BCIC - Manufacturing Conclave -  Technology-Driven Manufacturing for GrowthBCIC - Manufacturing Conclave -  Technology-Driven Manufacturing for Growth
BCIC - Manufacturing Conclave - Technology-Driven Manufacturing for Growth
Innomantra 15 visualizações
Ansari: Practical experiences with an LLM-based Islamic Assistant por M Waleed Kadous
Ansari: Practical experiences with an LLM-based Islamic AssistantAnsari: Practical experiences with an LLM-based Islamic Assistant
Ansari: Practical experiences with an LLM-based Islamic Assistant
M Waleed Kadous9 visualizações
ASSIGNMENTS ON FUZZY LOGIC IN TRAFFIC FLOW.pdf por AlhamduKure
ASSIGNMENTS ON FUZZY LOGIC IN TRAFFIC FLOW.pdfASSIGNMENTS ON FUZZY LOGIC IN TRAFFIC FLOW.pdf
ASSIGNMENTS ON FUZZY LOGIC IN TRAFFIC FLOW.pdf
AlhamduKure8 visualizações
DESIGN OF SPRINGS-UNIT4.pptx por gopinathcreddy
DESIGN OF SPRINGS-UNIT4.pptxDESIGN OF SPRINGS-UNIT4.pptx
DESIGN OF SPRINGS-UNIT4.pptx
gopinathcreddy21 visualizações
GDSC Mikroskil Members Onboarding 2023.pdf por gdscmikroskil
GDSC Mikroskil Members Onboarding 2023.pdfGDSC Mikroskil Members Onboarding 2023.pdf
GDSC Mikroskil Members Onboarding 2023.pdf
gdscmikroskil63 visualizações
Design of Structures and Foundations for Vibrating Machines, Arya-ONeill-Pinc... por csegroupvn
Design of Structures and Foundations for Vibrating Machines, Arya-ONeill-Pinc...Design of Structures and Foundations for Vibrating Machines, Arya-ONeill-Pinc...
Design of Structures and Foundations for Vibrating Machines, Arya-ONeill-Pinc...
csegroupvn8 visualizações
Unlocking Research Visibility.pdf por KhatirNaima
Unlocking Research Visibility.pdfUnlocking Research Visibility.pdf
Unlocking Research Visibility.pdf
KhatirNaima10 visualizações
Plant Design Report-Oil Refinery.pdf por Safeen Yaseen Ja'far
Plant Design Report-Oil Refinery.pdfPlant Design Report-Oil Refinery.pdf
Plant Design Report-Oil Refinery.pdf
Safeen Yaseen Ja'far7 visualizações
unit 1.pptx por rrbornarecm
unit 1.pptxunit 1.pptx
unit 1.pptx
rrbornarecm5 visualizações

AI_Session 7 Greedy Best first search algorithm.pptx

  • 1. ARTIFICAL INTELLIGENCE (R18 III(II Sem)) Department of computer science and engineering (AI/ML) Session 7 by Asst.Prof.M.Gokilavani VITS 3/1/2023 Department of CSE (AI/ML) 1
  • 2. TEXTBOOK: • Artificial Intelligence A modern Approach, Third Edition, Stuart Russell and Peter Norvig, Pearson Education. REFERENCES: • Artificial Intelligence, 3rd Edn, E. Rich and K.Knight (TMH). • Artificial Intelligence, 3rd Edn, Patrick Henny Winston, Pearson Education. • Artificial Intelligence, Shivani Goel, Pearson Education. • Artificial Intelligence and Expert Systems- Patterson, Pearson Education. 3/1/2023 Department of CSE (AI/ML) 2
  • 3. Topics covered in session 7 3/1/2023 Department of CSE (AI/ML) 3 • Problem solving by search-I: Introduction to AI, Intelligent Agents. • Problem solving by search-II: Problem solving agents, searching for solutions • Uniformed search strategies: BFS, Uniform cost search, DFS, Iterative deepening Depth-first search, Bidirectional search, • Informed ( Heuristic) search strategies: Greedy best-first search, A* search, Heuristic functions • Beyond classical search: Hill- climbing Search, Simulated annealing search, Local search in continuous spaces, Searching with non-deterministic Actions, searching with partial observations, online search agents and unknown environments.
  • 4. Informed search algorithm • Informed search algorithm contains an array of knowledge such as how far we are from the goal, path cost, how to reach to goal node, etc. This knowledge help agents to explore less to the search space and find more efficiently the goal node. Example Tree: node with information (weight ) 3/1/2023 4 Department of CSE (AI/ML)
  • 5. Heuristics function • The informed search algorithm is more useful for large search space. Informed search algorithm uses the idea of heuristic, so it is also called Heuristic search. • Heuristics function: Heuristic is a function which is used in Informed Search, and it finds the most promising path. • It takes the current state of the agent as its input and produces the estimation of how close agent is from the goal. • The heuristic method, however, might not always give the best solution, but it guaranteed to find a good solution in reasonable time. Heuristic function estimates how close a state is to the goal. 3/1/2023 5 Department of CSE (AI/ML)
  • 6. Heuristics function • It is represented by h(n), and it calculates the cost of an optimal path between the pair of states. The value of the heuristic function is always positive. Where, h(n) <= h*(n) Here h(n) is heuristic cost, h*(n) is the estimated cost. Hence heuristic cost should be less than or equal to the estimated cost. 3/1/2023 Department of CSE (AI/ML) 6
  • 7. Types of informed search algorithm In the informed search we will discuss two main algorithms which are given below: • Best First Search Algorithm(Greedy search) • A* Search Algorithm 3/1/2023 Department of CSE (AI/ML) 7
  • 8. What is Best First Search? • BFS uses the concept of a Priority queue and heuristic search. To search the graph space, the BFS method uses two lists for tracking the traversal. • An ‘Open’ list that keeps track of the current ‘immediate’ nodes available for traversal and a ‘CLOSED’ list that keeps track of the nodes already traversed. • In the best first search algorithm, we expand the node which is closest to the goal node and the closest cost is estimated by heuristic function, • Where, f(n)= g(n) G(n) path distance 3/1/2023 8 Department of CSE (AI/ML)
  • 9. Algorithm 1. Create 2 empty lists: OPEN and CLOSED 2. Start from the initial node (say N) and put it in the ‘ordered’ OPEN list 3. Repeat the next steps until the GOAL node is reached 1. If the OPEN list is empty, then EXIT the loop returning ‘False’ 2. Select the first/top node (say N) in the OPEN list and move it to the CLOSED list. Also, capture the information of the parent node 3. If N is a GOAL node, then move the node to the Closed list and exit the loop returning ‘True’. The solution can be found by backtracking the path 4. If N is not the GOAL node, expand node N to generate the ‘immediate’ next nodes linked to node N and add all those to the OPEN list 5. Reorder the nodes in the OPEN list in ascending order according to an evaluation function f(n). 3/1/2023 9 Department of CSE (AI/ML)
  • 10. Best First Search Example 3/1/2023 Department of CSE (AI/ML) 10
  • 11. Expand the nodes of S and put in the CLOSED list • Initialization: Open [A, B], Closed [S] • Iteration 1: Open [A], Closed [S, B] • Iteration 2: Open [E, F, A], Closed [S, B] : Open [E, A], Closed [S, B, F] • Iteration 3: Open [I, G, E, A], Closed [S, B, F] : Open [I, E, A], Closed [S, B, F, G] • Hence the final solution path will be: S----> B----->F----> G 3/1/2023 Department of CSE (AI/ML) 11
  • 12. Example 2 3/1/2023 Department of CSE (AI/ML) 12
  • 13. Example 3 3/1/2023 Department of CSE (AI/ML) 13
  • 14. • Advantages: – Best first search can switch between BFS and DFS by gaining the advantages of both the algorithms. – This algorithm is more efficient than BFS and DFS algorithms. • Disadvantages: – It can behave as an unguided depth-first search in the worst case scenario. – It can get stuck in a loop as DFS. – This algorithm is not optimal. 3/1/2023 Department of CSE (AI/ML) 14
  • 15. Topics to be covered in next session 8 • A* Search Algorithm 3/1/2023 Department of CSE (AI/ML) 15 Thank you!!!