SlideShare a Scribd company logo
1 of 38
Copyright (C) Bee Technologies Inc. 2011 1 PWM Buck Converter Average Model フィードバック制御におけるアベレージモデルを活用した位相余裕度のシミュレーションの活用方法を解説していきます。 2011年2月2日(水曜日) 株式会社ビー・テクノロジーhttp://www.bee-tech.com/horigome@bee-tech.com
お客様を徹底的にサポートする Copyright (C) Bee Technologies Inc. 2011 2 [第三の壁]シミュレーションが実機波形と合わない。ゼロから動かすのは物凄く工数がかかる。 [第二の壁] 自分がシミュレーションしたい電子部品のスパイスモデルが揃わない。 各回路方式のシミュレーションのテンプレートをご提供デザインキット シンプルキット [第一の壁] 回路解析シミュレータの導入 スパイス・パークデバイスモデリングサービスでサポート お客様の回路図を回路解析シミュレーションデータ一式でご提供
事業の全体概要 Copyright (C) Bee Technologies Inc. 2011 3 [スパイスモデル]デバイスモデリングサービス(58種類のデバイスモデリング) スパイス・パーク www.spicepark.com シンプルモデル(NEW)←ブロックベースのスパイスモデル [デザインキット]回路方式のテンプレート コンセプトキット(NEW)←(概念設計のテンプレート) デザインキット(各回路方式のテンプレート) 回路解析シミュレータSpice 系回路解析シミュレータPSpice,LTspice,MultiSim,MicroCap,HSPICE,SmartSPICE,Simplorer, and so on
デバイスモデリングサービスお客様の必要なスパイスモデルをご提供致します Copyright (C) Bee Technologies Inc. 2011 4
スパイス・パーク Copyright (C) Bee Technologies Inc. 2011 5 http://www.spicepark.com メールアドレスとパスワードのご登録でご利用できます。グローバル版も順次公開中-> http://www.spicepark.net 3,593モデルをご提供(2011年1月31日現在)
コンセプトキット Copyright (C) Bee Technologies Inc. 2011 6
デザインキット(パッケージ商品) Copyright (C) Bee Technologies Inc. 2011 7 要望が多いインバータ回路方式を中心に20種類の新製品を開発中。
デザインキット(カスタムサービス) Copyright (C) Bee Technologies Inc. 2011 8 お客様の回路図を提供してもらいデバイスモデリング、シミュレーション技術を 付加して、シミュレーション一式をご提供する。お客様は、解析に専念出来る。 お客様が準備するものは回路図と材料表(BOM)です。
デバイスモデリング教材 Copyright (C) Bee Technologies Inc. 2011 9
情報提供 Copyright (C) Bee Technologies Inc. 2011 10 http://beetech-icyk.blogspot.com/ http://www.bee-tech.com メールマガジンで情報配信 Bee Style:  http://www.spicepark.com/ スパイス・パークのログイン後トップページにて、PDFでバックナンバーも含めPDF形式で参照及びダウンロード出来ます。 各種セミナー、ワークショップご参加下さい
Concept Kit:PWM Buck Converter Average Model Copyright (C) Bee Technologies Inc. 2011 11 発売予定日:2011年2月中旬、84,000円(税込み)
Contents Concept of Simulation Buck Converter Circuit Averaged Buck Switch Model Buck Regulator Design Workflow Setting PWM Controller’s Parameters. Programming Output Voltage: Rupper, Rlower Inductor Selection: L Capacitor Selection: C, ESR Stabilizing the Converter (Example) Load Transient Response Simulation (Example) Appendix Type 2 Compensation Calculation using Excel Feedback Loop Compensators Simulation Index Copyright (C) Bee Technologies Inc. 2011 12
Copyright (C) Bee Technologies Inc. 2011 13 Concept of Simulation Block Diagram: Power Switches Averaged Buck Switch Model Filter & Load Parameter: ,[object Object]
C
ESR
RloadPWM Controller  (Voltage Mode Control) Parameter: ,[object Object]
VREFVOUT VREF Models:
Buck Converter Circuit Copyright (C) Bee Technologies Inc. 2011 14 Power Switches Filter & Load PWM Controller
Averaged Buck Switch Model ,[object Object]
Transfer function of the model is vout = d  vin ,[object Object],iin = d  iout Copyright (C) Bee Technologies Inc. 2011 15
Buck Regulator Design Workflow  Copyright (C) Bee Technologies Inc. 2011 16 Setting PWM Controller’s Parameters: VREF, VP 1 Setting Output Voltage: Rupper, Rlower 2 Inductor Selection: L 3 Capacitor Selection: C, ESR 4 Stabilizing the Converter: R2, C1, C2 ,[object Object]
Step2: Set C1=1kF, C2=1fF, (always keep the default value) and R2= calculated value (Rupper//Rlower) as the initial values.
Step3: Select a crossover frequency (about 10kHz or fc < fosc/4). Then complete the table.
Step4: Read the Gain and Phase value at the crossover frequency (10kHz) from the Bode plot, Then put the values to the table
Step5: Select the phase margin at the fc ( > 45 ). Then change the K value until it gives the satisfied phase margin, for this example K=6 is chosen for Phase margin = 46.
Remark: If K-factor fail to gives the satisfied phase margin, Increase the output capacitor C then try Step1 to Step5 again.5 Load Transient Response Simulation 6
Buck Regulator Design Workflow  Copyright (C) Bee Technologies Inc. 2011 17 3 4 5 2 1
[object Object]
VP=  (Error Amp. Gain  vFB ) / d
vFB = vFBH – vFBL
d = dMAX – dMIN
Error Amp. Gain is 100 (approximated)	where VP is the sawtooth peak voltage. vFBH is maximum FB voltage where d = 0 vFBL is minimum FB voltage where d =1(100%) dMAX is maximum duty cycle, e.g. d = 0(0%) dMIN is minimum duty cycle, e.g. d =1(100%) Setting PWM Controller’s Parameters Copyright (C) Bee Technologies Inc. 2011 18 1 The PWM block is used to transfer the error voltage (between FB and REF) to be the duty cycle.  If vFBH and vFBLare not provided, the default value, VP=2.5 could be used.
Copyright (C) Bee Technologies Inc. 2011 19 Setting PWM Controller’s Parameters (Example) 1  If the VP ( sawtooth signal amplitude ) does not informed by the datasheet, It can be approximated from the characteristics below. from VP=  (Error Amp. Gain  vFB )/d Error Amp. Gain = 100 (approximated) from the graph on the left, vFB= 25mV (15m - (-10m)) d = 1 – 0 = 1 VP	≈  ( 100  25mV )/1 	     	≈  2.5V vFBH vFB = 25mV vFBL d = 1 (100%) dMIN dMAX LM2575: Feedback Voltage vs. Duty Cycle  If vFBH and vFBLare not provided, the default value, VP=2.5 could be used.
Use the following formula to select the resistor values. ,[object Object],Example Given: 	VOUT = 5V 		VREF = 1.23 Rlower = 1k then:	Rupper = 3.065k Setting Output Voltage: Rupper, Rlower Copyright (C) Bee Technologies Inc. 2011 20 2
Inductor Selection: L Copyright (C) Bee Technologies Inc. 2011 21 Inductor Value The output inductor value is selected to set the converter to work in CCM (Continuous Current Mode) or DCM (Discontinuous Current Mode). Calculated by Where ,[object Object]
VI,max is input maximum voltage
RL,min is load resistance at the minimum output current ( IOUT,min )
fosc is switching frequency3

More Related Content

What's hot

Lect2 up310 (100328)
Lect2 up310 (100328)Lect2 up310 (100328)
Lect2 up310 (100328)
aicdesign
 
Lect2 up210 (100327)
Lect2 up210 (100327)Lect2 up210 (100327)
Lect2 up210 (100327)
aicdesign
 
ZVxPlus Application: Transistor Characterization, Reliability and Model Verif...
ZVxPlus Application: Transistor Characterization, Reliability and Model Verif...ZVxPlus Application: Transistor Characterization, Reliability and Model Verif...
ZVxPlus Application: Transistor Characterization, Reliability and Model Verif...
NMDG NV
 
EC 8395 - Communication Engineering - Unit 3 m - ary signaling
EC 8395 - Communication Engineering - Unit 3   m - ary signalingEC 8395 - Communication Engineering - Unit 3   m - ary signaling
EC 8395 - Communication Engineering - Unit 3 m - ary signaling
KannanKrishnana
 
Lecture11 combinational logic dynamics
Lecture11 combinational logic dynamicsLecture11 combinational logic dynamics
Lecture11 combinational logic dynamics
vidhya DS
 
Lect2 up330 (100328)
Lect2 up330 (100328)Lect2 up330 (100328)
Lect2 up330 (100328)
aicdesign
 
Iaetsd gmsk modulation implementation for gsm in dsp
Iaetsd gmsk modulation implementation for gsm in dspIaetsd gmsk modulation implementation for gsm in dsp
Iaetsd gmsk modulation implementation for gsm in dsp
Iaetsd Iaetsd
 

What's hot (20)

8
88
8
 
Lag lead compensator design in frequency domain 7th lecture
Lag lead compensator design in frequency domain  7th lectureLag lead compensator design in frequency domain  7th lecture
Lag lead compensator design in frequency domain 7th lecture
 
Lect2 up310 (100328)
Lect2 up310 (100328)Lect2 up310 (100328)
Lect2 up310 (100328)
 
ECE 467 Mini project 1
ECE 467 Mini project 1ECE 467 Mini project 1
ECE 467 Mini project 1
 
Lect2 up210 (100327)
Lect2 up210 (100327)Lect2 up210 (100327)
Lect2 up210 (100327)
 
Use s parameters-determining_inductance_capacitance
Use s parameters-determining_inductance_capacitanceUse s parameters-determining_inductance_capacitance
Use s parameters-determining_inductance_capacitance
 
ZVxPlus Application: Transistor Characterization, Reliability and Model Verif...
ZVxPlus Application: Transistor Characterization, Reliability and Model Verif...ZVxPlus Application: Transistor Characterization, Reliability and Model Verif...
ZVxPlus Application: Transistor Characterization, Reliability and Model Verif...
 
AM - Modulator and Demodulator
AM - Modulator and DemodulatorAM - Modulator and Demodulator
AM - Modulator and Demodulator
 
EC 8395 - Communication Engineering - Unit 3 m - ary signaling
EC 8395 - Communication Engineering - Unit 3   m - ary signalingEC 8395 - Communication Engineering - Unit 3   m - ary signaling
EC 8395 - Communication Engineering - Unit 3 m - ary signaling
 
Digital Signal Processing Course Help
Digital Signal Processing Course HelpDigital Signal Processing Course Help
Digital Signal Processing Course Help
 
Joint Compensation of CIM3 and I/Q Imbalance in the Up-conversion Mixer with ...
Joint Compensation of CIM3 and I/Q Imbalance in the Up-conversion Mixer with ...Joint Compensation of CIM3 and I/Q Imbalance in the Up-conversion Mixer with ...
Joint Compensation of CIM3 and I/Q Imbalance in the Up-conversion Mixer with ...
 
Analysis
AnalysisAnalysis
Analysis
 
RF_Amplifier_Design
RF_Amplifier_DesignRF_Amplifier_Design
RF_Amplifier_Design
 
Lecture11 combinational logic dynamics
Lecture11 combinational logic dynamicsLecture11 combinational logic dynamics
Lecture11 combinational logic dynamics
 
Paper02 of crosspoint switch
Paper02 of crosspoint switchPaper02 of crosspoint switch
Paper02 of crosspoint switch
 
Simplified Model
Simplified ModelSimplified Model
Simplified Model
 
Lect2 up330 (100328)
Lect2 up330 (100328)Lect2 up330 (100328)
Lect2 up330 (100328)
 
Ae09 sol
Ae09 solAe09 sol
Ae09 sol
 
Multipliers in VLSI
Multipliers in VLSIMultipliers in VLSI
Multipliers in VLSI
 
Iaetsd gmsk modulation implementation for gsm in dsp
Iaetsd gmsk modulation implementation for gsm in dspIaetsd gmsk modulation implementation for gsm in dsp
Iaetsd gmsk modulation implementation for gsm in dsp
 

Similar to PSpiceで位相余裕度シミュレーション

EE452_Flyback Convert
EE452_Flyback ConvertEE452_Flyback Convert
EE452_Flyback Convert
ki hei chan
 
Small signal analysis based closed loop control of buck converter
Small signal analysis based closed loop control of buck converterSmall signal analysis based closed loop control of buck converter
Small signal analysis based closed loop control of buck converter
Ramaraochowdary Kantipudi
 
The effect of ripple steering on control loop stability for ac cm pfc boost c...
The effect of ripple steering on control loop stability for ac cm pfc boost c...The effect of ripple steering on control loop stability for ac cm pfc boost c...
The effect of ripple steering on control loop stability for ac cm pfc boost c...
Murray Edington
 

Similar to PSpiceで位相余裕度シミュレーション (20)

PWM Buck Converter using Average Model
PWM Buck Converter using Average ModelPWM Buck Converter using Average Model
PWM Buck Converter using Average Model
 
PWM Step-down Converter(NJM2309)
PWM Step-down Converter(NJM2309)PWM Step-down Converter(NJM2309)
PWM Step-down Converter(NJM2309)
 
Spiceを活用した電源回路シミュレーションセミナーテキスト 18 feb2015
Spiceを活用した電源回路シミュレーションセミナーテキスト 18 feb2015Spiceを活用した電源回路シミュレーションセミナーテキスト 18 feb2015
Spiceを活用した電源回路シミュレーションセミナーテキスト 18 feb2015
 
ADC LAB MANUAL.docx
ADC LAB MANUAL.docxADC LAB MANUAL.docx
ADC LAB MANUAL.docx
 
EE452_Flyback Convert
EE452_Flyback ConvertEE452_Flyback Convert
EE452_Flyback Convert
 
Time response of first order systems and second order systems
Time response of first order systems and second order systemsTime response of first order systems and second order systems
Time response of first order systems and second order systems
 
Small signal analysis based closed loop control of buck converter
Small signal analysis based closed loop control of buck converterSmall signal analysis based closed loop control of buck converter
Small signal analysis based closed loop control of buck converter
 
ACS 22LIE12 lab Manul.docx
ACS 22LIE12 lab Manul.docxACS 22LIE12 lab Manul.docx
ACS 22LIE12 lab Manul.docx
 
OSAMAFINALEMINAR19.pptx
OSAMAFINALEMINAR19.pptxOSAMAFINALEMINAR19.pptx
OSAMAFINALEMINAR19.pptx
 
ECE 626 project report Switched Capacitor
ECE 626 project report Switched CapacitorECE 626 project report Switched Capacitor
ECE 626 project report Switched Capacitor
 
The effect of ripple steering on control loop stability for ac cm pfc boost c...
The effect of ripple steering on control loop stability for ac cm pfc boost c...The effect of ripple steering on control loop stability for ac cm pfc boost c...
The effect of ripple steering on control loop stability for ac cm pfc boost c...
 
Ece 523 project – fully differential two stage telescopic op amp
Ece 523 project – fully differential two stage telescopic op ampEce 523 project – fully differential two stage telescopic op amp
Ece 523 project – fully differential two stage telescopic op amp
 
Design of 17-Bit Audio Band Delta-Sigma Analog to Digital Converter
Design of 17-Bit Audio Band Delta-Sigma Analog to Digital ConverterDesign of 17-Bit Audio Band Delta-Sigma Analog to Digital Converter
Design of 17-Bit Audio Band Delta-Sigma Analog to Digital Converter
 
Chapter 09
Chapter 09Chapter 09
Chapter 09
 
Critical Conduction Mode (CRM) PFC Circuit
Critical Conduction Mode (CRM) PFC CircuitCritical Conduction Mode (CRM) PFC Circuit
Critical Conduction Mode (CRM) PFC Circuit
 
A 80Ms/sec 10bit PIPELINED ADC Using 1.5Bit Stages And Built-in Digital Error...
A 80Ms/sec 10bit PIPELINED ADC Using 1.5Bit Stages And Built-in Digital Error...A 80Ms/sec 10bit PIPELINED ADC Using 1.5Bit Stages And Built-in Digital Error...
A 80Ms/sec 10bit PIPELINED ADC Using 1.5Bit Stages And Built-in Digital Error...
 
A 80Ms/sec 10bit PIPELINED ADC Using 1.5Bit Stages And Built-in Digital Error...
A 80Ms/sec 10bit PIPELINED ADC Using 1.5Bit Stages And Built-in Digital Error...A 80Ms/sec 10bit PIPELINED ADC Using 1.5Bit Stages And Built-in Digital Error...
A 80Ms/sec 10bit PIPELINED ADC Using 1.5Bit Stages And Built-in Digital Error...
 
Final Project
Final ProjectFinal Project
Final Project
 
BuckPFC
BuckPFCBuckPFC
BuckPFC
 
Chapter two Part two.pptx
Chapter two Part two.pptxChapter two Part two.pptx
Chapter two Part two.pptx
 

More from Tsuyoshi Horigome

More from Tsuyoshi Horigome (20)

FedExで書類を送付する場合の設定について(オンライン受付にて登録する場合について)
FedExで書類を送付する場合の設定について(オンライン受付にて登録する場合について)FedExで書類を送付する場合の設定について(オンライン受付にて登録する場合について)
FedExで書類を送付する場合の設定について(オンライン受付にて登録する場合について)
 
Update 46 models(Solar Cell) in SPICE PARK(MAY2024)
Update 46 models(Solar Cell) in SPICE PARK(MAY2024)Update 46 models(Solar Cell) in SPICE PARK(MAY2024)
Update 46 models(Solar Cell) in SPICE PARK(MAY2024)
 
SPICE PARK APR2024 ( 6,793 SPICE Models )
SPICE PARK APR2024 ( 6,793 SPICE Models )SPICE PARK APR2024 ( 6,793 SPICE Models )
SPICE PARK APR2024 ( 6,793 SPICE Models )
 
Update 22 models(Schottky Rectifier ) in SPICE PARK(APR2024)
Update 22 models(Schottky Rectifier ) in SPICE PARK(APR2024)Update 22 models(Schottky Rectifier ) in SPICE PARK(APR2024)
Update 22 models(Schottky Rectifier ) in SPICE PARK(APR2024)
 
SPICE PARK APR2024 ( 6,747 SPICE Models )
SPICE PARK APR2024 ( 6,747 SPICE Models )SPICE PARK APR2024 ( 6,747 SPICE Models )
SPICE PARK APR2024 ( 6,747 SPICE Models )
 
Update 31 models(Diode/General ) in SPICE PARK(MAR2024)
Update 31 models(Diode/General ) in SPICE PARK(MAR2024)Update 31 models(Diode/General ) in SPICE PARK(MAR2024)
Update 31 models(Diode/General ) in SPICE PARK(MAR2024)
 
SPICE PARK MAR2024 ( 6,725 SPICE Models )
SPICE PARK MAR2024 ( 6,725 SPICE Models )SPICE PARK MAR2024 ( 6,725 SPICE Models )
SPICE PARK MAR2024 ( 6,725 SPICE Models )
 
Update 29 models(Solar cell) in SPICE PARK(FEB2024)
Update 29 models(Solar cell) in SPICE PARK(FEB2024)Update 29 models(Solar cell) in SPICE PARK(FEB2024)
Update 29 models(Solar cell) in SPICE PARK(FEB2024)
 
SPICE PARK FEB2024 ( 6,694 SPICE Models )
SPICE PARK FEB2024 ( 6,694 SPICE Models )SPICE PARK FEB2024 ( 6,694 SPICE Models )
SPICE PARK FEB2024 ( 6,694 SPICE Models )
 
Circuit simulation using LTspice(Case study)
Circuit simulation using LTspice(Case study)Circuit simulation using LTspice(Case study)
Circuit simulation using LTspice(Case study)
 
Mindmap of Semiconductor sales business(15FEB2024)
Mindmap of Semiconductor sales business(15FEB2024)Mindmap of Semiconductor sales business(15FEB2024)
Mindmap of Semiconductor sales business(15FEB2024)
 
2-STAGE COCKCROFT-WALTON [SCHEMATIC] using LTspice
2-STAGE COCKCROFT-WALTON [SCHEMATIC] using LTspice2-STAGE COCKCROFT-WALTON [SCHEMATIC] using LTspice
2-STAGE COCKCROFT-WALTON [SCHEMATIC] using LTspice
 
PSpice simulation of power supply for TI is Error
PSpice simulation of power supply  for TI is ErrorPSpice simulation of power supply  for TI is Error
PSpice simulation of power supply for TI is Error
 
IGBT Simulation of Results from Rgext or Rgint
IGBT Simulation of Results from Rgext or RgintIGBT Simulation of Results from Rgext or Rgint
IGBT Simulation of Results from Rgext or Rgint
 
Electronic component sales method centered on alternative proposals
Electronic component sales method centered on alternative proposalsElectronic component sales method centered on alternative proposals
Electronic component sales method centered on alternative proposals
 
Electronic component sales method focused on new hires
Electronic component sales method focused on new hiresElectronic component sales method focused on new hires
Electronic component sales method focused on new hires
 
Mindmap(electronics parts sales visions)
Mindmap(electronics parts sales visions)Mindmap(electronics parts sales visions)
Mindmap(electronics parts sales visions)
 
Chat GPTによる伝達関数の導出
Chat GPTによる伝達関数の導出Chat GPTによる伝達関数の導出
Chat GPTによる伝達関数の導出
 
伝達関数の理解(Chatgpt)
伝達関数の理解(Chatgpt)伝達関数の理解(Chatgpt)
伝達関数の理解(Chatgpt)
 
DXセミナー(2024年1月17日開催)のメモ
DXセミナー(2024年1月17日開催)のメモDXセミナー(2024年1月17日開催)のメモ
DXセミナー(2024年1月17日開催)のメモ
 

Recently uploaded

Recently uploaded (20)

Corporate and higher education May webinar.pptx
Corporate and higher education May webinar.pptxCorporate and higher education May webinar.pptx
Corporate and higher education May webinar.pptx
 
Real Time Object Detection Using Open CV
Real Time Object Detection Using Open CVReal Time Object Detection Using Open CV
Real Time Object Detection Using Open CV
 
Polkadot JAM Slides - Token2049 - By Dr. Gavin Wood
Polkadot JAM Slides - Token2049 - By Dr. Gavin WoodPolkadot JAM Slides - Token2049 - By Dr. Gavin Wood
Polkadot JAM Slides - Token2049 - By Dr. Gavin Wood
 
MINDCTI Revenue Release Quarter One 2024
MINDCTI Revenue Release Quarter One 2024MINDCTI Revenue Release Quarter One 2024
MINDCTI Revenue Release Quarter One 2024
 
Exploring the Future Potential of AI-Enabled Smartphone Processors
Exploring the Future Potential of AI-Enabled Smartphone ProcessorsExploring the Future Potential of AI-Enabled Smartphone Processors
Exploring the Future Potential of AI-Enabled Smartphone Processors
 
ProductAnonymous-April2024-WinProductDiscovery-MelissaKlemke
ProductAnonymous-April2024-WinProductDiscovery-MelissaKlemkeProductAnonymous-April2024-WinProductDiscovery-MelissaKlemke
ProductAnonymous-April2024-WinProductDiscovery-MelissaKlemke
 
Apidays New York 2024 - The value of a flexible API Management solution for O...
Apidays New York 2024 - The value of a flexible API Management solution for O...Apidays New York 2024 - The value of a flexible API Management solution for O...
Apidays New York 2024 - The value of a flexible API Management solution for O...
 
Apidays New York 2024 - The Good, the Bad and the Governed by David O'Neill, ...
Apidays New York 2024 - The Good, the Bad and the Governed by David O'Neill, ...Apidays New York 2024 - The Good, the Bad and the Governed by David O'Neill, ...
Apidays New York 2024 - The Good, the Bad and the Governed by David O'Neill, ...
 
Emergent Methods: Multi-lingual narrative tracking in the news - real-time ex...
Emergent Methods: Multi-lingual narrative tracking in the news - real-time ex...Emergent Methods: Multi-lingual narrative tracking in the news - real-time ex...
Emergent Methods: Multi-lingual narrative tracking in the news - real-time ex...
 
Strategize a Smooth Tenant-to-tenant Migration and Copilot Takeoff
Strategize a Smooth Tenant-to-tenant Migration and Copilot TakeoffStrategize a Smooth Tenant-to-tenant Migration and Copilot Takeoff
Strategize a Smooth Tenant-to-tenant Migration and Copilot Takeoff
 
Apidays New York 2024 - Scaling API-first by Ian Reasor and Radu Cotescu, Adobe
Apidays New York 2024 - Scaling API-first by Ian Reasor and Radu Cotescu, AdobeApidays New York 2024 - Scaling API-first by Ian Reasor and Radu Cotescu, Adobe
Apidays New York 2024 - Scaling API-first by Ian Reasor and Radu Cotescu, Adobe
 
Apidays Singapore 2024 - Modernizing Securities Finance by Madhu Subbu
Apidays Singapore 2024 - Modernizing Securities Finance by Madhu SubbuApidays Singapore 2024 - Modernizing Securities Finance by Madhu Subbu
Apidays Singapore 2024 - Modernizing Securities Finance by Madhu Subbu
 
Powerful Google developer tools for immediate impact! (2023-24 C)
Powerful Google developer tools for immediate impact! (2023-24 C)Powerful Google developer tools for immediate impact! (2023-24 C)
Powerful Google developer tools for immediate impact! (2023-24 C)
 
2024: Domino Containers - The Next Step. News from the Domino Container commu...
2024: Domino Containers - The Next Step. News from the Domino Container commu...2024: Domino Containers - The Next Step. News from the Domino Container commu...
2024: Domino Containers - The Next Step. News from the Domino Container commu...
 
Data Cloud, More than a CDP by Matt Robison
Data Cloud, More than a CDP by Matt RobisonData Cloud, More than a CDP by Matt Robison
Data Cloud, More than a CDP by Matt Robison
 
TrustArc Webinar - Stay Ahead of US State Data Privacy Law Developments
TrustArc Webinar - Stay Ahead of US State Data Privacy Law DevelopmentsTrustArc Webinar - Stay Ahead of US State Data Privacy Law Developments
TrustArc Webinar - Stay Ahead of US State Data Privacy Law Developments
 
Web Form Automation for Bonterra Impact Management (fka Social Solutions Apri...
Web Form Automation for Bonterra Impact Management (fka Social Solutions Apri...Web Form Automation for Bonterra Impact Management (fka Social Solutions Apri...
Web Form Automation for Bonterra Impact Management (fka Social Solutions Apri...
 
Boost Fertility New Invention Ups Success Rates.pdf
Boost Fertility New Invention Ups Success Rates.pdfBoost Fertility New Invention Ups Success Rates.pdf
Boost Fertility New Invention Ups Success Rates.pdf
 
DBX First Quarter 2024 Investor Presentation
DBX First Quarter 2024 Investor PresentationDBX First Quarter 2024 Investor Presentation
DBX First Quarter 2024 Investor Presentation
 
Apidays Singapore 2024 - Scalable LLM APIs for AI and Generative AI Applicati...
Apidays Singapore 2024 - Scalable LLM APIs for AI and Generative AI Applicati...Apidays Singapore 2024 - Scalable LLM APIs for AI and Generative AI Applicati...
Apidays Singapore 2024 - Scalable LLM APIs for AI and Generative AI Applicati...
 

PSpiceで位相余裕度シミュレーション

  • 1. Copyright (C) Bee Technologies Inc. 2011 1 PWM Buck Converter Average Model フィードバック制御におけるアベレージモデルを活用した位相余裕度のシミュレーションの活用方法を解説していきます。 2011年2月2日(水曜日) 株式会社ビー・テクノロジーhttp://www.bee-tech.com/horigome@bee-tech.com
  • 2. お客様を徹底的にサポートする Copyright (C) Bee Technologies Inc. 2011 2 [第三の壁]シミュレーションが実機波形と合わない。ゼロから動かすのは物凄く工数がかかる。 [第二の壁] 自分がシミュレーションしたい電子部品のスパイスモデルが揃わない。 各回路方式のシミュレーションのテンプレートをご提供デザインキット シンプルキット [第一の壁] 回路解析シミュレータの導入 スパイス・パークデバイスモデリングサービスでサポート お客様の回路図を回路解析シミュレーションデータ一式でご提供
  • 3. 事業の全体概要 Copyright (C) Bee Technologies Inc. 2011 3 [スパイスモデル]デバイスモデリングサービス(58種類のデバイスモデリング) スパイス・パーク www.spicepark.com シンプルモデル(NEW)←ブロックベースのスパイスモデル [デザインキット]回路方式のテンプレート コンセプトキット(NEW)←(概念設計のテンプレート) デザインキット(各回路方式のテンプレート) 回路解析シミュレータSpice 系回路解析シミュレータPSpice,LTspice,MultiSim,MicroCap,HSPICE,SmartSPICE,Simplorer, and so on
  • 5. スパイス・パーク Copyright (C) Bee Technologies Inc. 2011 5 http://www.spicepark.com メールアドレスとパスワードのご登録でご利用できます。グローバル版も順次公開中-> http://www.spicepark.net 3,593モデルをご提供(2011年1月31日現在)
  • 6. コンセプトキット Copyright (C) Bee Technologies Inc. 2011 6
  • 7. デザインキット(パッケージ商品) Copyright (C) Bee Technologies Inc. 2011 7 要望が多いインバータ回路方式を中心に20種類の新製品を開発中。
  • 8. デザインキット(カスタムサービス) Copyright (C) Bee Technologies Inc. 2011 8 お客様の回路図を提供してもらいデバイスモデリング、シミュレーション技術を 付加して、シミュレーション一式をご提供する。お客様は、解析に専念出来る。 お客様が準備するものは回路図と材料表(BOM)です。
  • 9. デバイスモデリング教材 Copyright (C) Bee Technologies Inc. 2011 9
  • 10. 情報提供 Copyright (C) Bee Technologies Inc. 2011 10 http://beetech-icyk.blogspot.com/ http://www.bee-tech.com メールマガジンで情報配信 Bee Style:  http://www.spicepark.com/ スパイス・パークのログイン後トップページにて、PDFでバックナンバーも含めPDF形式で参照及びダウンロード出来ます。 各種セミナー、ワークショップご参加下さい
  • 11. Concept Kit:PWM Buck Converter Average Model Copyright (C) Bee Technologies Inc. 2011 11 発売予定日:2011年2月中旬、84,000円(税込み)
  • 12. Contents Concept of Simulation Buck Converter Circuit Averaged Buck Switch Model Buck Regulator Design Workflow Setting PWM Controller’s Parameters. Programming Output Voltage: Rupper, Rlower Inductor Selection: L Capacitor Selection: C, ESR Stabilizing the Converter (Example) Load Transient Response Simulation (Example) Appendix Type 2 Compensation Calculation using Excel Feedback Loop Compensators Simulation Index Copyright (C) Bee Technologies Inc. 2011 12
  • 13.
  • 14. C
  • 15. ESR
  • 16.
  • 18. Buck Converter Circuit Copyright (C) Bee Technologies Inc. 2011 14 Power Switches Filter & Load PWM Controller
  • 19.
  • 20.
  • 21.
  • 22. Step2: Set C1=1kF, C2=1fF, (always keep the default value) and R2= calculated value (Rupper//Rlower) as the initial values.
  • 23. Step3: Select a crossover frequency (about 10kHz or fc < fosc/4). Then complete the table.
  • 24. Step4: Read the Gain and Phase value at the crossover frequency (10kHz) from the Bode plot, Then put the values to the table
  • 25. Step5: Select the phase margin at the fc ( > 45 ). Then change the K value until it gives the satisfied phase margin, for this example K=6 is chosen for Phase margin = 46.
  • 26. Remark: If K-factor fail to gives the satisfied phase margin, Increase the output capacitor C then try Step1 to Step5 again.5 Load Transient Response Simulation 6
  • 27. Buck Regulator Design Workflow Copyright (C) Bee Technologies Inc. 2011 17 3 4 5 2 1
  • 28.
  • 29. VP= (Error Amp. Gain  vFB ) / d
  • 30. vFB = vFBH – vFBL
  • 31. d = dMAX – dMIN
  • 32. Error Amp. Gain is 100 (approximated) where VP is the sawtooth peak voltage. vFBH is maximum FB voltage where d = 0 vFBL is minimum FB voltage where d =1(100%) dMAX is maximum duty cycle, e.g. d = 0(0%) dMIN is minimum duty cycle, e.g. d =1(100%) Setting PWM Controller’s Parameters Copyright (C) Bee Technologies Inc. 2011 18 1 The PWM block is used to transfer the error voltage (between FB and REF) to be the duty cycle.  If vFBH and vFBLare not provided, the default value, VP=2.5 could be used.
  • 33. Copyright (C) Bee Technologies Inc. 2011 19 Setting PWM Controller’s Parameters (Example) 1  If the VP ( sawtooth signal amplitude ) does not informed by the datasheet, It can be approximated from the characteristics below. from VP= (Error Amp. Gain  vFB )/d Error Amp. Gain = 100 (approximated) from the graph on the left, vFB= 25mV (15m - (-10m)) d = 1 – 0 = 1 VP ≈ ( 100  25mV )/1 ≈ 2.5V vFBH vFB = 25mV vFBL d = 1 (100%) dMIN dMAX LM2575: Feedback Voltage vs. Duty Cycle  If vFBH and vFBLare not provided, the default value, VP=2.5 could be used.
  • 34.
  • 35.
  • 36. VI,max is input maximum voltage
  • 37. RL,min is load resistance at the minimum output current ( IOUT,min )
  • 38. fosc is switching frequency3
  • 39. Inductor Selection: L (Example) Copyright (C) Bee Technologies Inc. 2011 22 Inductor Value from Given: VI,max = 40V, VOUT = 5V IOUT,min = 0.2A RL,min = (VOUT /IOUT,min ) = 25 fosc = 52kHz Then: LCCM 210(uH), L = 330(uH) is selected 3
  • 40.
  • 41. Capacitor Selection: C, ESR (Example) Copyright (C) Bee Technologies Inc. 2011 24 Capacitor Value From and Given: VI, max = 40 V VOUT = 5 V L (H) = 330 Then: C 188 (F) In addition: ESR 100m 4
  • 42.
  • 43.
  • 44. Copyright (C) Bee Technologies Inc. 2011 27 Stabilizing the Converter (Example) 5 The element of the Type 2 compensator ( R2, C1, and C2 ), that stabilize the converter, can be extracted by using Type 2 Compensator Calculator (Excel sheet) and open-loop simulation with the Average Switch Models (ac models). Step2 Set C1=1kF, C2=1fF, and R2=calculated value (Rupper//Rlower) as the initial values. Step1 Open the loop with LoL=1kH and CoL=1kF then inject an AC signal to generate Bode plot.  C1=1kF is AC shorted, and C2 1fF is AC opened (or Error-Amp without compensator).
  • 45. Stabilizing the Converter (Example) Copyright (C) Bee Technologies Inc. 2011 28 5 Step3 Select a crossover frequency (about 10kHz or fc < fosc/4 ), for this example, 10kHz is selected. Then complete the table. values from 2 Calculated value of the Rupper//Rlower values from 1
  • 46. Copyright (C) Bee Technologies Inc. 2011 29 Stabilizing the Converter (Example) 5 Gain: T(s) = H(s)GPWM Step4 Read the Gain and Phase value at the crossover frequency(10kHz) from the Bode plot, Then put the values to the table. Phase  atfc Tip: To bring cursor to the fc = 10kHz type “ sfxv(10k) ” in Search Command. Cursor Search
  • 47. Stabilizing the Converter (Example) Copyright (C) Bee Technologies Inc. 2011 30 5 Step5 Select the phase margin at fc (> 45 ). Then change the K value (start from K=2) until it gives the satisfied phase margin, for this example K=6 is chosen for Phase margin = 46. As the result; R2, C1, and C2 are calculated. Remark: If K-factor fail to gives the satisfied phase margin, Increase the output capacitor C then try Step1 to Step5 again.  K Factor enable the circuit designer to choose a loop cross-over frequency and phase margin, and then determine the necessary component values to achieve these results. A very big K value (e.g. K > 100) acts like no compensator (C1 is shorted and C2 is opened).
  • 48. Stabilizing the Converter (Example) Copyright (C) Bee Technologies Inc. 2011 31 5 The element of the Type 2 compensator ( R2, C1, and C2 ) extraction can be completed by Type 2 Compensator Calculator (Excel sheet) with the converter average models (ac models) and open-loop simulation. The calculated values of the type 2 elements are, R2=122.780k, C1=0.778nF, and C2=21.6pF. *Analysis directives: .AC DEC 100 0.1 10MEG
  • 49. Copyright (C) Bee Technologies Inc. 2011 32 Stabilizing the Converter (Example) 5 Gain and Phase responses after stabilizing Gain: T(s) = H(s) G(s)GPWM Phase  atfc Phase margin = 45.930 at the cross-over frequency - fc = 9.778kHz. Tip: To bring cursor to the cross-over point (gain = 0dB) type “ sfle(0) ” in Search Command. Cursor Search
  • 50. Load Transient Response Simulation (Example) Copyright (C) Bee Technologies Inc. 2011 33 The converter, that have been stabilized, are connected with step-load to perform load transient response simulation. 5V/2.5 = 0.2A step to 0.2+0.8=1.0A load *Analysis directives: .TRAN 0 20ms 0 1u
  • 51.
  • 52. Copyright (C) Bee Technologies Inc. 2011 36 B. Feedback Loop Compensators Type1 Compensator Type2 Compensator Type2a Compensator Type2b Compensator Type3 Compensator
  • 53.