SlideShare una empresa de Scribd logo
1 de 56
INFORMACION GENERAL DE OBJETO DE APRENDIZAJE
Bibliografía
Autor
Competencia
Tema
INICIOFacultad de Informática y Electrónica – Julio 2017
Dra. Lourdes Zúñiga - Ing. Fernando Solís
Concepto de derivada de una función
“La recta tangente y su relación con la derivada
de una función”
El Cálculo, Louis Leithold
Editorial Harla México
Interpretación geométrica del concepto derivada de una función para
la resolución de problemas sobre optimización relacionados al área de
Ingeniería
Recordemos el camino trazado…
Unidad 1. Funciones de una variable
Unidad 2. Limites y continuidad
Unidad 3. La derivada
Unidad 4. Aplicaciones de la derivada
Pero, antes de iniciar veamos una
simple pregunta…
Introducción a la Derivada
Ya analizamos
funciones…
También
limites de
funciones…
Y el tema que
iniciamos hoy
es….
“La pregunta del millón…”
( un minuto de silencio…)
Introducción a la Derivada
“La pregunta del millón…”
Si tenemos una función definida por
2
xy 
xy 2La mayoría contestaría: “su derivada es: ”
MUY BIEN!! ….. Pero……..
“memorizar términos matemáticos y no tener la mínima
idea de lo que significan, es equivalente a no saberlos..”
“las matemáticas no se memorizan… se deben razonar!!”
Introducción a la Derivada
Algunos conceptos básicos.
Introducción a la Derivada
La recta secante
y la recta tangente
Recta secante
Recta tangente
“es una recta que
corta a una curva,
(en este caso una
circunferencia)
en dos puntos”
Entendemos por
pendiente de una curva
a la pendiente de la
recta que mas se
asemeja (ajusta) a la
curva y esta recta es
“la recta tangente”
Algunos conceptos básicos.
Introducción a la Derivada
La recta secante
y la recta tangente
en una función
Función original
Algunos conceptos básicos.
Introducción a la Derivada
La recta secante
y la recta tangente
en una función
Función original
Recta secante
Algunos conceptos básicos.
Introducción a la Derivada
La recta secante
y la recta tangente
en una función
Función original
Recta tangente
Algunos conceptos básicos.
Introducción a la Derivada
Sabemos que una de las características
principales de una recta es su pendiente (m)
En términos muy simples la pendiente de una recta es
un valor numérico que representa la inclinación de dicha recta
1 1( , )x y
2 2( , )x y
2 1x x
2 1y y
2 1
2 1
y y
m
x x



Muy sencillo de obtener si
tienes dos puntos sobre una recta!
Algunos conceptos básicos.
Introducción a la Derivada
Función original
Recta secante
De acuerdo a lo anterior, la obtención de la pendiente de una recta
secante en la curva de una función es:
2 1
2 1
y y
m
x x



1 1( , )x y
2 2( , )x y
Algunos conceptos básicos.
Introducción a la Derivada
Recta tangente
Pero……….. y como obtener análogamente la pendiente de una recta
tangente si solo conoce un punto?
1 1( , )x y
2 1
2 1
?
y y
m
x x

 

Algo de historia.
Introducción a la Derivada
Esta cuestión se originó con los matemáticos griegos hace dos mil años,
y fue finalmente abordada en el siglo XVII por varios matemáticos ilustres,
entre los que se encuentran :
Pierre de Fermat Rene Descartes Gottfried Wilhelm Leibniz
Leibniz, llamado por muchos el padre del Cálculo
Moderno, en 1684 propuso un método
general para encontrar las tangentes a una
curva a través de lo que el llamo símbolos.
La derivada.
Introducción a la Derivada
Recuerda que lo que se desea es conocer un método para encontrar
el valor de la PENDIENTE DE UNA RECTA TANGENTE
Supongamos que deseamos
conocer la pendiente de la
recta tangente en X=1
Observe que si hacemos
diversas aproximaciones de rectas
secantes, podemos hacer una
muy buena estimación de la
Pendiente de la recta tangente
tanm
La derivada.
Introducción a la Derivada
Recuerda que lo que se desea es conocer un método para encontrar
el valor de la PENDIENTE DE UNA TANGENTE
1 1( , )x y
2 2( , )x y
tanm
La derivada.
Introducción a la Derivada
Recuerda que lo que se desea es conocer un método para encontrar
el valor de la PENDIENTE DE UNA TANGENTE
1 1( , )x y
2 2( , )x y
tanm
La derivada.
Introducción a la Derivada
Recuerda que lo que se desea es conocer un método para encontrar
el valor de la PENDIENTE DE UNA TANGENTE
1 1( , )x y
2 2( , )x y
tanm
La derivada.
Introducción a la Derivada
Recuerda que lo que se desea es conocer un método para encontrar
el valor de la PENDIENTE DE UNA TANGENTE
1 1( , )x y
2 2( , )x y
tanm
La derivada.
Introducción a la Derivada
Recuerda que lo que se desea es conocer un método para encontrar
el valor de la PENDIENTE DE UNA TANGENTE
1 1( , )x y
2 2( , )x y
tanm
La derivada.
Introducción a la Derivada
Recuerda que lo que se desea es conocer un método para encontrar
el valor de la PENDIENTE DE UNA TANGENTE
1 1( , )x y
2 2( , )x y
tanm
La derivada.
Introducción a la Derivada
Recuerda que lo que se desea es conocer un método para encontrar
el valor de la PENDIENTE DE UNA TANGENTE
1 1( , )x y
2 2( , )x y
tanm
La derivada.
Introducción a la Derivada
Recuerda que lo que se desea es conocer un método para encontrar
el valor de la PENDIENTE DE UNA TANGENTE
1 1( , )x y
2 2( , )x y
tanm
La derivada.
Introducción a la Derivada
Recuerda que lo que se desea es conocer un método para encontrar
el valor de la PENDIENTE DE UNA TANGENTE
1 1( , )x y
2 2( , )x y
tanm
La derivada.
Introducción a la Derivada
Recuerda que lo que se desea es conocer un método para encontrar
el valor de la PENDIENTE DE UNA TANGENTE
1 1( , )x y
2 2( , )x y
tanm
La derivada.
Introducción a la Derivada
Recuerda que lo que se desea es conocer un método para encontrar
el valor de la PENDIENTE DE UNA TANGENTE
1 1( , )x y
Observa que el punto
Cada vez se acerca
más al punto
1 1( , )x y
2 2( , )x y
2 2( , )x y
Atajo
Volver a
mostrar
Continuar
tanm
La derivada.
Introducción a la Derivada
Recuerda que lo que se desea es conocer un método para encontrar
el valor de la PENDIENTE DE UNA TANGENTE
Ahora, como expresar el
comportamiento anterior
en términos matemáticos?
La derivada.
Introducción a la Derivada
1 1( , )x y
2 2( , )x y
Aprox.
tanm  secm Procedemos
a sustituir:
12
12
sec
xx
yy
m



2 1
2 1
y y
x x


tanm
12
12
sec
xx
yy
m



La derivada.
Introducción a la Derivada
1 1( , )x y
2 2( , )x y
tanm  2 1
2 1
y y
x x


Considerando: ( )y f xtanm  2 1
2 1
( ) ( )f x f x
x x


)( 1xf
)( 2xf
tanm
Procedemos
a sustituir:
La derivada.
Introducción a la Derivada
1 1( , )x y
2 2( , )x y
tanm  2 1
2 1
( ) ( )f x f x
x x

 2 1x x x  Ahora
Consideremos:
2 1( ) ( )f x f x
x


2 1x x x  
tanm
La derivada.
Introducción a la Derivada
1 1( , )x y
2 2( , )x y
tanm  2 1( ) ( )f x f x
x


Ahora recordemos el comportamiento
de las rectas secantes y podemos ver
que tiende a disminuirx
Presiona para observar nuevamente el comportamiento
(utiliza el botón atajo para regresar a esta diapositiva)
2 1x x x  
tanm
La derivada.
Introducción a la Derivada
1 1( , )x y
2 2( , )x y
tanm  2 1( ) ( )f x f x
x


Ahora recordemos el comportamiento
de las rectas secantes y podemos ver
que tiende a disminuirx
Presiona para observar nuevamente el comportamiento
(utiliza el botón atajo para regresar a esta diapositiva)
2 1x x x  
tanm
La derivada.
Introducción a la Derivada
1 1( , )x y
2 2( , )x y
tanm 
2 1x x x  
2 1( ) ( )f x f x
x


Podemos expresar lo anterior así:
lim 2 1( ) ( )f x f x
x


0x 
0x 
Analizando dicho comportamiento,
procedemos a aplicar un límite así:
Se puede observar
que el punto
cada vez se aproxima
más al punto
pero no llegará a tocarlo
2 2( , )x y
1 1( , )x y
tanm
La derivada.
Introducción a la Derivada
1 1( , )x y
2 2( , )x y
tanm  Finalmente considerando lo siguiente:
lim 2 1( ) ( )f x f x
x


0x 
2 1x x x  
La expresión nos queda así:
1 1( ) ( )f x x f x
x
  

2 1x x x  
tanm
1 1( ) ( )f x x f x
x
  

La derivada.
Introducción a la Derivada
1 1( , )x y
2 2( , )x y
tanm  Finalmente considerando lo siguiente:
lim
0x 
2 1x x x  
La expresión nos queda así:
2 1x x x  
tanm
La derivada.
Introducción a la Derivada
tanm  lim
0x 
1 1( ) ( )f x x f x
x
  

Este límite (el cual genera otra
función), representa la pendiente de
las diversas rectas tangentes a la
gráfica de una función…..
Y se le conoce comúnmente como:
Misma, que en honor a Leibniz puede ser representada así:
dx
dy Por su origen basado en
incrementos
=
La derivada de una función.- Sea f una función Real definida
en un intervalo abierto I. Se llama derivada de f y se denota con f ’, a
otra función de finida como:
Introducción a la Derivada
lim
0x 
1 1( ) ( )f x x f x
x
  
dx
dy
xf )(' =
Diferenciación.- Una función es diferenciable en un punto x si
su derivada existe en ese punto; una función es diferenciable en un
intervalo si lo es en cada punto x perteneciente al intervalo. Si una
función no es continua en c, entonces no puede ser diferenciable en
c; sin embargo, aunque una función sea continua en c, puede no ser
diferenciable. Es decir, toda función diferenciadle en un punto C es
continua en C, pero no toda función continua en C es diferenciable en
C (como f(x) = |x| es continua pero no diferenciable en x = 0).
Introducción a la Derivada
lim
0x 
1 1( ) ( )f x x f x
x
  
dx
dy
xf )(' =
Y precisamente por esta
fórmula es que lo siguiente,
ahora si, tiene sentido:
Si tenemos una función definida por
2
xy 
Entonces su derivada es: x
dx
dy
2
Y gracias a esta función que se “deriva” de la original, podemos obtener
las pendientes de las rectas tangentes que pertenecen a la función original
Aplicación del límite obtenido….
Introducción a la Derivada
Procederemos a la aplicación
del límite deducido para
obtener la derivada de la función:
2
)( xxfy 
x
xfxxf
dx
dy
x 



)()(
lim
0
Recordemos que la
derivada esta definida
por el límite:
Al evaluar el término
)( xxf 
se puede observar que:
2
)()( xxxxfy 
Al sustituirlo obtenemos:
Aplicación del límite obtenido….
Introducción a la Derivada
x
xxx
dx
dy
x 



22
0
)(
lim
)( xxf  )(xf
Al desarrollar el binomio
al cuadrado obtenemos:
x
xxxxx
dx
dy
x 



222
0
))()(2(
lim Reduciendo
términos:
x
xxx
dx
dy
x 



2
0
)()(2
lim
Aplicando los teoremas
sobre límites tenemos lo
siguiente:
Aplicación del límite obtenido….
Introducción a la Derivada




 x
xxx
dx
dy
x
2
0
)()(2
lim xx
xx

 00
lim2lim
Al evaluar dichos límites llegamos a la conclusión que:
Si tenemos una función definida por
2
xy 
Entonces su derivada es: x
dx
dy
2
Tomada de “El Cálculo”
por Louis Leithold
        








 Representación
gráfica de:
2
xy 
La función que
representa su
derivada es:
x
dx
dy
2
        








 Representación
gráfica de:
2
xy 
La función que
representa su
derivada es:
x
dx
dy
2
1x
Al sustituir
en la derivada
el valor de X:
2)1(2tan 
dx
dy
m
Observe que:
2tan m ?tan m
        








 Representación
gráfica de:
2
xy 
La función que
representa su
derivada es:
x
dx
dy
2
2tan m
        








 Representación
gráfica de:
2
xy 
La función que
representa su
derivada es:
x
dx
dy
2        









        









        









        









        









 xf
yf
yfxxfy
'
1
))'((
)()(
1
1




Sea
Derivada de la función inversa
    2
1
1
)arccos(
1
)(
1
cos'
1
yysenxsenx 

  1,
1
1
')arccos(
2


 x
x
x
 x
y
yxxy
cos'
1
))'(arccos(
)arccos()cos(

Ejemplo:
Derivadas de Orden Superior
La derivada de una función diferenciable
puede a su vez ser diferenciable, entonces se
llama derivada de segundo orden (segunda
derivada) de la función diferenciable a la
derivada de la derivada de ésta.
Análogamente, la derivada de tercer orden de
la función diferenciable es la derivada de la
derivada de la segunda derivada, y así
sucesivamente.
)(),...,('''),(''),(' )(
xfxfxfxf n
EJERCICIOS RESUELTOS
1. 𝑦 =
23𝑥
32𝑥
2. 𝑦 = 𝑥2
+ 2𝑥 + 2 𝑒−𝑥
3. 𝑦 =
𝑠𝑒𝑛(𝑥)
1+cos(𝑥)
2
4. 𝑦 = 𝑎𝑟𝑐𝑠𝑒𝑛 1 − 0,2𝑥2
5. 𝑦 = ln 𝑡𝑔
𝑒2𝑠𝑒𝑛 𝑥
4
6. 𝑦 = log2 𝑠𝑒𝑛2
𝑥
7. 𝑦 = log 𝑥2 𝑥 𝑥
8. 𝑦 = 2 𝑥
hallar 𝑦 𝑛
9. 𝑥3
+ ln 𝑦 − 𝑥2
𝑒 𝑦
= 0
10. Si 𝑓(𝑥) = 𝑡𝑔(𝑥) y 𝑔(𝑥) = ln(1 − 𝑥); hallar
𝑓′(0)
𝑔′(0)
EJERCICIOS PROPUESTOS
INFORMACION GENERAL DE OBJETO DE APRENDIZAJE
Bibliografía
Autor
Competencia
Tema
Dra. Lourdes Zúñiga - Ing. Fernando Solís
3.1 Concepto de derivada de una función
“La recta tangente y su relación con la derivada
de una función”
El Cálculo, Louis Leithold
Edición, Editorial Harla México
Interpretación geométrica del concepto derivada de una función para
la resolución de problemas sobre optimización relacionados al área de
Ingeniería.
Facultad de Informática y Electrónica – Agosto 2014

Más contenido relacionado

La actualidad más candente

Combinacion lineal ejercicios
Combinacion lineal ejerciciosCombinacion lineal ejercicios
Combinacion lineal ejercicios
algebra
 
Ejercicios resueltos(f.vectoriales)(1)
Ejercicios resueltos(f.vectoriales)(1)Ejercicios resueltos(f.vectoriales)(1)
Ejercicios resueltos(f.vectoriales)(1)
ratix
 
Trabajo series de taylor
Trabajo series de taylorTrabajo series de taylor
Trabajo series de taylor
Fredy
 
La Integral Indefinida
La  Integral IndefinidaLa  Integral Indefinida
La Integral Indefinida
ERICK CONDE
 

La actualidad más candente (20)

Ejercicios resueltos edo exactas
Ejercicios resueltos edo exactasEjercicios resueltos edo exactas
Ejercicios resueltos edo exactas
 
Modelos Matemático Ecuaciones Diferenciales Ordinarias. Presentación diseñada...
Modelos Matemático Ecuaciones Diferenciales Ordinarias. Presentación diseñada...Modelos Matemático Ecuaciones Diferenciales Ordinarias. Presentación diseñada...
Modelos Matemático Ecuaciones Diferenciales Ordinarias. Presentación diseñada...
 
Problemas resueltos de derivadas
Problemas resueltos de derivadasProblemas resueltos de derivadas
Problemas resueltos de derivadas
 
Combinacion lineal ejercicios
Combinacion lineal ejerciciosCombinacion lineal ejercicios
Combinacion lineal ejercicios
 
espacios vectoriales
espacios vectorialesespacios vectoriales
espacios vectoriales
 
Integrales de superficie
Integrales de superficieIntegrales de superficie
Integrales de superficie
 
Ejercicio - Serie de maclaurin
Ejercicio - Serie de maclaurinEjercicio - Serie de maclaurin
Ejercicio - Serie de maclaurin
 
Aplicaciones Ecuaciones Diferenciales Resueltos
Aplicaciones Ecuaciones Diferenciales ResueltosAplicaciones Ecuaciones Diferenciales Resueltos
Aplicaciones Ecuaciones Diferenciales Resueltos
 
Ejercicios resueltos(f.vectoriales)(1)
Ejercicios resueltos(f.vectoriales)(1)Ejercicios resueltos(f.vectoriales)(1)
Ejercicios resueltos(f.vectoriales)(1)
 
Tabla de integrales (integrales trigonometricas)
Tabla de integrales (integrales trigonometricas)Tabla de integrales (integrales trigonometricas)
Tabla de integrales (integrales trigonometricas)
 
Trabajo series de taylor
Trabajo series de taylorTrabajo series de taylor
Trabajo series de taylor
 
La Integral Indefinida
La  Integral IndefinidaLa  Integral Indefinida
La Integral Indefinida
 
Unidad 8
Unidad 8Unidad 8
Unidad 8
 
Tema 2.4
Tema 2.4Tema 2.4
Tema 2.4
 
Ejemplos metodo-de-lagrange1-ajustar-a-mat-3
Ejemplos metodo-de-lagrange1-ajustar-a-mat-3Ejemplos metodo-de-lagrange1-ajustar-a-mat-3
Ejemplos metodo-de-lagrange1-ajustar-a-mat-3
 
Derivacion implicita
Derivacion implicitaDerivacion implicita
Derivacion implicita
 
Ecuaciones de tercer grado
Ecuaciones de tercer gradoEcuaciones de tercer grado
Ecuaciones de tercer grado
 
Método gráfico, Método de bisección y Método de la regla falsa
Método gráfico, Método de bisección  y Método de la regla falsa Método gráfico, Método de bisección  y Método de la regla falsa
Método gráfico, Método de bisección y Método de la regla falsa
 
ECUACION PARAMETRICAS Y VECTORIALES PARAMETRICAS.
ECUACION PARAMETRICAS Y VECTORIALES PARAMETRICAS.ECUACION PARAMETRICAS Y VECTORIALES PARAMETRICAS.
ECUACION PARAMETRICAS Y VECTORIALES PARAMETRICAS.
 
Que es el wronskiano
Que es el wronskianoQue es el wronskiano
Que es el wronskiano
 

Similar a Calculo diferencial fie.ppt

02 Intro a la Fis - Limites y derivadas 2024-I.pdf
02 Intro a la Fis - Limites y derivadas 2024-I.pdf02 Intro a la Fis - Limites y derivadas 2024-I.pdf
02 Intro a la Fis - Limites y derivadas 2024-I.pdf
DanielRamos746776
 

Similar a Calculo diferencial fie.ppt (20)

Clase 3 derivada
Clase 3 derivadaClase 3 derivada
Clase 3 derivada
 
Clase 11 b introducción a la derivada
Clase  11  b  introducción  a  la  derivadaClase  11  b  introducción  a  la  derivada
Clase 11 b introducción a la derivada
 
Interpretacion geométrica la derivada de una función teoría derivadas
Interpretacion geométrica la derivada de una función   teoría derivadasInterpretacion geométrica la derivada de una función   teoría derivadas
Interpretacion geométrica la derivada de una función teoría derivadas
 
La Derivada y sus Aplicaciones ccesa007
La Derivada y sus Aplicaciones  ccesa007La Derivada y sus Aplicaciones  ccesa007
La Derivada y sus Aplicaciones ccesa007
 
La derivada
La derivadaLa derivada
La derivada
 
Clase3. 1era. parte. la derivada
Clase3. 1era. parte. la derivadaClase3. 1era. parte. la derivada
Clase3. 1era. parte. la derivada
 
Calculo 1 Derivación
Calculo 1 DerivaciónCalculo 1 Derivación
Calculo 1 Derivación
 
DERIVADA INTRODUCCION (1).pptx
DERIVADA INTRODUCCION (1).pptxDERIVADA INTRODUCCION (1).pptx
DERIVADA INTRODUCCION (1).pptx
 
DEFINICIÓN DE DERIVADA
DEFINICIÓN DE DERIVADADEFINICIÓN DE DERIVADA
DEFINICIÓN DE DERIVADA
 
Aplicacion de la derivada
Aplicacion de la derivadaAplicacion de la derivada
Aplicacion de la derivada
 
Derivadas e integrales apunte para principiantes
Derivadas e integrales apunte para principiantesDerivadas e integrales apunte para principiantes
Derivadas e integrales apunte para principiantes
 
Derivadas e integrales apunte para principiantes
Derivadas e integrales apunte para principiantesDerivadas e integrales apunte para principiantes
Derivadas e integrales apunte para principiantes
 
Derivadas
DerivadasDerivadas
Derivadas
 
Derivadas
DerivadasDerivadas
Derivadas
 
Derivacion implicita
Derivacion implicitaDerivacion implicita
Derivacion implicita
 
02 Intro a la Fis - Limites y derivadas 2024-I.pdf
02 Intro a la Fis - Limites y derivadas 2024-I.pdf02 Intro a la Fis - Limites y derivadas 2024-I.pdf
02 Intro a la Fis - Limites y derivadas 2024-I.pdf
 
Fourier.pdf
Fourier.pdfFourier.pdf
Fourier.pdf
 
2 integracion
2 integracion2 integracion
2 integracion
 
Integralindefinida
IntegralindefinidaIntegralindefinida
Integralindefinida
 
Matematica 1
Matematica 1Matematica 1
Matematica 1
 

Último

Derivadas- sus aplicaciones en la vida cotidiana
Derivadas- sus aplicaciones en la vida cotidianaDerivadas- sus aplicaciones en la vida cotidiana
Derivadas- sus aplicaciones en la vida cotidiana
pabv24
 
Soporte vital basico maniobras de soporte vital basico
Soporte vital basico maniobras de soporte vital basicoSoporte vital basico maniobras de soporte vital basico
Soporte vital basico maniobras de soporte vital basico
NAYDA JIMENEZ
 
UNIDAD DIDÁCTICA-LLEGÓ EL OTOÑO-PRIMER AÑO.docx
UNIDAD DIDÁCTICA-LLEGÓ EL OTOÑO-PRIMER AÑO.docxUNIDAD DIDÁCTICA-LLEGÓ EL OTOÑO-PRIMER AÑO.docx
UNIDAD DIDÁCTICA-LLEGÓ EL OTOÑO-PRIMER AÑO.docx
TeresitaJaques2
 
IAAS- EPIDEMIOLOGIA. antisepcsia, desinfección, epp
IAAS-  EPIDEMIOLOGIA. antisepcsia, desinfección, eppIAAS-  EPIDEMIOLOGIA. antisepcsia, desinfección, epp
IAAS- EPIDEMIOLOGIA. antisepcsia, desinfección, epp
CatalinaSezCrdenas
 
Althusser, Louis. - Ideología y aparatos ideológicos de Estado [ocr] [2003].pdf
Althusser, Louis. - Ideología y aparatos ideológicos de Estado [ocr] [2003].pdfAlthusser, Louis. - Ideología y aparatos ideológicos de Estado [ocr] [2003].pdf
Althusser, Louis. - Ideología y aparatos ideológicos de Estado [ocr] [2003].pdf
frank0071
 
Frankel, Hermann. - Poesía y filosofía de la Grecia arcaica [ocr] [1993].pdf
Frankel, Hermann. - Poesía y filosofía de la Grecia arcaica [ocr] [1993].pdfFrankel, Hermann. - Poesía y filosofía de la Grecia arcaica [ocr] [1993].pdf
Frankel, Hermann. - Poesía y filosofía de la Grecia arcaica [ocr] [1993].pdf
frank0071
 

Último (20)

Glaeser, E. - El triunfo de las ciudades [2011].pdf
Glaeser, E. - El triunfo de las ciudades [2011].pdfGlaeser, E. - El triunfo de las ciudades [2011].pdf
Glaeser, E. - El triunfo de las ciudades [2011].pdf
 
Pelos y fibras. Criminalistica pelos y fibras
Pelos y fibras. Criminalistica pelos y fibrasPelos y fibras. Criminalistica pelos y fibras
Pelos y fibras. Criminalistica pelos y fibras
 
Antequera, L. - Historia desconocida del descubrimiento de América [2021].pdf
Antequera, L. - Historia desconocida del descubrimiento de América [2021].pdfAntequera, L. - Historia desconocida del descubrimiento de América [2021].pdf
Antequera, L. - Historia desconocida del descubrimiento de América [2021].pdf
 
PRUEBA CALIFICADA 4º sec biomoleculas y bioelementos .docx
PRUEBA CALIFICADA 4º sec biomoleculas y bioelementos .docxPRUEBA CALIFICADA 4º sec biomoleculas y bioelementos .docx
PRUEBA CALIFICADA 4º sec biomoleculas y bioelementos .docx
 
El Gran Atractor, la misteriosa fuerza que está halando a la Vía Láctea.pptx
El Gran Atractor, la misteriosa fuerza que está halando a la Vía Láctea.pptxEl Gran Atractor, la misteriosa fuerza que está halando a la Vía Láctea.pptx
El Gran Atractor, la misteriosa fuerza que está halando a la Vía Láctea.pptx
 
Moda colonial de 1810 donde podemos ver las distintas prendas
Moda colonial de 1810 donde podemos ver las distintas prendasModa colonial de 1810 donde podemos ver las distintas prendas
Moda colonial de 1810 donde podemos ver las distintas prendas
 
Derivadas- sus aplicaciones en la vida cotidiana
Derivadas- sus aplicaciones en la vida cotidianaDerivadas- sus aplicaciones en la vida cotidiana
Derivadas- sus aplicaciones en la vida cotidiana
 
SESION 3º caracteristicas de los seres vivos.pdf
SESION 3º caracteristicas de los seres vivos.pdfSESION 3º caracteristicas de los seres vivos.pdf
SESION 3º caracteristicas de los seres vivos.pdf
 
ATENCIÓN DEL TRABAJO DE PARTO, GINECOLOGIA Y OBSTETRICIA
ATENCIÓN DEL TRABAJO DE PARTO, GINECOLOGIA Y OBSTETRICIAATENCIÓN DEL TRABAJO DE PARTO, GINECOLOGIA Y OBSTETRICIA
ATENCIÓN DEL TRABAJO DE PARTO, GINECOLOGIA Y OBSTETRICIA
 
REINO FUNGI: CONCEPTO, CARACTERISTICAS, ETC
REINO FUNGI: CONCEPTO, CARACTERISTICAS, ETCREINO FUNGI: CONCEPTO, CARACTERISTICAS, ETC
REINO FUNGI: CONCEPTO, CARACTERISTICAS, ETC
 
Soporte vital basico maniobras de soporte vital basico
Soporte vital basico maniobras de soporte vital basicoSoporte vital basico maniobras de soporte vital basico
Soporte vital basico maniobras de soporte vital basico
 
Origen y evolución del hombre, teorías..
Origen y evolución del hombre, teorías..Origen y evolución del hombre, teorías..
Origen y evolución del hombre, teorías..
 
UNIDAD DIDÁCTICA-LLEGÓ EL OTOÑO-PRIMER AÑO.docx
UNIDAD DIDÁCTICA-LLEGÓ EL OTOÑO-PRIMER AÑO.docxUNIDAD DIDÁCTICA-LLEGÓ EL OTOÑO-PRIMER AÑO.docx
UNIDAD DIDÁCTICA-LLEGÓ EL OTOÑO-PRIMER AÑO.docx
 
IAAS- EPIDEMIOLOGIA. antisepcsia, desinfección, epp
IAAS-  EPIDEMIOLOGIA. antisepcsia, desinfección, eppIAAS-  EPIDEMIOLOGIA. antisepcsia, desinfección, epp
IAAS- EPIDEMIOLOGIA. antisepcsia, desinfección, epp
 
Homo Ergaster. Evolución y datos del hominido
Homo Ergaster. Evolución y datos del hominidoHomo Ergaster. Evolución y datos del hominido
Homo Ergaster. Evolución y datos del hominido
 
Althusser, Louis. - Ideología y aparatos ideológicos de Estado [ocr] [2003].pdf
Althusser, Louis. - Ideología y aparatos ideológicos de Estado [ocr] [2003].pdfAlthusser, Louis. - Ideología y aparatos ideológicos de Estado [ocr] [2003].pdf
Althusser, Louis. - Ideología y aparatos ideológicos de Estado [ocr] [2003].pdf
 
desequilibrio acido baseEE Y TEORIA ACIDO BASICO DE STEWART
desequilibrio acido baseEE Y TEORIA ACIDO BASICO DE STEWARTdesequilibrio acido baseEE Y TEORIA ACIDO BASICO DE STEWART
desequilibrio acido baseEE Y TEORIA ACIDO BASICO DE STEWART
 
LOS PRIMEROS PSICÓLOGOS EXPERIMENTALES (1).pdf
LOS PRIMEROS PSICÓLOGOS EXPERIMENTALES (1).pdfLOS PRIMEROS PSICÓLOGOS EXPERIMENTALES (1).pdf
LOS PRIMEROS PSICÓLOGOS EXPERIMENTALES (1).pdf
 
Frankel, Hermann. - Poesía y filosofía de la Grecia arcaica [ocr] [1993].pdf
Frankel, Hermann. - Poesía y filosofía de la Grecia arcaica [ocr] [1993].pdfFrankel, Hermann. - Poesía y filosofía de la Grecia arcaica [ocr] [1993].pdf
Frankel, Hermann. - Poesía y filosofía de la Grecia arcaica [ocr] [1993].pdf
 
Evolución Historica de los mapas antiguos.ppt
Evolución Historica de los mapas antiguos.pptEvolución Historica de los mapas antiguos.ppt
Evolución Historica de los mapas antiguos.ppt
 

Calculo diferencial fie.ppt

  • 1. INFORMACION GENERAL DE OBJETO DE APRENDIZAJE Bibliografía Autor Competencia Tema INICIOFacultad de Informática y Electrónica – Julio 2017 Dra. Lourdes Zúñiga - Ing. Fernando Solís Concepto de derivada de una función “La recta tangente y su relación con la derivada de una función” El Cálculo, Louis Leithold Editorial Harla México Interpretación geométrica del concepto derivada de una función para la resolución de problemas sobre optimización relacionados al área de Ingeniería
  • 2. Recordemos el camino trazado… Unidad 1. Funciones de una variable Unidad 2. Limites y continuidad Unidad 3. La derivada Unidad 4. Aplicaciones de la derivada Pero, antes de iniciar veamos una simple pregunta… Introducción a la Derivada Ya analizamos funciones… También limites de funciones… Y el tema que iniciamos hoy es….
  • 3. “La pregunta del millón…” ( un minuto de silencio…) Introducción a la Derivada
  • 4. “La pregunta del millón…” Si tenemos una función definida por 2 xy  xy 2La mayoría contestaría: “su derivada es: ” MUY BIEN!! ….. Pero…….. “memorizar términos matemáticos y no tener la mínima idea de lo que significan, es equivalente a no saberlos..” “las matemáticas no se memorizan… se deben razonar!!” Introducción a la Derivada
  • 5. Algunos conceptos básicos. Introducción a la Derivada La recta secante y la recta tangente Recta secante Recta tangente “es una recta que corta a una curva, (en este caso una circunferencia) en dos puntos” Entendemos por pendiente de una curva a la pendiente de la recta que mas se asemeja (ajusta) a la curva y esta recta es “la recta tangente”
  • 6. Algunos conceptos básicos. Introducción a la Derivada La recta secante y la recta tangente en una función Función original
  • 7. Algunos conceptos básicos. Introducción a la Derivada La recta secante y la recta tangente en una función Función original Recta secante
  • 8. Algunos conceptos básicos. Introducción a la Derivada La recta secante y la recta tangente en una función Función original Recta tangente
  • 9. Algunos conceptos básicos. Introducción a la Derivada Sabemos que una de las características principales de una recta es su pendiente (m) En términos muy simples la pendiente de una recta es un valor numérico que representa la inclinación de dicha recta 1 1( , )x y 2 2( , )x y 2 1x x 2 1y y 2 1 2 1 y y m x x    Muy sencillo de obtener si tienes dos puntos sobre una recta!
  • 10. Algunos conceptos básicos. Introducción a la Derivada Función original Recta secante De acuerdo a lo anterior, la obtención de la pendiente de una recta secante en la curva de una función es: 2 1 2 1 y y m x x    1 1( , )x y 2 2( , )x y
  • 11. Algunos conceptos básicos. Introducción a la Derivada Recta tangente Pero……….. y como obtener análogamente la pendiente de una recta tangente si solo conoce un punto? 1 1( , )x y 2 1 2 1 ? y y m x x    
  • 12. Algo de historia. Introducción a la Derivada Esta cuestión se originó con los matemáticos griegos hace dos mil años, y fue finalmente abordada en el siglo XVII por varios matemáticos ilustres, entre los que se encuentran : Pierre de Fermat Rene Descartes Gottfried Wilhelm Leibniz Leibniz, llamado por muchos el padre del Cálculo Moderno, en 1684 propuso un método general para encontrar las tangentes a una curva a través de lo que el llamo símbolos.
  • 13. La derivada. Introducción a la Derivada Recuerda que lo que se desea es conocer un método para encontrar el valor de la PENDIENTE DE UNA RECTA TANGENTE Supongamos que deseamos conocer la pendiente de la recta tangente en X=1 Observe que si hacemos diversas aproximaciones de rectas secantes, podemos hacer una muy buena estimación de la Pendiente de la recta tangente tanm
  • 14. La derivada. Introducción a la Derivada Recuerda que lo que se desea es conocer un método para encontrar el valor de la PENDIENTE DE UNA TANGENTE 1 1( , )x y 2 2( , )x y tanm
  • 15. La derivada. Introducción a la Derivada Recuerda que lo que se desea es conocer un método para encontrar el valor de la PENDIENTE DE UNA TANGENTE 1 1( , )x y 2 2( , )x y tanm
  • 16. La derivada. Introducción a la Derivada Recuerda que lo que se desea es conocer un método para encontrar el valor de la PENDIENTE DE UNA TANGENTE 1 1( , )x y 2 2( , )x y tanm
  • 17. La derivada. Introducción a la Derivada Recuerda que lo que se desea es conocer un método para encontrar el valor de la PENDIENTE DE UNA TANGENTE 1 1( , )x y 2 2( , )x y tanm
  • 18. La derivada. Introducción a la Derivada Recuerda que lo que se desea es conocer un método para encontrar el valor de la PENDIENTE DE UNA TANGENTE 1 1( , )x y 2 2( , )x y tanm
  • 19. La derivada. Introducción a la Derivada Recuerda que lo que se desea es conocer un método para encontrar el valor de la PENDIENTE DE UNA TANGENTE 1 1( , )x y 2 2( , )x y tanm
  • 20. La derivada. Introducción a la Derivada Recuerda que lo que se desea es conocer un método para encontrar el valor de la PENDIENTE DE UNA TANGENTE 1 1( , )x y 2 2( , )x y tanm
  • 21. La derivada. Introducción a la Derivada Recuerda que lo que se desea es conocer un método para encontrar el valor de la PENDIENTE DE UNA TANGENTE 1 1( , )x y 2 2( , )x y tanm
  • 22. La derivada. Introducción a la Derivada Recuerda que lo que se desea es conocer un método para encontrar el valor de la PENDIENTE DE UNA TANGENTE 1 1( , )x y 2 2( , )x y tanm
  • 23. La derivada. Introducción a la Derivada Recuerda que lo que se desea es conocer un método para encontrar el valor de la PENDIENTE DE UNA TANGENTE 1 1( , )x y 2 2( , )x y tanm
  • 24. La derivada. Introducción a la Derivada Recuerda que lo que se desea es conocer un método para encontrar el valor de la PENDIENTE DE UNA TANGENTE 1 1( , )x y Observa que el punto Cada vez se acerca más al punto 1 1( , )x y 2 2( , )x y 2 2( , )x y Atajo Volver a mostrar Continuar tanm
  • 25. La derivada. Introducción a la Derivada Recuerda que lo que se desea es conocer un método para encontrar el valor de la PENDIENTE DE UNA TANGENTE Ahora, como expresar el comportamiento anterior en términos matemáticos?
  • 26. La derivada. Introducción a la Derivada 1 1( , )x y 2 2( , )x y Aprox. tanm  secm Procedemos a sustituir: 12 12 sec xx yy m    2 1 2 1 y y x x   tanm
  • 27. 12 12 sec xx yy m    La derivada. Introducción a la Derivada 1 1( , )x y 2 2( , )x y tanm  2 1 2 1 y y x x   Considerando: ( )y f xtanm  2 1 2 1 ( ) ( )f x f x x x   )( 1xf )( 2xf tanm Procedemos a sustituir:
  • 28. La derivada. Introducción a la Derivada 1 1( , )x y 2 2( , )x y tanm  2 1 2 1 ( ) ( )f x f x x x   2 1x x x  Ahora Consideremos: 2 1( ) ( )f x f x x   2 1x x x   tanm
  • 29. La derivada. Introducción a la Derivada 1 1( , )x y 2 2( , )x y tanm  2 1( ) ( )f x f x x   Ahora recordemos el comportamiento de las rectas secantes y podemos ver que tiende a disminuirx Presiona para observar nuevamente el comportamiento (utiliza el botón atajo para regresar a esta diapositiva) 2 1x x x   tanm
  • 30. La derivada. Introducción a la Derivada 1 1( , )x y 2 2( , )x y tanm  2 1( ) ( )f x f x x   Ahora recordemos el comportamiento de las rectas secantes y podemos ver que tiende a disminuirx Presiona para observar nuevamente el comportamiento (utiliza el botón atajo para regresar a esta diapositiva) 2 1x x x   tanm
  • 31. La derivada. Introducción a la Derivada 1 1( , )x y 2 2( , )x y tanm  2 1x x x   2 1( ) ( )f x f x x   Podemos expresar lo anterior así: lim 2 1( ) ( )f x f x x   0x  0x  Analizando dicho comportamiento, procedemos a aplicar un límite así: Se puede observar que el punto cada vez se aproxima más al punto pero no llegará a tocarlo 2 2( , )x y 1 1( , )x y tanm
  • 32. La derivada. Introducción a la Derivada 1 1( , )x y 2 2( , )x y tanm  Finalmente considerando lo siguiente: lim 2 1( ) ( )f x f x x   0x  2 1x x x   La expresión nos queda así: 1 1( ) ( )f x x f x x     2 1x x x   tanm
  • 33. 1 1( ) ( )f x x f x x     La derivada. Introducción a la Derivada 1 1( , )x y 2 2( , )x y tanm  Finalmente considerando lo siguiente: lim 0x  2 1x x x   La expresión nos queda así: 2 1x x x   tanm
  • 34. La derivada. Introducción a la Derivada tanm  lim 0x  1 1( ) ( )f x x f x x     Este límite (el cual genera otra función), representa la pendiente de las diversas rectas tangentes a la gráfica de una función….. Y se le conoce comúnmente como: Misma, que en honor a Leibniz puede ser representada así: dx dy Por su origen basado en incrementos =
  • 35. La derivada de una función.- Sea f una función Real definida en un intervalo abierto I. Se llama derivada de f y se denota con f ’, a otra función de finida como: Introducción a la Derivada lim 0x  1 1( ) ( )f x x f x x    dx dy xf )(' = Diferenciación.- Una función es diferenciable en un punto x si su derivada existe en ese punto; una función es diferenciable en un intervalo si lo es en cada punto x perteneciente al intervalo. Si una función no es continua en c, entonces no puede ser diferenciable en c; sin embargo, aunque una función sea continua en c, puede no ser diferenciable. Es decir, toda función diferenciadle en un punto C es continua en C, pero no toda función continua en C es diferenciable en C (como f(x) = |x| es continua pero no diferenciable en x = 0).
  • 36. Introducción a la Derivada lim 0x  1 1( ) ( )f x x f x x    dx dy xf )(' = Y precisamente por esta fórmula es que lo siguiente, ahora si, tiene sentido: Si tenemos una función definida por 2 xy  Entonces su derivada es: x dx dy 2 Y gracias a esta función que se “deriva” de la original, podemos obtener las pendientes de las rectas tangentes que pertenecen a la función original
  • 37. Aplicación del límite obtenido…. Introducción a la Derivada Procederemos a la aplicación del límite deducido para obtener la derivada de la función: 2 )( xxfy  x xfxxf dx dy x     )()( lim 0 Recordemos que la derivada esta definida por el límite: Al evaluar el término )( xxf  se puede observar que: 2 )()( xxxxfy  Al sustituirlo obtenemos:
  • 38. Aplicación del límite obtenido…. Introducción a la Derivada x xxx dx dy x     22 0 )( lim )( xxf  )(xf Al desarrollar el binomio al cuadrado obtenemos: x xxxxx dx dy x     222 0 ))()(2( lim Reduciendo términos: x xxx dx dy x     2 0 )()(2 lim Aplicando los teoremas sobre límites tenemos lo siguiente:
  • 39. Aplicación del límite obtenido…. Introducción a la Derivada      x xxx dx dy x 2 0 )()(2 lim xx xx   00 lim2lim Al evaluar dichos límites llegamos a la conclusión que: Si tenemos una función definida por 2 xy  Entonces su derivada es: x dx dy 2
  • 40. Tomada de “El Cálculo” por Louis Leithold
  • 41.                   Representación gráfica de: 2 xy  La función que representa su derivada es: x dx dy 2
  • 42.                   Representación gráfica de: 2 xy  La función que representa su derivada es: x dx dy 2 1x Al sustituir en la derivada el valor de X: 2)1(2tan  dx dy m Observe que: 2tan m ?tan m
  • 43.                   Representación gráfica de: 2 xy  La función que representa su derivada es: x dx dy 2 2tan m
  • 44.                   Representación gráfica de: 2 xy  La función que representa su derivada es: x dx dy 2                                                                                         
  • 45.  xf yf yfxxfy ' 1 ))'(( )()( 1 1     Sea Derivada de la función inversa     2 1 1 )arccos( 1 )( 1 cos' 1 yysenxsenx     1, 1 1 ')arccos( 2    x x x  x y yxxy cos' 1 ))'(arccos( )arccos()cos(  Ejemplo:
  • 46. Derivadas de Orden Superior La derivada de una función diferenciable puede a su vez ser diferenciable, entonces se llama derivada de segundo orden (segunda derivada) de la función diferenciable a la derivada de la derivada de ésta. Análogamente, la derivada de tercer orden de la función diferenciable es la derivada de la derivada de la segunda derivada, y así sucesivamente. )(),...,('''),(''),(' )( xfxfxfxf n
  • 48.
  • 49.
  • 50.
  • 51.
  • 52.
  • 53.
  • 54.
  • 55. 1. 𝑦 = 23𝑥 32𝑥 2. 𝑦 = 𝑥2 + 2𝑥 + 2 𝑒−𝑥 3. 𝑦 = 𝑠𝑒𝑛(𝑥) 1+cos(𝑥) 2 4. 𝑦 = 𝑎𝑟𝑐𝑠𝑒𝑛 1 − 0,2𝑥2 5. 𝑦 = ln 𝑡𝑔 𝑒2𝑠𝑒𝑛 𝑥 4 6. 𝑦 = log2 𝑠𝑒𝑛2 𝑥 7. 𝑦 = log 𝑥2 𝑥 𝑥 8. 𝑦 = 2 𝑥 hallar 𝑦 𝑛 9. 𝑥3 + ln 𝑦 − 𝑥2 𝑒 𝑦 = 0 10. Si 𝑓(𝑥) = 𝑡𝑔(𝑥) y 𝑔(𝑥) = ln(1 − 𝑥); hallar 𝑓′(0) 𝑔′(0) EJERCICIOS PROPUESTOS
  • 56. INFORMACION GENERAL DE OBJETO DE APRENDIZAJE Bibliografía Autor Competencia Tema Dra. Lourdes Zúñiga - Ing. Fernando Solís 3.1 Concepto de derivada de una función “La recta tangente y su relación con la derivada de una función” El Cálculo, Louis Leithold Edición, Editorial Harla México Interpretación geométrica del concepto derivada de una función para la resolución de problemas sobre optimización relacionados al área de Ingeniería. Facultad de Informática y Electrónica – Agosto 2014