SlideShare a Scribd company logo
1 of 13
The various components of crude oil have different sizes,
weights and boiling temperatures; so, the first step is to
separate these components. Because they have different
boiling temperatures, they can be separated easily by a
process called fractional distillation.
The steps for fractional distillation are discussed below.
 Heat the mixture of two or more substances (liquids) with
different boiling points to a high temperature. Heating is
usually done with high pressure steam to temperatures of
about 1112 degrees Fahrenheit / 600 degrees Celsius. The
mixture boils, forming vapor (gases); most substances go into
the vapor phase.
 The vapor enters the bottom of a long column (fractional
distillation column) that is filled with trays or plates. The trays
have many holes or bubble caps (like a loosened cap on a soda
bottle) in them to allow the vapor to pass through. They
increase the contact time between the vapor and the liquids in
the column and help to collect liquids that form at various
heights in the column. There is a temperature difference
across the column (hot at the bottom, cool at the top).
 The Vapor Rises
As the vapor rises through the trays in the column, it
cools. When a substance in the vapor reaches a height
where the temperature of the column is equal to that
substance's boiling point, it will condense to form a
liquid. (The substance with the lowest boiling point will
condense at the highest point in the column; substances
with higher boiling points will condense lower in the
column.). The trays collect the various liquid fractions.
The collected liquid fractions may pass to condensers,
which cool them further, and then go to storage tanks, or
they may go to other areas for further chemical
processing.
The oil refining process starts with a fractional distillation
column. On the right, you can see several
chemical processors that are described in the next section.
Very few of the components come out of the fractional
distillation column ready for market. Many of them must be
chemically processed to make other fractions. For example, only
40% of distilled crude oil is gasoline; however, gasoline is one of
the major products made by oil companies. Rather than
continually distilling large quantities of crude oil, oil companies
chemically process some other fractions from the distillation
column to make gasoline.
The top distillates
The top of the fractionating column gives rise to gases and liquids that
have short carbon chains in their composition. While these products are
often used as fuels, many have industrial and chemical uses too.
 Petroleum gases : Butane and propane and other petroleum gases are
formed right at the top of the distillation tower, where it is coolest, a very
mild 25°C: the temperature range that forms these gases is between 25°C
and 50°C. These gases are the lightest products formed in crude oil
distillation and are flammable gases.
 Petrol These gases, being the lightest products formed and flammable
gases too, are then processed into Liquified Petroleum Gas (LPG), which is
usually a mixture of propane and butane. LPG is used for heating
applications and also hot air balloons in the case of propane.
 Naphtha The petroleum gases have four or five hydrocarbons in their
chain. For these distillates, hydrocarbon chains are made up of three
carbon atoms in the case of propane (C3H8), and four carbon atoms in the
case of butane (C4H10).
The middle distillate fuel oils
Oils below this point have a flashpoint of higher than 42°C and are
classified as fuel oils. These are the middle distillates as they form in
the mid-section of the tower.
 Paraffin: Used for heating and burning in domestic applications is
paraffin and paraffin wax, which forms in the column at a range of
100°C to 175°C. Paraffin has between twenty and forty carbon
atoms. Paraffin wax is further processed to be used in industry to
create candles, petroleum jelly that protects skin and many other
products.
 Kerosene: While paraffin can also refer to kerosene, it comes as a
result of paraffin’s history as a domestic heating fuel, which
kerosene is now the default.
 Diesel: Paraffin comes in both liquid and solid form and is used
throughout the UK in a wide range of industries. It’s an extremely
versatile product, and so has a wide range of uses including heating
oil, beauty products, candles and medicines.
Lower distillates
At the bottom extremity of the fractioning tower, the lower distillates form.
These have high densities, higher boiling points and are not used as fuels,
but more as grease for lubrication. These form at temperatures of 350°C to
600°C.
 Lubricating oil
 Bunker fuels and heavy fuel oil
 Marine gas oil (MGO)
 Heavy fuel oil (HFO)
 Marine fuel blends
 Marine diesel oil (MDO)
 Intermediate fuel oil (IFO)
 Marine fuel oil (MFO)
In between MGO and HFO are three additional maritime oils, MDO, IFO and
MFO. These are produced by blending MGO with HFO in varied
proportions.
 Bituminous coal
Bituminous coal is a soft, dense, black coal. Bituminous coal
often has bands of bright and dull material
in it. Bituminous coal is the most common coal and has a
moisture content less than 20 %. Bituminous
coal is used for generating electricity, making coke, and
space heating.
Bituminous coal has calorific values ranging from 6.8 - 9
kW/kG approximately
 Anthracite coal
Often referred to as hard coal, anthracite is hard, black and
lustrous. Anthracite is low in sulphur and high
in carbon. It is the highest rank of coal. Moisture content
generally is less than 15 %.
Anthracite has calorific values of around 9 kW/kG or above
Residuals
When it comes to petroleum products that are produced to
ultimately be burned, it’s essential that waste is absolutely
minimised, so at the bottom of the distillation tower, where
temperatures reach 500°C to 600°C, the residue of crude oil is
retrieved and put to use.
Residue formed at the bottom of the fractionating column includes
bitumen and asphalt.
 Bitumen: Refined bitumen is made from the residue of petroleum
refining, where the column is around 600°C. You’ll have come across
it every day as it is an essential component of construction – used in
tarring roads, sealing roofs and many other applications.
 Asphalt: Bitumen also forms naturally – known as crude bitumen.
END

More Related Content

Similar to Fractional Distillaton, Lecture 01, Fuel Tech-ll.pptx

Fractional Distillation
Fractional Distillation Fractional Distillation
Fractional Distillation Rahil Parsana
 
Liquid fuels presentation
Liquid fuels presentationLiquid fuels presentation
Liquid fuels presentationUsman Arshad
 
Petroleum in industry
Petroleum in industryPetroleum in industry
Petroleum in industryroykirk123
 
Refining Process.pdf
Refining Process.pdfRefining Process.pdf
Refining Process.pdfSana Khan
 
Combustion of gaseous fuels - its characteristics
Combustion of gaseous fuels - its characteristicsCombustion of gaseous fuels - its characteristics
Combustion of gaseous fuels - its characteristicsAyisha586983
 
Elective_Refining 2.pptx
Elective_Refining 2.pptxElective_Refining 2.pptx
Elective_Refining 2.pptxDexterTanabe1
 
Elective_Refining 1.pptx
Elective_Refining 1.pptxElective_Refining 1.pptx
Elective_Refining 1.pptxDexterTanabe
 
Petroleum and Kerosene in Industry
Petroleum and Kerosene in IndustryPetroleum and Kerosene in Industry
Petroleum and Kerosene in IndustryThePetroleumKid
 
Petroleum and Kerosene in Industry
Petroleum and Kerosene in IndustryPetroleum and Kerosene in Industry
Petroleum and Kerosene in IndustryThePetroleumKid
 
Chapter 52
Chapter 52Chapter 52
Chapter 52mcfalltj
 
Properties of Fuel Oil & Bunkering Procedure by Hanif Dewan
Properties of Fuel Oil & Bunkering Procedure by Hanif DewanProperties of Fuel Oil & Bunkering Procedure by Hanif Dewan
Properties of Fuel Oil & Bunkering Procedure by Hanif DewanMohammud Hanif Dewan M.Phil.
 

Similar to Fractional Distillaton, Lecture 01, Fuel Tech-ll.pptx (20)

Nabeel Shan
Nabeel ShanNabeel Shan
Nabeel Shan
 
Lecture 19 Refinery.pptx
Lecture 19 Refinery.pptxLecture 19 Refinery.pptx
Lecture 19 Refinery.pptx
 
Fractional Distillation
Fractional Distillation Fractional Distillation
Fractional Distillation
 
Crude Oil Refining
Crude Oil RefiningCrude Oil Refining
Crude Oil Refining
 
Fuel Gas (2).doc
Fuel Gas (2).docFuel Gas (2).doc
Fuel Gas (2).doc
 
Liquid fuels presentation
Liquid fuels presentationLiquid fuels presentation
Liquid fuels presentation
 
Petroleum in industry
Petroleum in industryPetroleum in industry
Petroleum in industry
 
Refining Process.pdf
Refining Process.pdfRefining Process.pdf
Refining Process.pdf
 
Petroleum in industry
Petroleum in industryPetroleum in industry
Petroleum in industry
 
Combustion of gaseous fuels - its characteristics
Combustion of gaseous fuels - its characteristicsCombustion of gaseous fuels - its characteristics
Combustion of gaseous fuels - its characteristics
 
Elective_Refining 2.pptx
Elective_Refining 2.pptxElective_Refining 2.pptx
Elective_Refining 2.pptx
 
Elective_Refining 1.pptx
Elective_Refining 1.pptxElective_Refining 1.pptx
Elective_Refining 1.pptx
 
Petroleum and Kerosene in Industry
Petroleum and Kerosene in IndustryPetroleum and Kerosene in Industry
Petroleum and Kerosene in Industry
 
Petroleum and Kerosene in Industry
Petroleum and Kerosene in IndustryPetroleum and Kerosene in Industry
Petroleum and Kerosene in Industry
 
Chapter 52
Chapter 52Chapter 52
Chapter 52
 
Petroleum industry
Petroleum industryPetroleum industry
Petroleum industry
 
Petroleum Industry
Petroleum IndustryPetroleum Industry
Petroleum Industry
 
Properties of Fuel Oil & Bunkering Procedure by Hanif Dewan
Properties of Fuel Oil & Bunkering Procedure by Hanif DewanProperties of Fuel Oil & Bunkering Procedure by Hanif Dewan
Properties of Fuel Oil & Bunkering Procedure by Hanif Dewan
 
Cracking.pptx
Cracking.pptxCracking.pptx
Cracking.pptx
 
Gasoline
GasolineGasoline
Gasoline
 

More from ShakeelAhmad816993

Applied Thermo, Lecture-03.pdf
Applied Thermo, Lecture-03.pdfApplied Thermo, Lecture-03.pdf
Applied Thermo, Lecture-03.pdfShakeelAhmad816993
 
Applied Thermo, Lecture-02.pdf
Applied Thermo, Lecture-02.pdfApplied Thermo, Lecture-02.pdf
Applied Thermo, Lecture-02.pdfShakeelAhmad816993
 
Applied Thermo, Lecture-01.pdf
Applied Thermo, Lecture-01.pdfApplied Thermo, Lecture-01.pdf
Applied Thermo, Lecture-01.pdfShakeelAhmad816993
 
Applied Thermo, Lecture-01.pptx
Applied Thermo, Lecture-01.pptxApplied Thermo, Lecture-01.pptx
Applied Thermo, Lecture-01.pptxShakeelAhmad816993
 
Gaseous Control Techniques , Lecture 10, Fuel Technology2, (Week 14).pptx
Gaseous Control Techniques , Lecture 10, Fuel Technology2, (Week 14).pptxGaseous Control Techniques , Lecture 10, Fuel Technology2, (Week 14).pptx
Gaseous Control Techniques , Lecture 10, Fuel Technology2, (Week 14).pptxShakeelAhmad816993
 
Fuel Additives, Lecture 02, Fuel Tech-ll.pptx
Fuel Additives, Lecture 02, Fuel Tech-ll.pptxFuel Additives, Lecture 02, Fuel Tech-ll.pptx
Fuel Additives, Lecture 02, Fuel Tech-ll.pptxShakeelAhmad816993
 
Fuel Additives, Lecture 02, Fuel Tech-ll.pdf
Fuel Additives, Lecture 02, Fuel Tech-ll.pdfFuel Additives, Lecture 02, Fuel Tech-ll.pdf
Fuel Additives, Lecture 02, Fuel Tech-ll.pdfShakeelAhmad816993
 
Fractional Distillaton, Lecture 01, Fuel Tech-ll.pdf
Fractional Distillaton, Lecture 01, Fuel Tech-ll.pdfFractional Distillaton, Lecture 01, Fuel Tech-ll.pdf
Fractional Distillaton, Lecture 01, Fuel Tech-ll.pdfShakeelAhmad816993
 
Ethanol production, Lecture 07, Fuel Technology2.pptx
Ethanol production, Lecture 07, Fuel Technology2.pptxEthanol production, Lecture 07, Fuel Technology2.pptx
Ethanol production, Lecture 07, Fuel Technology2.pptxShakeelAhmad816993
 
Energy from Waste, Lecture 09, Fuel Technology2, (Week 11).pptx
Energy from Waste, Lecture 09, Fuel Technology2, (Week 11).pptxEnergy from Waste, Lecture 09, Fuel Technology2, (Week 11).pptx
Energy from Waste, Lecture 09, Fuel Technology2, (Week 11).pptxShakeelAhmad816993
 
Calorific Value Lecture 3, Fuel Tech-ll.pptx
Calorific Value Lecture 3, Fuel Tech-ll.pptxCalorific Value Lecture 3, Fuel Tech-ll.pptx
Calorific Value Lecture 3, Fuel Tech-ll.pptxShakeelAhmad816993
 
Calorific Value Lecture 3, Fuel Tech-ll.pdf
Calorific Value Lecture 3, Fuel Tech-ll.pdfCalorific Value Lecture 3, Fuel Tech-ll.pdf
Calorific Value Lecture 3, Fuel Tech-ll.pdfShakeelAhmad816993
 
ALTERNATIVE FUELS Lecture 6 Fuel Tech-ll.pptx
ALTERNATIVE FUELS Lecture 6 Fuel Tech-ll.pptxALTERNATIVE FUELS Lecture 6 Fuel Tech-ll.pptx
ALTERNATIVE FUELS Lecture 6 Fuel Tech-ll.pptxShakeelAhmad816993
 

More from ShakeelAhmad816993 (20)

Applied Thermo, Lecture-03.pdf
Applied Thermo, Lecture-03.pdfApplied Thermo, Lecture-03.pdf
Applied Thermo, Lecture-03.pdf
 
Applied Thermo, Lecture-02.pdf
Applied Thermo, Lecture-02.pdfApplied Thermo, Lecture-02.pdf
Applied Thermo, Lecture-02.pdf
 
Applied Thermo, Lecture-01.pdf
Applied Thermo, Lecture-01.pdfApplied Thermo, Lecture-01.pdf
Applied Thermo, Lecture-01.pdf
 
Lecture 11.pptx
Lecture 11.pptxLecture 11.pptx
Lecture 11.pptx
 
Lecture 10.pptx
Lecture 10.pptxLecture 10.pptx
Lecture 10.pptx
 
Lecture 9.pptx
Lecture 9.pptxLecture 9.pptx
Lecture 9.pptx
 
Lecture 8'.pptx
Lecture 8'.pptxLecture 8'.pptx
Lecture 8'.pptx
 
Lecture 2.pptx
Lecture 2.pptxLecture 2.pptx
Lecture 2.pptx
 
Lecture 1.pptx
Lecture 1.pptxLecture 1.pptx
Lecture 1.pptx
 
Applied Thermo, Lecture-01.pptx
Applied Thermo, Lecture-01.pptxApplied Thermo, Lecture-01.pptx
Applied Thermo, Lecture-01.pptx
 
Gaseous Control Techniques , Lecture 10, Fuel Technology2, (Week 14).pptx
Gaseous Control Techniques , Lecture 10, Fuel Technology2, (Week 14).pptxGaseous Control Techniques , Lecture 10, Fuel Technology2, (Week 14).pptx
Gaseous Control Techniques , Lecture 10, Fuel Technology2, (Week 14).pptx
 
Fuel Additives, Lecture 02, Fuel Tech-ll.pptx
Fuel Additives, Lecture 02, Fuel Tech-ll.pptxFuel Additives, Lecture 02, Fuel Tech-ll.pptx
Fuel Additives, Lecture 02, Fuel Tech-ll.pptx
 
Fuel Additives, Lecture 02, Fuel Tech-ll.pdf
Fuel Additives, Lecture 02, Fuel Tech-ll.pdfFuel Additives, Lecture 02, Fuel Tech-ll.pdf
Fuel Additives, Lecture 02, Fuel Tech-ll.pdf
 
Fractional Distillaton, Lecture 01, Fuel Tech-ll.pdf
Fractional Distillaton, Lecture 01, Fuel Tech-ll.pdfFractional Distillaton, Lecture 01, Fuel Tech-ll.pdf
Fractional Distillaton, Lecture 01, Fuel Tech-ll.pdf
 
Ethanol production, Lecture 07, Fuel Technology2.pptx
Ethanol production, Lecture 07, Fuel Technology2.pptxEthanol production, Lecture 07, Fuel Technology2.pptx
Ethanol production, Lecture 07, Fuel Technology2.pptx
 
Energy from Waste, Lecture 09, Fuel Technology2, (Week 11).pptx
Energy from Waste, Lecture 09, Fuel Technology2, (Week 11).pptxEnergy from Waste, Lecture 09, Fuel Technology2, (Week 11).pptx
Energy from Waste, Lecture 09, Fuel Technology2, (Week 11).pptx
 
Calorific Value Lecture 3, Fuel Tech-ll.pptx
Calorific Value Lecture 3, Fuel Tech-ll.pptxCalorific Value Lecture 3, Fuel Tech-ll.pptx
Calorific Value Lecture 3, Fuel Tech-ll.pptx
 
Calorific Value Lecture 3, Fuel Tech-ll.pdf
Calorific Value Lecture 3, Fuel Tech-ll.pdfCalorific Value Lecture 3, Fuel Tech-ll.pdf
Calorific Value Lecture 3, Fuel Tech-ll.pdf
 
ALTERNATIVE FUELS.pdf
ALTERNATIVE FUELS.pdfALTERNATIVE FUELS.pdf
ALTERNATIVE FUELS.pdf
 
ALTERNATIVE FUELS Lecture 6 Fuel Tech-ll.pptx
ALTERNATIVE FUELS Lecture 6 Fuel Tech-ll.pptxALTERNATIVE FUELS Lecture 6 Fuel Tech-ll.pptx
ALTERNATIVE FUELS Lecture 6 Fuel Tech-ll.pptx
 

Recently uploaded

A Year of the Servo Reboot: Where Are We Now?
A Year of the Servo Reboot: Where Are We Now?A Year of the Servo Reboot: Where Are We Now?
A Year of the Servo Reboot: Where Are We Now?Igalia
 
How to Troubleshoot Apps for the Modern Connected Worker
How to Troubleshoot Apps for the Modern Connected WorkerHow to Troubleshoot Apps for the Modern Connected Worker
How to Troubleshoot Apps for the Modern Connected WorkerThousandEyes
 
MS Copilot expands with MS Graph connectors
MS Copilot expands with MS Graph connectorsMS Copilot expands with MS Graph connectors
MS Copilot expands with MS Graph connectorsNanddeep Nachan
 
Boost Fertility New Invention Ups Success Rates.pdf
Boost Fertility New Invention Ups Success Rates.pdfBoost Fertility New Invention Ups Success Rates.pdf
Boost Fertility New Invention Ups Success Rates.pdfsudhanshuwaghmare1
 
Cloud Frontiers: A Deep Dive into Serverless Spatial Data and FME
Cloud Frontiers:  A Deep Dive into Serverless Spatial Data and FMECloud Frontiers:  A Deep Dive into Serverless Spatial Data and FME
Cloud Frontiers: A Deep Dive into Serverless Spatial Data and FMESafe Software
 
Real Time Object Detection Using Open CV
Real Time Object Detection Using Open CVReal Time Object Detection Using Open CV
Real Time Object Detection Using Open CVKhem
 
Apidays Singapore 2024 - Scalable LLM APIs for AI and Generative AI Applicati...
Apidays Singapore 2024 - Scalable LLM APIs for AI and Generative AI Applicati...Apidays Singapore 2024 - Scalable LLM APIs for AI and Generative AI Applicati...
Apidays Singapore 2024 - Scalable LLM APIs for AI and Generative AI Applicati...apidays
 
Apidays Singapore 2024 - Building Digital Trust in a Digital Economy by Veron...
Apidays Singapore 2024 - Building Digital Trust in a Digital Economy by Veron...Apidays Singapore 2024 - Building Digital Trust in a Digital Economy by Veron...
Apidays Singapore 2024 - Building Digital Trust in a Digital Economy by Veron...apidays
 
2024: Domino Containers - The Next Step. News from the Domino Container commu...
2024: Domino Containers - The Next Step. News from the Domino Container commu...2024: Domino Containers - The Next Step. News from the Domino Container commu...
2024: Domino Containers - The Next Step. News from the Domino Container commu...Martijn de Jong
 
ICT role in 21st century education and its challenges
ICT role in 21st century education and its challengesICT role in 21st century education and its challenges
ICT role in 21st century education and its challengesrafiqahmad00786416
 
AWS Community Day CPH - Three problems of Terraform
AWS Community Day CPH - Three problems of TerraformAWS Community Day CPH - Three problems of Terraform
AWS Community Day CPH - Three problems of TerraformAndrey Devyatkin
 
Apidays New York 2024 - Accelerating FinTech Innovation by Vasa Krishnan, Fin...
Apidays New York 2024 - Accelerating FinTech Innovation by Vasa Krishnan, Fin...Apidays New York 2024 - Accelerating FinTech Innovation by Vasa Krishnan, Fin...
Apidays New York 2024 - Accelerating FinTech Innovation by Vasa Krishnan, Fin...apidays
 
Strategies for Unlocking Knowledge Management in Microsoft 365 in the Copilot...
Strategies for Unlocking Knowledge Management in Microsoft 365 in the Copilot...Strategies for Unlocking Knowledge Management in Microsoft 365 in the Copilot...
Strategies for Unlocking Knowledge Management in Microsoft 365 in the Copilot...Drew Madelung
 
Mastering MySQL Database Architecture: Deep Dive into MySQL Shell and MySQL R...
Mastering MySQL Database Architecture: Deep Dive into MySQL Shell and MySQL R...Mastering MySQL Database Architecture: Deep Dive into MySQL Shell and MySQL R...
Mastering MySQL Database Architecture: Deep Dive into MySQL Shell and MySQL R...Miguel Araújo
 
AXA XL - Insurer Innovation Award Americas 2024
AXA XL - Insurer Innovation Award Americas 2024AXA XL - Insurer Innovation Award Americas 2024
AXA XL - Insurer Innovation Award Americas 2024The Digital Insurer
 
Web Form Automation for Bonterra Impact Management (fka Social Solutions Apri...
Web Form Automation for Bonterra Impact Management (fka Social Solutions Apri...Web Form Automation for Bonterra Impact Management (fka Social Solutions Apri...
Web Form Automation for Bonterra Impact Management (fka Social Solutions Apri...Jeffrey Haguewood
 
Axa Assurance Maroc - Insurer Innovation Award 2024
Axa Assurance Maroc - Insurer Innovation Award 2024Axa Assurance Maroc - Insurer Innovation Award 2024
Axa Assurance Maroc - Insurer Innovation Award 2024The Digital Insurer
 
TrustArc Webinar - Stay Ahead of US State Data Privacy Law Developments
TrustArc Webinar - Stay Ahead of US State Data Privacy Law DevelopmentsTrustArc Webinar - Stay Ahead of US State Data Privacy Law Developments
TrustArc Webinar - Stay Ahead of US State Data Privacy Law DevelopmentsTrustArc
 
ProductAnonymous-April2024-WinProductDiscovery-MelissaKlemke
ProductAnonymous-April2024-WinProductDiscovery-MelissaKlemkeProductAnonymous-April2024-WinProductDiscovery-MelissaKlemke
ProductAnonymous-April2024-WinProductDiscovery-MelissaKlemkeProduct Anonymous
 

Recently uploaded (20)

A Year of the Servo Reboot: Where Are We Now?
A Year of the Servo Reboot: Where Are We Now?A Year of the Servo Reboot: Where Are We Now?
A Year of the Servo Reboot: Where Are We Now?
 
How to Troubleshoot Apps for the Modern Connected Worker
How to Troubleshoot Apps for the Modern Connected WorkerHow to Troubleshoot Apps for the Modern Connected Worker
How to Troubleshoot Apps for the Modern Connected Worker
 
MS Copilot expands with MS Graph connectors
MS Copilot expands with MS Graph connectorsMS Copilot expands with MS Graph connectors
MS Copilot expands with MS Graph connectors
 
Boost Fertility New Invention Ups Success Rates.pdf
Boost Fertility New Invention Ups Success Rates.pdfBoost Fertility New Invention Ups Success Rates.pdf
Boost Fertility New Invention Ups Success Rates.pdf
 
Cloud Frontiers: A Deep Dive into Serverless Spatial Data and FME
Cloud Frontiers:  A Deep Dive into Serverless Spatial Data and FMECloud Frontiers:  A Deep Dive into Serverless Spatial Data and FME
Cloud Frontiers: A Deep Dive into Serverless Spatial Data and FME
 
Real Time Object Detection Using Open CV
Real Time Object Detection Using Open CVReal Time Object Detection Using Open CV
Real Time Object Detection Using Open CV
 
+971581248768>> SAFE AND ORIGINAL ABORTION PILLS FOR SALE IN DUBAI AND ABUDHA...
+971581248768>> SAFE AND ORIGINAL ABORTION PILLS FOR SALE IN DUBAI AND ABUDHA...+971581248768>> SAFE AND ORIGINAL ABORTION PILLS FOR SALE IN DUBAI AND ABUDHA...
+971581248768>> SAFE AND ORIGINAL ABORTION PILLS FOR SALE IN DUBAI AND ABUDHA...
 
Apidays Singapore 2024 - Scalable LLM APIs for AI and Generative AI Applicati...
Apidays Singapore 2024 - Scalable LLM APIs for AI and Generative AI Applicati...Apidays Singapore 2024 - Scalable LLM APIs for AI and Generative AI Applicati...
Apidays Singapore 2024 - Scalable LLM APIs for AI and Generative AI Applicati...
 
Apidays Singapore 2024 - Building Digital Trust in a Digital Economy by Veron...
Apidays Singapore 2024 - Building Digital Trust in a Digital Economy by Veron...Apidays Singapore 2024 - Building Digital Trust in a Digital Economy by Veron...
Apidays Singapore 2024 - Building Digital Trust in a Digital Economy by Veron...
 
2024: Domino Containers - The Next Step. News from the Domino Container commu...
2024: Domino Containers - The Next Step. News from the Domino Container commu...2024: Domino Containers - The Next Step. News from the Domino Container commu...
2024: Domino Containers - The Next Step. News from the Domino Container commu...
 
ICT role in 21st century education and its challenges
ICT role in 21st century education and its challengesICT role in 21st century education and its challenges
ICT role in 21st century education and its challenges
 
AWS Community Day CPH - Three problems of Terraform
AWS Community Day CPH - Three problems of TerraformAWS Community Day CPH - Three problems of Terraform
AWS Community Day CPH - Three problems of Terraform
 
Apidays New York 2024 - Accelerating FinTech Innovation by Vasa Krishnan, Fin...
Apidays New York 2024 - Accelerating FinTech Innovation by Vasa Krishnan, Fin...Apidays New York 2024 - Accelerating FinTech Innovation by Vasa Krishnan, Fin...
Apidays New York 2024 - Accelerating FinTech Innovation by Vasa Krishnan, Fin...
 
Strategies for Unlocking Knowledge Management in Microsoft 365 in the Copilot...
Strategies for Unlocking Knowledge Management in Microsoft 365 in the Copilot...Strategies for Unlocking Knowledge Management in Microsoft 365 in the Copilot...
Strategies for Unlocking Knowledge Management in Microsoft 365 in the Copilot...
 
Mastering MySQL Database Architecture: Deep Dive into MySQL Shell and MySQL R...
Mastering MySQL Database Architecture: Deep Dive into MySQL Shell and MySQL R...Mastering MySQL Database Architecture: Deep Dive into MySQL Shell and MySQL R...
Mastering MySQL Database Architecture: Deep Dive into MySQL Shell and MySQL R...
 
AXA XL - Insurer Innovation Award Americas 2024
AXA XL - Insurer Innovation Award Americas 2024AXA XL - Insurer Innovation Award Americas 2024
AXA XL - Insurer Innovation Award Americas 2024
 
Web Form Automation for Bonterra Impact Management (fka Social Solutions Apri...
Web Form Automation for Bonterra Impact Management (fka Social Solutions Apri...Web Form Automation for Bonterra Impact Management (fka Social Solutions Apri...
Web Form Automation for Bonterra Impact Management (fka Social Solutions Apri...
 
Axa Assurance Maroc - Insurer Innovation Award 2024
Axa Assurance Maroc - Insurer Innovation Award 2024Axa Assurance Maroc - Insurer Innovation Award 2024
Axa Assurance Maroc - Insurer Innovation Award 2024
 
TrustArc Webinar - Stay Ahead of US State Data Privacy Law Developments
TrustArc Webinar - Stay Ahead of US State Data Privacy Law DevelopmentsTrustArc Webinar - Stay Ahead of US State Data Privacy Law Developments
TrustArc Webinar - Stay Ahead of US State Data Privacy Law Developments
 
ProductAnonymous-April2024-WinProductDiscovery-MelissaKlemke
ProductAnonymous-April2024-WinProductDiscovery-MelissaKlemkeProductAnonymous-April2024-WinProductDiscovery-MelissaKlemke
ProductAnonymous-April2024-WinProductDiscovery-MelissaKlemke
 

Fractional Distillaton, Lecture 01, Fuel Tech-ll.pptx

  • 1.
  • 2. The various components of crude oil have different sizes, weights and boiling temperatures; so, the first step is to separate these components. Because they have different boiling temperatures, they can be separated easily by a process called fractional distillation. The steps for fractional distillation are discussed below.
  • 3.  Heat the mixture of two or more substances (liquids) with different boiling points to a high temperature. Heating is usually done with high pressure steam to temperatures of about 1112 degrees Fahrenheit / 600 degrees Celsius. The mixture boils, forming vapor (gases); most substances go into the vapor phase.  The vapor enters the bottom of a long column (fractional distillation column) that is filled with trays or plates. The trays have many holes or bubble caps (like a loosened cap on a soda bottle) in them to allow the vapor to pass through. They increase the contact time between the vapor and the liquids in the column and help to collect liquids that form at various heights in the column. There is a temperature difference across the column (hot at the bottom, cool at the top).
  • 4.  The Vapor Rises As the vapor rises through the trays in the column, it cools. When a substance in the vapor reaches a height where the temperature of the column is equal to that substance's boiling point, it will condense to form a liquid. (The substance with the lowest boiling point will condense at the highest point in the column; substances with higher boiling points will condense lower in the column.). The trays collect the various liquid fractions. The collected liquid fractions may pass to condensers, which cool them further, and then go to storage tanks, or they may go to other areas for further chemical processing.
  • 5.
  • 6. The oil refining process starts with a fractional distillation column. On the right, you can see several chemical processors that are described in the next section. Very few of the components come out of the fractional distillation column ready for market. Many of them must be chemically processed to make other fractions. For example, only 40% of distilled crude oil is gasoline; however, gasoline is one of the major products made by oil companies. Rather than continually distilling large quantities of crude oil, oil companies chemically process some other fractions from the distillation column to make gasoline.
  • 7.
  • 8. The top distillates The top of the fractionating column gives rise to gases and liquids that have short carbon chains in their composition. While these products are often used as fuels, many have industrial and chemical uses too.  Petroleum gases : Butane and propane and other petroleum gases are formed right at the top of the distillation tower, where it is coolest, a very mild 25°C: the temperature range that forms these gases is between 25°C and 50°C. These gases are the lightest products formed in crude oil distillation and are flammable gases.  Petrol These gases, being the lightest products formed and flammable gases too, are then processed into Liquified Petroleum Gas (LPG), which is usually a mixture of propane and butane. LPG is used for heating applications and also hot air balloons in the case of propane.  Naphtha The petroleum gases have four or five hydrocarbons in their chain. For these distillates, hydrocarbon chains are made up of three carbon atoms in the case of propane (C3H8), and four carbon atoms in the case of butane (C4H10).
  • 9. The middle distillate fuel oils Oils below this point have a flashpoint of higher than 42°C and are classified as fuel oils. These are the middle distillates as they form in the mid-section of the tower.  Paraffin: Used for heating and burning in domestic applications is paraffin and paraffin wax, which forms in the column at a range of 100°C to 175°C. Paraffin has between twenty and forty carbon atoms. Paraffin wax is further processed to be used in industry to create candles, petroleum jelly that protects skin and many other products.  Kerosene: While paraffin can also refer to kerosene, it comes as a result of paraffin’s history as a domestic heating fuel, which kerosene is now the default.  Diesel: Paraffin comes in both liquid and solid form and is used throughout the UK in a wide range of industries. It’s an extremely versatile product, and so has a wide range of uses including heating oil, beauty products, candles and medicines.
  • 10. Lower distillates At the bottom extremity of the fractioning tower, the lower distillates form. These have high densities, higher boiling points and are not used as fuels, but more as grease for lubrication. These form at temperatures of 350°C to 600°C.  Lubricating oil  Bunker fuels and heavy fuel oil  Marine gas oil (MGO)  Heavy fuel oil (HFO)  Marine fuel blends  Marine diesel oil (MDO)  Intermediate fuel oil (IFO)  Marine fuel oil (MFO) In between MGO and HFO are three additional maritime oils, MDO, IFO and MFO. These are produced by blending MGO with HFO in varied proportions.
  • 11.  Bituminous coal Bituminous coal is a soft, dense, black coal. Bituminous coal often has bands of bright and dull material in it. Bituminous coal is the most common coal and has a moisture content less than 20 %. Bituminous coal is used for generating electricity, making coke, and space heating. Bituminous coal has calorific values ranging from 6.8 - 9 kW/kG approximately  Anthracite coal Often referred to as hard coal, anthracite is hard, black and lustrous. Anthracite is low in sulphur and high in carbon. It is the highest rank of coal. Moisture content generally is less than 15 %. Anthracite has calorific values of around 9 kW/kG or above
  • 12. Residuals When it comes to petroleum products that are produced to ultimately be burned, it’s essential that waste is absolutely minimised, so at the bottom of the distillation tower, where temperatures reach 500°C to 600°C, the residue of crude oil is retrieved and put to use. Residue formed at the bottom of the fractionating column includes bitumen and asphalt.  Bitumen: Refined bitumen is made from the residue of petroleum refining, where the column is around 600°C. You’ll have come across it every day as it is an essential component of construction – used in tarring roads, sealing roofs and many other applications.  Asphalt: Bitumen also forms naturally – known as crude bitumen.
  • 13. END