O slideshow foi denunciado.
Utilizamos seu perfil e dados de atividades no LinkedIn para personalizar e exibir anúncios mais relevantes. Altere suas preferências de anúncios quando desejar.

機械学習の精度と売上の関係

39.802 visualizações

Publicada em

最近考えていることをつらつらと

Publicada em: Tecnologia
  • Visit this site: tinyurl.com/sexinarea and find sex in your area for one night)) You can find me on this site too)
       Responder 
    Tem certeza que deseja  Sim  Não
    Insira sua mensagem aqui
  • Sex in your area for one night is there tinyurl.com/hotsexinarea Copy and paste link in your browser to visit a site)
       Responder 
    Tem certeza que deseja  Sim  Não
    Insira sua mensagem aqui
  • Girls for sex are waiting for you https://bit.ly/2TQ8UAY
       Responder 
    Tem certeza que deseja  Sim  Não
    Insira sua mensagem aqui
  • Meetings for sex in your area are there: https://bit.ly/2TQ8UAY
       Responder 
    Tem certeza que deseja  Sim  Não
    Insira sua mensagem aqui
  • Best site for flirting and sex in your area you can find there: https://bit.ly/2SlcOnO
       Responder 
    Tem certeza que deseja  Sim  Não
    Insira sua mensagem aqui

機械学習の精度と売上の関係

  1. 1. データ分析精度と売上曲線 中山ところてん
  2. 2. 今日の話 データサイエンティスト協会の資料より引用 http://www.datascientist.or.jp/news/2014/pdf/1210.pdf
  3. 3. ビジネスモデルを考える 売上 精度 ①:リニア型 ②:早期飽和型 ③:ロジスティック型 ④:Winnar Takes All型 ⑤:バイアス型
  4. 4. ビジネス面の制約条件を考える • 「人工知能で何とかしてください」 • この案件はどのタイプの利益モデルか? • 人間のリプレイスが目的なので、人間より精度が高ければよい? • 今の人間の精度は95%位なので、それよりも精度が高くなければ使えない • 今の人間の精度は60%位なので、それよりも精度が高くなければ使えない • 60%であれば、簡単なルールベースや画像処理で到達できる可能性が高い • 機械学習を使わなくても改善が出来る • 要求される精度次第で、使う技術が異なる • 自らの立ち位置によって、精度売上曲線の意味が変わってくる • 内製と下請け
  5. 5. YahooとGoogle • Yahooは自社の検索ビジネスをロジスティック型だと思い込んでいた • これ以上投資しても売上が増えないと思っていた • http://blog.livedoor.jp/lionfan/archives/52682119.html • GoogleはYahoo以上の投資を行い、市場を全部奪い取った • 情報検索市場は、Googleによってロジスティック型からWTA型へ 売上 精度 Yahoo Google
  6. 6. NetflixとAmazon • NetflixやAmazonはバイアス型のビジネスモデル • 既存ビジネスが利益を生む状態 • 機械学習により追加の売上が得られる • 少しの改善が大きな利益を生む状態になっている • 既存ビジネスの余剰利益が、機械学習への投資を可能にする 売上 精度
  7. 7. 外注と内製 • 外注の場合ロジスティック型になってしまう • 精度が一定以上超えたら検収 • 精度をより高めても、外注の場合売上が増えない 売上 精度 内製 外注
  8. 8. ハイリスクハイリターン、Winnter Takes Allモデル • 情報検索や翻訳などは、この領域に突入 • 医療や自動運転などの安全が要求されるものもこのタイプ • このような案件を1から始めるのは危険すぎる • スモールスタートが出来ない • 外注の場合、精度が出なかったときのリスクがデカすぎる 売上 精度
  9. 9. 問題を変換して、スモールスタート可能にする • 自動運転車の例 • 自動運転技術を段階化することで、マーケットが受容可能にする • レベル1:運転支援 自動ブレーキ、アダプティブクルーズコントロール(ACC) • レベル2:部分運転自動化 ハンドル操作、加減速の支援、ACCの拡張 • レベル3:条件付き自動運転 天候や交通量などの条件が整った環境での自動運転 • レベル4:高度自動運転 条件が整った環境では乗員が不要になる • レベル5:完全自動運転 どんな条件でも自律的に走行してくれる 価値 精度 価値 精度
  10. 10. 超危険な案件 • データ分析の精度が高いことを前提にした新規ビジネス • これが設定されるとヤバい • 精度が上がらないと死 • ユーザがいないので精度も上がらない • 精度が上がらないとユーザが付かない • こういう案件からは今すぐ逃げろ!!! 価値 精度
  11. 11. 問題を変換して、スモールスタート可能にする • BIの導入から行う • 「人工知能で何とかしてください」系の雑案件にはBI投入で応える • BIを導入して、基礎KPIから会社の改善を行い、ベースラインを提供 • ベースラインを提供している間に、機械学習で改善できるものを見出す 価値 精度 価値 精度
  12. 12. データ分析のコストと売上の関係性 • 単価がでかくてボリュームが大きいものほど改善幅は大きくなる • 単価が安くてボリュームが小さいものに対するデータ分析は、コストメリットが出ない • データ分析のコストと、売上の関係性を考える • より多くのデータを取れば、それだけ精度は上がるがコストも上がる • 必要以上のデータを取りすぎて赤字になることもある • ムーアの法則を考慮する • ストレージとCPUは年々値下がりする • ただし、クラウドの値下がりは、それよりも遅い • 場合によっては自前でDCを構築することもある Ex) Dropboxの上場目論見書 • 将来コストが下がることを前提に多めにデータをとっても良い • 感覚値 • 機械学習で性能改善できるのは30%(というのが私の感覚値) • それ以上の改善を要求された場合は、企画からやったほうがいい
  13. 13. ビジネスの握りで、課題の成否は決まる • アルゴリズムだけを学んでいても問題解決できない データサイエンティスト協会の資料より引用 http://www.datascientist.or.jp/news/2014/pdf/1210.pdf
  14. 14. まとめ • 機械学習の精度と売上の曲線を意識する • 精度と売上の曲線を変形できないか考える • ビジネスの握り次第で、曲線の形は変わる • 機械学習とビジネスモデルをセットで考える • 機械学習をスモールスタート可能な状態を作り出す • スモールスタート可能にすることで、ローリスクハイリターンの環境を 作り出し、持続可能なビジネスを形成する

×