SlideShare uma empresa Scribd logo
1 de 12
Fig.4.16.
The flow-regime concept, illustrating the general succession of bed forms that
develops with increasing flow velocity. Dashed lines indicate areas of flow
separation. Note internal stratification.
classified as lower flow-regime forms (Fig. 4.16).
The upper flow regime is characterized by anti dunes and standing waves, which are in phase with
surface water waves.
The transition from the lower to the upper flow regime is marked by a streaming out of trans-verse
turbulent eddies into longitudinal eddies.
An intermediate upper flat-bed condition is marked by streaming flow, which aligns the sand grains and
produces primary current lineation (parting lineation; Fig.2.14B).
How can these flume data be used to interpret ancient sediments? First, Allen (1968) and Harms et al.
(1975) demonstrated the relationships between bed-forms and sedimentary structures.
For example, planar tabular crossbedding is produced by the migration of straight-crested mega ripples,
such as sand waves (what are now termed 2-D dunes), whereas trough crossbedding develops from the
migration of 3-D dunes (Fig. 4.17). Allen (1968) demonstrated the dependence of dune and ripple
shape on water depth (Fig. 4.18).
Second, the flow-regime concept may be used to interpret ordered sequences of sedimentary
structures in terms of gradations in flow conditions.
Examples of applications to fluvial point-bar depo-sits, Bouma turbidity sequences, and wave-formed
sedimentary structures are discussed below.
This is by no means an exhaustive listing.
For example, the concepts have been adapted by Dott and Bourgeois (1982) to the interpretation of
hummocky cross bed-ding, a product of storm-wave activity (below and Sect.4.6.7).
Table 4.1
lists these Litho facies, showing the codes used for note
taking and a sedimentological interpretation of each.
The Litho facies codes consist of two parts,
a capital letter for modal grain size (G, gravel; S, sand; F,
fines) and a lowercase letter or letters chosen as a
mnemonic of a distinctive texture or structure of each
Litho facies.
The three Litho facies B, E, and F of Cant and Walker
(1976), discussed in the previous section, are St, Ss, and
FI in this scheme.
Le Blanc Smith (1980) has developed this fluvial facies
scheme still further by incorporating additional
structures and information on grain size. J.L. Wilson's
(1975) microfacies scheme for carbonates contains 24
types.
Figure 4.5 illustrates his standard legend, facies numbers,
and abbreviated description.
Figures 4.6 and 4.7 illustrate the use of these two
schemes in drawing stratigraphic sections.
Fig.4.18A-C.
Variations in bed form morphology with depth and velocity.
A Large-scale ripples (dunes or megaripples).
B Small-scale ripples.
C Large-scale ripples where depth varies transverse to flow. (Allen 1968)
Fig.4.19. Facies model for sedimentation on a point bar by
lateral accretion inside a migrating meander.
D Dunes;
T transverse bars or sand waves;
R ripples
Fig. 4.17 A, B.
Relationships between bed forms and sedimentary structures.
A Linguoid (three-dimensional) dunes and trough crossbedding.
B Sand waves (two-dimensional dunes) and planar crossbedding.
Facies Associations and Models
4.4.1 The Association and Ordering of Facies
The term facies association was defined by Potter (1959) as "a collection of
commonly associated sedimentary attributes", including "gross geometry (thick-
ness and areal extent); continuity and shape of lithologic units;
rock types ... , sedimentary structures, and fauna (types and abundances).
" A facies association (or assemblage) is, therefore, based on observation,
perhaps with some simplification.
It is expressed in the form of a table, a statistical summary, or a diagram of typical
stratigraphic occurrences (e. g., a vertical profile).
A facies model is an interpretive device that is erected by a geologist to explain
the observed facies association.
A facies model may be developed at first to explain only a single stratigraphic
unit, and similar units may then be studied in order to derive generalized models.
Facies units defined on the basis of outcrop, core, well-cutting, or geophysical criteria tend to refer to quite different scales and levels of detail.
Geophysicists in the petroleum industry refer to Seismic Facies, but this is not comparable to the small-scale type of facies discussed in this chapter .
Modern, high-resolution, shallow, seismic surveying coupled with side-scan sonar imaging is providing a powerful tool for the analysis of facies compositions and
geometries in modern environments and is beginning to have a major impact on the understanding of shelf and slope sedimentary environments .
Increasing attention is being paid to the three-dimensional geometry of facies units, particularly in out-crop studies and subsurface studies involving reservoir
development (Sect. 4.3.4).
To a large extent, the scales at which facies units are defined reflect criteria of convenience.
Thus, the term is a very flexible and convenient one for descriptive purposes.
The term facies can also be used (usually for Litho-facies assemblages) in an interpretive sense for groups of rocks that are thought to have been formed under
similar conditions. This usage may emphasize specific depositional processes, such as till facies or turbidities facies.
Alternatively, it may refer to a particular depositional environment, such as shelf carbonate facies or fluvial facies, encompassing a wide range of depositional
processes.
Facies Analysis and Sequence Stratigraphy
Fig.4.13. The textural spectrum in limestones. (Folk 1962)
Many environmental deductions can be made from the details of the internal structure of hydro-dynamic sedimentary
structures and from orientation (paleo current) information.
 Three general groups of structures can be distinguished:
1. Structures formed by Unimodal Water Currents in Rivers, Deltas, parts of Ebb and Flood Tidal Deltas in Inlets,
Submarine Fans, and Continental Slopes (contour currents)
2. Structures formed by Reversing (bimodal) water currents, such as Tides and Wave Oscillations in Shelf and Marginal-
Marine environments and in lakes
3. Structures formed by Eolian Currents in Coastal Dune Complexes, inland Sand Seas, and some Alluvial-Lacustrine
environments
Fig. 4.23. Planar crossbed sets, showing reactivation
surfaces. (Miall1977; after Collinson 1970
Crossbedding Structures may contain evidence
of stage fluctuation in the form of reactivation
surfaces (Collinson 1970), as shown in Fig. 4.23.
These are erosion surfaces formed during a fall
in the water level but, again, they are not
environmentally diagnostic, as water levels rise
and fall in rivers, deltas, and tidal environments.
Fig. 4.20 A -F.
Hydraulic model for point -bar
sedimentation, showing
variations in the vertical profile
reflecting variations in grain
size, D, and flow velocity, V. y/h
indicates position on point bar
with respect to total depth.
Ripples
Ripples
Ripples
Ripples
Dunes
Dunes
Dunes
Dunes
Plane
beds
Plane beds
Plane beds
Plane beds
Plane beds Plane beds
Plane beds Plane beds
Decreasing depth and velocity
up this slope result in
decreasing grain size and scale
of sedimentary structures.
Using flow-regime data, such as that
shown in Figs. 4.15 and 4.16,Allen
(1970) was able to predict the types
of sedimentary structures from
depth-velocity-grain-size conditions.
His series of hypothetical profiles is
shown in Fig. 4.20.
These can be matched to real
examples of fining-up-ward cycles in
the Devonian of Wales and the
Appalachian region, demonstrating
that Allen's model was of
considerable value in reconstructing
paleo hydraulic conditions.
Many elaborations of this model
have now been developed
(Miall1996 for summary).
The Reversing Ripples, Chevron Ripple's, Lenticular Fore sets, and variable symmetry and orientation of Wave-formed Ripple Cross-Lamination (Figs. 2.12B, 4.24)
are strongly diagnostic of a low-energy wave environment, such as a gently shelving marine beach or a lake margin .
Similar structures could also form in abandoned meanders or floodplain ponds in an alluvial environment but would comprise a less conspicuous part of
the overall succession.
In many marginal-marine environments, Crossbedding will be formed by both waves and tides, resulting in very complex paleo current patterns .
Careful documentation of structure types and their orientations may be necessary to distinguish the precise environment and mode of origin, but such work may also
yield invaluable information on sand-body geometry, shoreline orientation, beach and barrier configuration, etc., as discussed in Sect. 5.6
The Bouma Sequence of thin-Bedded, outer sub-marine-fan turbidity deposits also
contains a succession of structures that can be interpreted in terms of flow-regime.
 The Basal (A) Member (Fig. 4.21) is formed by grains settling from suspension.
Flow velocities decrease upward, so that
 the Plane-Bedded Unit (B), which commonly contains parting lineation, is formed
under upper-flow-regime, flat-bed conditions, and
 the Rippled Unit (C) represents the lower flow regime .
 The Silty Unit (D) is deposited from the dilute tail of the turbidity current as flow
ceases altogether.
This interpretation has been of considerable use in understanding the mechanics of
turbidity currents.
Clifton et al. (1971)
carried out one of the first detailed studies of the sedimentary structures that form on coastlines
under breaking waves.
They recognized a direct relationship between Wave Type, resulting Water Motion, and Structure
Type (Fig. 4. 22).
The gradation from asymmetric ripple to outer, plan are facies represents a shoreward increase in
orbital velocity and a transition from lower flow-regime ripples through a dune facies to an
upper-flow-regime plane-bed condition.
These Structures All Dip Landward.
The inner, Rough facies is Characterized by Seaward-dipping ripples and dunes of the Lower Flow
Regime, and the inner, Planar Facies by plane beds, Antidunes, and Standing Waves formed under
High-Energy, Upper-Flow-Regime, Shallow-Swash conditions.
These facies all move up and down the shore

Mais conteúdo relacionado

Semelhante a planar tabular crossbedding.pptx

Seismic Facies.pptx
Seismic Facies.pptxSeismic Facies.pptx
Seismic Facies.pptxSaadTaman
 
Examples of applications to fluvial point-bar depo-sits.pptx
Examples of applications to fluvial point-bar depo-sits.pptxExamples of applications to fluvial point-bar depo-sits.pptx
Examples of applications to fluvial point-bar depo-sits.pptxSaadTaman
 
Relationships between bed forms and sedimentary structures.pptx
Relationships between bed forms and sedimentary structures.pptxRelationships between bed forms and sedimentary structures.pptx
Relationships between bed forms and sedimentary structures.pptxSaadTaman
 
Fluvial cycles of the Battery Point Formation.pptx
Fluvial cycles of the Battery Point Formation.pptxFluvial cycles of the Battery Point Formation.pptx
Fluvial cycles of the Battery Point Formation.pptxSaadTaman
 
Large-scale ripples.pptx
Large-scale ripples.pptxLarge-scale ripples.pptx
Large-scale ripples.pptxSaadTaman
 
fluvial point-bar depo-sits.pptx
fluvial point-bar depo-sits.pptxfluvial point-bar depo-sits.pptx
fluvial point-bar depo-sits.pptxSaadTaman
 
Facies Analysis and Sequence Stratigraphy.pptx
Facies Analysis and Sequence Stratigraphy.pptxFacies Analysis and Sequence Stratigraphy.pptx
Facies Analysis and Sequence Stratigraphy.pptxSaadTaman
 
sedimentary structures.pptx
sedimentary structures.pptxsedimentary structures.pptx
sedimentary structures.pptxSaadTaman
 
Fluvial cycles.pptx
Fluvial cycles.pptxFluvial cycles.pptx
Fluvial cycles.pptxSaadTaman
 
Reversing Ripples, Chevron Ripple's.pptx
Reversing Ripples, Chevron Ripple's.pptxReversing Ripples, Chevron Ripple's.pptx
Reversing Ripples, Chevron Ripple's.pptxSaadTaman
 
Litho facies codes.pptx
Litho facies codes.pptxLitho facies codes.pptx
Litho facies codes.pptxSaadTaman
 
The Meaning of Facies.pptx
The Meaning of Facies.pptxThe Meaning of Facies.pptx
The Meaning of Facies.pptxSaadTaman
 
Facies Analysis.pptx
Facies Analysis.pptxFacies Analysis.pptx
Facies Analysis.pptxSaadTaman
 
fan systems.pptx
fan systems.pptxfan systems.pptx
fan systems.pptxSaadTaman
 
Sequence Stratigraphy.pptx
Sequence Stratigraphy.pptxSequence Stratigraphy.pptx
Sequence Stratigraphy.pptxSaadTaman
 
Final Year Dissertation
Final Year DissertationFinal Year Dissertation
Final Year DissertationDaniel Cox
 
Sedimentology application in petroleum industry
Sedimentology application in petroleum industrySedimentology application in petroleum industry
Sedimentology application in petroleum industryAndi Anriansyah
 
Wheeler Diagram and interpretation of wheeler diagram
Wheeler Diagram and interpretation of wheeler diagram Wheeler Diagram and interpretation of wheeler diagram
Wheeler Diagram and interpretation of wheeler diagram Muhammad Umar
 
Using sea-floor morphometrics to constrain stratigraphic models of sinuous su...
Using sea-floor morphometrics to constrain stratigraphic models of sinuous su...Using sea-floor morphometrics to constrain stratigraphic models of sinuous su...
Using sea-floor morphometrics to constrain stratigraphic models of sinuous su...Aaron Reimchen
 
Sedimentary structures, Bedforms and Unidirectional Flow
Sedimentary structures, Bedforms and Unidirectional FlowSedimentary structures, Bedforms and Unidirectional Flow
Sedimentary structures, Bedforms and Unidirectional FlowM Bhatt
 

Semelhante a planar tabular crossbedding.pptx (20)

Seismic Facies.pptx
Seismic Facies.pptxSeismic Facies.pptx
Seismic Facies.pptx
 
Examples of applications to fluvial point-bar depo-sits.pptx
Examples of applications to fluvial point-bar depo-sits.pptxExamples of applications to fluvial point-bar depo-sits.pptx
Examples of applications to fluvial point-bar depo-sits.pptx
 
Relationships between bed forms and sedimentary structures.pptx
Relationships between bed forms and sedimentary structures.pptxRelationships between bed forms and sedimentary structures.pptx
Relationships between bed forms and sedimentary structures.pptx
 
Fluvial cycles of the Battery Point Formation.pptx
Fluvial cycles of the Battery Point Formation.pptxFluvial cycles of the Battery Point Formation.pptx
Fluvial cycles of the Battery Point Formation.pptx
 
Large-scale ripples.pptx
Large-scale ripples.pptxLarge-scale ripples.pptx
Large-scale ripples.pptx
 
fluvial point-bar depo-sits.pptx
fluvial point-bar depo-sits.pptxfluvial point-bar depo-sits.pptx
fluvial point-bar depo-sits.pptx
 
Facies Analysis and Sequence Stratigraphy.pptx
Facies Analysis and Sequence Stratigraphy.pptxFacies Analysis and Sequence Stratigraphy.pptx
Facies Analysis and Sequence Stratigraphy.pptx
 
sedimentary structures.pptx
sedimentary structures.pptxsedimentary structures.pptx
sedimentary structures.pptx
 
Fluvial cycles.pptx
Fluvial cycles.pptxFluvial cycles.pptx
Fluvial cycles.pptx
 
Reversing Ripples, Chevron Ripple's.pptx
Reversing Ripples, Chevron Ripple's.pptxReversing Ripples, Chevron Ripple's.pptx
Reversing Ripples, Chevron Ripple's.pptx
 
Litho facies codes.pptx
Litho facies codes.pptxLitho facies codes.pptx
Litho facies codes.pptx
 
The Meaning of Facies.pptx
The Meaning of Facies.pptxThe Meaning of Facies.pptx
The Meaning of Facies.pptx
 
Facies Analysis.pptx
Facies Analysis.pptxFacies Analysis.pptx
Facies Analysis.pptx
 
fan systems.pptx
fan systems.pptxfan systems.pptx
fan systems.pptx
 
Sequence Stratigraphy.pptx
Sequence Stratigraphy.pptxSequence Stratigraphy.pptx
Sequence Stratigraphy.pptx
 
Final Year Dissertation
Final Year DissertationFinal Year Dissertation
Final Year Dissertation
 
Sedimentology application in petroleum industry
Sedimentology application in petroleum industrySedimentology application in petroleum industry
Sedimentology application in petroleum industry
 
Wheeler Diagram and interpretation of wheeler diagram
Wheeler Diagram and interpretation of wheeler diagram Wheeler Diagram and interpretation of wheeler diagram
Wheeler Diagram and interpretation of wheeler diagram
 
Using sea-floor morphometrics to constrain stratigraphic models of sinuous su...
Using sea-floor morphometrics to constrain stratigraphic models of sinuous su...Using sea-floor morphometrics to constrain stratigraphic models of sinuous su...
Using sea-floor morphometrics to constrain stratigraphic models of sinuous su...
 
Sedimentary structures, Bedforms and Unidirectional Flow
Sedimentary structures, Bedforms and Unidirectional FlowSedimentary structures, Bedforms and Unidirectional Flow
Sedimentary structures, Bedforms and Unidirectional Flow
 

Mais de SaadTaman

Hydrocarbon Exploration Activities Offshore Cyprus.ppt
Hydrocarbon Exploration Activities Offshore Cyprus.pptHydrocarbon Exploration Activities Offshore Cyprus.ppt
Hydrocarbon Exploration Activities Offshore Cyprus.pptSaadTaman
 
Ore_Deposits_and_Ore_Forming_Processes.ppt
Ore_Deposits_and_Ore_Forming_Processes.pptOre_Deposits_and_Ore_Forming_Processes.ppt
Ore_Deposits_and_Ore_Forming_Processes.pptSaadTaman
 
Geological Digressions.pptx
Geological Digressions.pptxGeological Digressions.pptx
Geological Digressions.pptxSaadTaman
 
Formation of headlands and bays.ppt
Formation of headlands and bays.pptFormation of headlands and bays.ppt
Formation of headlands and bays.pptSaadTaman
 
bedding planes.ppt
bedding planes.pptbedding planes.ppt
bedding planes.pptSaadTaman
 
leaves a stump..ppt
leaves a stump..pptleaves a stump..ppt
leaves a stump..pptSaadTaman
 
Formation of headlands and bays.ppt
Formation of headlands and bays.pptFormation of headlands and bays.ppt
Formation of headlands and bays.pptSaadTaman
 
Formation of headlands and bays.ppt
Formation of headlands and bays.pptFormation of headlands and bays.ppt
Formation of headlands and bays.pptSaadTaman
 
vdocument.in_pptintroduction-to-sequence-stratigraphy-jackson-viewstratigraph...
vdocument.in_pptintroduction-to-sequence-stratigraphy-jackson-viewstratigraph...vdocument.in_pptintroduction-to-sequence-stratigraphy-jackson-viewstratigraph...
vdocument.in_pptintroduction-to-sequence-stratigraphy-jackson-viewstratigraph...SaadTaman
 
vdocument.in_submarine-canyons-and-fans-submarine-canyons-major-conduits.ppt
vdocument.in_submarine-canyons-and-fans-submarine-canyons-major-conduits.pptvdocument.in_submarine-canyons-and-fans-submarine-canyons-major-conduits.ppt
vdocument.in_submarine-canyons-and-fans-submarine-canyons-major-conduits.pptSaadTaman
 
vdocument.in_the-floridan-aquiferchipola-river-system-study-the-floridan-aqui...
vdocument.in_the-floridan-aquiferchipola-river-system-study-the-floridan-aqui...vdocument.in_the-floridan-aquiferchipola-river-system-study-the-floridan-aqui...
vdocument.in_the-floridan-aquiferchipola-river-system-study-the-floridan-aqui...SaadTaman
 
vdocument.in_unit-1-introduction-to-sedimentology-and-stratigraphy.pptx
vdocument.in_unit-1-introduction-to-sedimentology-and-stratigraphy.pptxvdocument.in_unit-1-introduction-to-sedimentology-and-stratigraphy.pptx
vdocument.in_unit-1-introduction-to-sedimentology-and-stratigraphy.pptxSaadTaman
 
vdocument.in_petrophysical-properties-of-reservoir-rocks.pptx
vdocument.in_petrophysical-properties-of-reservoir-rocks.pptxvdocument.in_petrophysical-properties-of-reservoir-rocks.pptx
vdocument.in_petrophysical-properties-of-reservoir-rocks.pptxSaadTaman
 
vdocument.in_sedimentary-geology-geos-240-chapter-6-facies-analysis.ppt
vdocument.in_sedimentary-geology-geos-240-chapter-6-facies-analysis.pptvdocument.in_sedimentary-geology-geos-240-chapter-6-facies-analysis.ppt
vdocument.in_sedimentary-geology-geos-240-chapter-6-facies-analysis.pptSaadTaman
 
vdocument.in_reservoir-petrophysics-pete-311-petrophysics-petrophysics-is-the...
vdocument.in_reservoir-petrophysics-pete-311-petrophysics-petrophysics-is-the...vdocument.in_reservoir-petrophysics-pete-311-petrophysics-petrophysics-is-the...
vdocument.in_reservoir-petrophysics-pete-311-petrophysics-petrophysics-is-the...SaadTaman
 
formation pressure (2).pptx
formation pressure (2).pptxformation pressure (2).pptx
formation pressure (2).pptxSaadTaman
 
abnormal pressure.pptx
abnormal pressure.pptxabnormal pressure.pptx
abnormal pressure.pptxSaadTaman
 
sloughing formation.pptx
sloughing formation.pptxsloughing formation.pptx
sloughing formation.pptxSaadTaman
 
Carbonate lithofacies.ppt
Carbonate lithofacies.pptCarbonate lithofacies.ppt
Carbonate lithofacies.pptSaadTaman
 

Mais de SaadTaman (20)

Hydrocarbon Exploration Activities Offshore Cyprus.ppt
Hydrocarbon Exploration Activities Offshore Cyprus.pptHydrocarbon Exploration Activities Offshore Cyprus.ppt
Hydrocarbon Exploration Activities Offshore Cyprus.ppt
 
Ore_Deposits_and_Ore_Forming_Processes.ppt
Ore_Deposits_and_Ore_Forming_Processes.pptOre_Deposits_and_Ore_Forming_Processes.ppt
Ore_Deposits_and_Ore_Forming_Processes.ppt
 
Geological Digressions.pptx
Geological Digressions.pptxGeological Digressions.pptx
Geological Digressions.pptx
 
leaves.ppt
leaves.pptleaves.ppt
leaves.ppt
 
Formation of headlands and bays.ppt
Formation of headlands and bays.pptFormation of headlands and bays.ppt
Formation of headlands and bays.ppt
 
bedding planes.ppt
bedding planes.pptbedding planes.ppt
bedding planes.ppt
 
leaves a stump..ppt
leaves a stump..pptleaves a stump..ppt
leaves a stump..ppt
 
Formation of headlands and bays.ppt
Formation of headlands and bays.pptFormation of headlands and bays.ppt
Formation of headlands and bays.ppt
 
Formation of headlands and bays.ppt
Formation of headlands and bays.pptFormation of headlands and bays.ppt
Formation of headlands and bays.ppt
 
vdocument.in_pptintroduction-to-sequence-stratigraphy-jackson-viewstratigraph...
vdocument.in_pptintroduction-to-sequence-stratigraphy-jackson-viewstratigraph...vdocument.in_pptintroduction-to-sequence-stratigraphy-jackson-viewstratigraph...
vdocument.in_pptintroduction-to-sequence-stratigraphy-jackson-viewstratigraph...
 
vdocument.in_submarine-canyons-and-fans-submarine-canyons-major-conduits.ppt
vdocument.in_submarine-canyons-and-fans-submarine-canyons-major-conduits.pptvdocument.in_submarine-canyons-and-fans-submarine-canyons-major-conduits.ppt
vdocument.in_submarine-canyons-and-fans-submarine-canyons-major-conduits.ppt
 
vdocument.in_the-floridan-aquiferchipola-river-system-study-the-floridan-aqui...
vdocument.in_the-floridan-aquiferchipola-river-system-study-the-floridan-aqui...vdocument.in_the-floridan-aquiferchipola-river-system-study-the-floridan-aqui...
vdocument.in_the-floridan-aquiferchipola-river-system-study-the-floridan-aqui...
 
vdocument.in_unit-1-introduction-to-sedimentology-and-stratigraphy.pptx
vdocument.in_unit-1-introduction-to-sedimentology-and-stratigraphy.pptxvdocument.in_unit-1-introduction-to-sedimentology-and-stratigraphy.pptx
vdocument.in_unit-1-introduction-to-sedimentology-and-stratigraphy.pptx
 
vdocument.in_petrophysical-properties-of-reservoir-rocks.pptx
vdocument.in_petrophysical-properties-of-reservoir-rocks.pptxvdocument.in_petrophysical-properties-of-reservoir-rocks.pptx
vdocument.in_petrophysical-properties-of-reservoir-rocks.pptx
 
vdocument.in_sedimentary-geology-geos-240-chapter-6-facies-analysis.ppt
vdocument.in_sedimentary-geology-geos-240-chapter-6-facies-analysis.pptvdocument.in_sedimentary-geology-geos-240-chapter-6-facies-analysis.ppt
vdocument.in_sedimentary-geology-geos-240-chapter-6-facies-analysis.ppt
 
vdocument.in_reservoir-petrophysics-pete-311-petrophysics-petrophysics-is-the...
vdocument.in_reservoir-petrophysics-pete-311-petrophysics-petrophysics-is-the...vdocument.in_reservoir-petrophysics-pete-311-petrophysics-petrophysics-is-the...
vdocument.in_reservoir-petrophysics-pete-311-petrophysics-petrophysics-is-the...
 
formation pressure (2).pptx
formation pressure (2).pptxformation pressure (2).pptx
formation pressure (2).pptx
 
abnormal pressure.pptx
abnormal pressure.pptxabnormal pressure.pptx
abnormal pressure.pptx
 
sloughing formation.pptx
sloughing formation.pptxsloughing formation.pptx
sloughing formation.pptx
 
Carbonate lithofacies.ppt
Carbonate lithofacies.pptCarbonate lithofacies.ppt
Carbonate lithofacies.ppt
 

Último

Paper Tube : Shigeru Ban projects and Case Study of Cardboard Cathedral .pdf
Paper Tube : Shigeru Ban projects and Case Study of Cardboard Cathedral .pdfPaper Tube : Shigeru Ban projects and Case Study of Cardboard Cathedral .pdf
Paper Tube : Shigeru Ban projects and Case Study of Cardboard Cathedral .pdfNainaShrivastava14
 
Katarzyna Lipka-Sidor - BIM School Course
Katarzyna Lipka-Sidor - BIM School CourseKatarzyna Lipka-Sidor - BIM School Course
Katarzyna Lipka-Sidor - BIM School Coursebim.edu.pl
 
CS 3251 Programming in c all unit notes pdf
CS 3251 Programming in c all unit notes pdfCS 3251 Programming in c all unit notes pdf
CS 3251 Programming in c all unit notes pdfBalamuruganV28
 
2022 AWS DNA Hackathon 장애 대응 솔루션 jarvis.
2022 AWS DNA Hackathon 장애 대응 솔루션 jarvis.2022 AWS DNA Hackathon 장애 대응 솔루션 jarvis.
2022 AWS DNA Hackathon 장애 대응 솔루션 jarvis.elesangwon
 
OOP concepts -in-Python programming language
OOP concepts -in-Python programming languageOOP concepts -in-Python programming language
OOP concepts -in-Python programming languageSmritiSharma901052
 
Research Methodology for Engineering pdf
Research Methodology for Engineering pdfResearch Methodology for Engineering pdf
Research Methodology for Engineering pdfCaalaaAbdulkerim
 
Comparative study of High-rise Building Using ETABS,SAP200 and SAFE., SAFE an...
Comparative study of High-rise Building Using ETABS,SAP200 and SAFE., SAFE an...Comparative study of High-rise Building Using ETABS,SAP200 and SAFE., SAFE an...
Comparative study of High-rise Building Using ETABS,SAP200 and SAFE., SAFE an...Erbil Polytechnic University
 
FUNCTIONAL AND NON FUNCTIONAL REQUIREMENT
FUNCTIONAL AND NON FUNCTIONAL REQUIREMENTFUNCTIONAL AND NON FUNCTIONAL REQUIREMENT
FUNCTIONAL AND NON FUNCTIONAL REQUIREMENTSneha Padhiar
 
Novel 3D-Printed Soft Linear and Bending Actuators
Novel 3D-Printed Soft Linear and Bending ActuatorsNovel 3D-Printed Soft Linear and Bending Actuators
Novel 3D-Printed Soft Linear and Bending ActuatorsResearcher Researcher
 
Prach: A Feature-Rich Platform Empowering the Autism Community
Prach: A Feature-Rich Platform Empowering the Autism CommunityPrach: A Feature-Rich Platform Empowering the Autism Community
Prach: A Feature-Rich Platform Empowering the Autism Communityprachaibot
 
ROBOETHICS-CCS345 ETHICS AND ARTIFICIAL INTELLIGENCE.ppt
ROBOETHICS-CCS345 ETHICS AND ARTIFICIAL INTELLIGENCE.pptROBOETHICS-CCS345 ETHICS AND ARTIFICIAL INTELLIGENCE.ppt
ROBOETHICS-CCS345 ETHICS AND ARTIFICIAL INTELLIGENCE.pptJohnWilliam111370
 
Mine Environment II Lab_MI10448MI__________.pptx
Mine Environment II Lab_MI10448MI__________.pptxMine Environment II Lab_MI10448MI__________.pptx
Mine Environment II Lab_MI10448MI__________.pptxRomil Mishra
 
Levelling - Rise and fall - Height of instrument method
Levelling - Rise and fall - Height of instrument methodLevelling - Rise and fall - Height of instrument method
Levelling - Rise and fall - Height of instrument methodManicka Mamallan Andavar
 
KCD Costa Rica 2024 - Nephio para parvulitos
KCD Costa Rica 2024 - Nephio para parvulitosKCD Costa Rica 2024 - Nephio para parvulitos
KCD Costa Rica 2024 - Nephio para parvulitosVictor Morales
 
Robotics-Asimov's Laws, Mechanical Subsystems, Robot Kinematics, Robot Dynami...
Robotics-Asimov's Laws, Mechanical Subsystems, Robot Kinematics, Robot Dynami...Robotics-Asimov's Laws, Mechanical Subsystems, Robot Kinematics, Robot Dynami...
Robotics-Asimov's Laws, Mechanical Subsystems, Robot Kinematics, Robot Dynami...Sumanth A
 
Stork Webinar | APM Transformational planning, Tool Selection & Performance T...
Stork Webinar | APM Transformational planning, Tool Selection & Performance T...Stork Webinar | APM Transformational planning, Tool Selection & Performance T...
Stork Webinar | APM Transformational planning, Tool Selection & Performance T...Stork
 
SOFTWARE ESTIMATION COCOMO AND FP CALCULATION
SOFTWARE ESTIMATION COCOMO AND FP CALCULATIONSOFTWARE ESTIMATION COCOMO AND FP CALCULATION
SOFTWARE ESTIMATION COCOMO AND FP CALCULATIONSneha Padhiar
 
Python Programming for basic beginners.pptx
Python Programming for basic beginners.pptxPython Programming for basic beginners.pptx
Python Programming for basic beginners.pptxmohitesoham12
 
Main Memory Management in Operating System
Main Memory Management in Operating SystemMain Memory Management in Operating System
Main Memory Management in Operating SystemRashmi Bhat
 

Último (20)

Paper Tube : Shigeru Ban projects and Case Study of Cardboard Cathedral .pdf
Paper Tube : Shigeru Ban projects and Case Study of Cardboard Cathedral .pdfPaper Tube : Shigeru Ban projects and Case Study of Cardboard Cathedral .pdf
Paper Tube : Shigeru Ban projects and Case Study of Cardboard Cathedral .pdf
 
Katarzyna Lipka-Sidor - BIM School Course
Katarzyna Lipka-Sidor - BIM School CourseKatarzyna Lipka-Sidor - BIM School Course
Katarzyna Lipka-Sidor - BIM School Course
 
CS 3251 Programming in c all unit notes pdf
CS 3251 Programming in c all unit notes pdfCS 3251 Programming in c all unit notes pdf
CS 3251 Programming in c all unit notes pdf
 
2022 AWS DNA Hackathon 장애 대응 솔루션 jarvis.
2022 AWS DNA Hackathon 장애 대응 솔루션 jarvis.2022 AWS DNA Hackathon 장애 대응 솔루션 jarvis.
2022 AWS DNA Hackathon 장애 대응 솔루션 jarvis.
 
Designing pile caps according to ACI 318-19.pptx
Designing pile caps according to ACI 318-19.pptxDesigning pile caps according to ACI 318-19.pptx
Designing pile caps according to ACI 318-19.pptx
 
OOP concepts -in-Python programming language
OOP concepts -in-Python programming languageOOP concepts -in-Python programming language
OOP concepts -in-Python programming language
 
Research Methodology for Engineering pdf
Research Methodology for Engineering pdfResearch Methodology for Engineering pdf
Research Methodology for Engineering pdf
 
Comparative study of High-rise Building Using ETABS,SAP200 and SAFE., SAFE an...
Comparative study of High-rise Building Using ETABS,SAP200 and SAFE., SAFE an...Comparative study of High-rise Building Using ETABS,SAP200 and SAFE., SAFE an...
Comparative study of High-rise Building Using ETABS,SAP200 and SAFE., SAFE an...
 
FUNCTIONAL AND NON FUNCTIONAL REQUIREMENT
FUNCTIONAL AND NON FUNCTIONAL REQUIREMENTFUNCTIONAL AND NON FUNCTIONAL REQUIREMENT
FUNCTIONAL AND NON FUNCTIONAL REQUIREMENT
 
Novel 3D-Printed Soft Linear and Bending Actuators
Novel 3D-Printed Soft Linear and Bending ActuatorsNovel 3D-Printed Soft Linear and Bending Actuators
Novel 3D-Printed Soft Linear and Bending Actuators
 
Prach: A Feature-Rich Platform Empowering the Autism Community
Prach: A Feature-Rich Platform Empowering the Autism CommunityPrach: A Feature-Rich Platform Empowering the Autism Community
Prach: A Feature-Rich Platform Empowering the Autism Community
 
ROBOETHICS-CCS345 ETHICS AND ARTIFICIAL INTELLIGENCE.ppt
ROBOETHICS-CCS345 ETHICS AND ARTIFICIAL INTELLIGENCE.pptROBOETHICS-CCS345 ETHICS AND ARTIFICIAL INTELLIGENCE.ppt
ROBOETHICS-CCS345 ETHICS AND ARTIFICIAL INTELLIGENCE.ppt
 
Mine Environment II Lab_MI10448MI__________.pptx
Mine Environment II Lab_MI10448MI__________.pptxMine Environment II Lab_MI10448MI__________.pptx
Mine Environment II Lab_MI10448MI__________.pptx
 
Levelling - Rise and fall - Height of instrument method
Levelling - Rise and fall - Height of instrument methodLevelling - Rise and fall - Height of instrument method
Levelling - Rise and fall - Height of instrument method
 
KCD Costa Rica 2024 - Nephio para parvulitos
KCD Costa Rica 2024 - Nephio para parvulitosKCD Costa Rica 2024 - Nephio para parvulitos
KCD Costa Rica 2024 - Nephio para parvulitos
 
Robotics-Asimov's Laws, Mechanical Subsystems, Robot Kinematics, Robot Dynami...
Robotics-Asimov's Laws, Mechanical Subsystems, Robot Kinematics, Robot Dynami...Robotics-Asimov's Laws, Mechanical Subsystems, Robot Kinematics, Robot Dynami...
Robotics-Asimov's Laws, Mechanical Subsystems, Robot Kinematics, Robot Dynami...
 
Stork Webinar | APM Transformational planning, Tool Selection & Performance T...
Stork Webinar | APM Transformational planning, Tool Selection & Performance T...Stork Webinar | APM Transformational planning, Tool Selection & Performance T...
Stork Webinar | APM Transformational planning, Tool Selection & Performance T...
 
SOFTWARE ESTIMATION COCOMO AND FP CALCULATION
SOFTWARE ESTIMATION COCOMO AND FP CALCULATIONSOFTWARE ESTIMATION COCOMO AND FP CALCULATION
SOFTWARE ESTIMATION COCOMO AND FP CALCULATION
 
Python Programming for basic beginners.pptx
Python Programming for basic beginners.pptxPython Programming for basic beginners.pptx
Python Programming for basic beginners.pptx
 
Main Memory Management in Operating System
Main Memory Management in Operating SystemMain Memory Management in Operating System
Main Memory Management in Operating System
 

planar tabular crossbedding.pptx

  • 1. Fig.4.16. The flow-regime concept, illustrating the general succession of bed forms that develops with increasing flow velocity. Dashed lines indicate areas of flow separation. Note internal stratification. classified as lower flow-regime forms (Fig. 4.16). The upper flow regime is characterized by anti dunes and standing waves, which are in phase with surface water waves. The transition from the lower to the upper flow regime is marked by a streaming out of trans-verse turbulent eddies into longitudinal eddies. An intermediate upper flat-bed condition is marked by streaming flow, which aligns the sand grains and produces primary current lineation (parting lineation; Fig.2.14B). How can these flume data be used to interpret ancient sediments? First, Allen (1968) and Harms et al. (1975) demonstrated the relationships between bed-forms and sedimentary structures. For example, planar tabular crossbedding is produced by the migration of straight-crested mega ripples, such as sand waves (what are now termed 2-D dunes), whereas trough crossbedding develops from the migration of 3-D dunes (Fig. 4.17). Allen (1968) demonstrated the dependence of dune and ripple shape on water depth (Fig. 4.18). Second, the flow-regime concept may be used to interpret ordered sequences of sedimentary structures in terms of gradations in flow conditions. Examples of applications to fluvial point-bar depo-sits, Bouma turbidity sequences, and wave-formed sedimentary structures are discussed below. This is by no means an exhaustive listing. For example, the concepts have been adapted by Dott and Bourgeois (1982) to the interpretation of hummocky cross bed-ding, a product of storm-wave activity (below and Sect.4.6.7).
  • 2. Table 4.1 lists these Litho facies, showing the codes used for note taking and a sedimentological interpretation of each. The Litho facies codes consist of two parts, a capital letter for modal grain size (G, gravel; S, sand; F, fines) and a lowercase letter or letters chosen as a mnemonic of a distinctive texture or structure of each Litho facies. The three Litho facies B, E, and F of Cant and Walker (1976), discussed in the previous section, are St, Ss, and FI in this scheme. Le Blanc Smith (1980) has developed this fluvial facies scheme still further by incorporating additional structures and information on grain size. J.L. Wilson's (1975) microfacies scheme for carbonates contains 24 types. Figure 4.5 illustrates his standard legend, facies numbers, and abbreviated description. Figures 4.6 and 4.7 illustrate the use of these two schemes in drawing stratigraphic sections.
  • 3.
  • 4. Fig.4.18A-C. Variations in bed form morphology with depth and velocity. A Large-scale ripples (dunes or megaripples). B Small-scale ripples. C Large-scale ripples where depth varies transverse to flow. (Allen 1968) Fig.4.19. Facies model for sedimentation on a point bar by lateral accretion inside a migrating meander. D Dunes; T transverse bars or sand waves; R ripples
  • 5. Fig. 4.17 A, B. Relationships between bed forms and sedimentary structures. A Linguoid (three-dimensional) dunes and trough crossbedding. B Sand waves (two-dimensional dunes) and planar crossbedding.
  • 6. Facies Associations and Models 4.4.1 The Association and Ordering of Facies The term facies association was defined by Potter (1959) as "a collection of commonly associated sedimentary attributes", including "gross geometry (thick- ness and areal extent); continuity and shape of lithologic units; rock types ... , sedimentary structures, and fauna (types and abundances). " A facies association (or assemblage) is, therefore, based on observation, perhaps with some simplification. It is expressed in the form of a table, a statistical summary, or a diagram of typical stratigraphic occurrences (e. g., a vertical profile). A facies model is an interpretive device that is erected by a geologist to explain the observed facies association. A facies model may be developed at first to explain only a single stratigraphic unit, and similar units may then be studied in order to derive generalized models.
  • 7. Facies units defined on the basis of outcrop, core, well-cutting, or geophysical criteria tend to refer to quite different scales and levels of detail. Geophysicists in the petroleum industry refer to Seismic Facies, but this is not comparable to the small-scale type of facies discussed in this chapter . Modern, high-resolution, shallow, seismic surveying coupled with side-scan sonar imaging is providing a powerful tool for the analysis of facies compositions and geometries in modern environments and is beginning to have a major impact on the understanding of shelf and slope sedimentary environments . Increasing attention is being paid to the three-dimensional geometry of facies units, particularly in out-crop studies and subsurface studies involving reservoir development (Sect. 4.3.4). To a large extent, the scales at which facies units are defined reflect criteria of convenience. Thus, the term is a very flexible and convenient one for descriptive purposes. The term facies can also be used (usually for Litho-facies assemblages) in an interpretive sense for groups of rocks that are thought to have been formed under similar conditions. This usage may emphasize specific depositional processes, such as till facies or turbidities facies. Alternatively, it may refer to a particular depositional environment, such as shelf carbonate facies or fluvial facies, encompassing a wide range of depositional processes.
  • 8. Facies Analysis and Sequence Stratigraphy Fig.4.13. The textural spectrum in limestones. (Folk 1962)
  • 9. Many environmental deductions can be made from the details of the internal structure of hydro-dynamic sedimentary structures and from orientation (paleo current) information.  Three general groups of structures can be distinguished: 1. Structures formed by Unimodal Water Currents in Rivers, Deltas, parts of Ebb and Flood Tidal Deltas in Inlets, Submarine Fans, and Continental Slopes (contour currents) 2. Structures formed by Reversing (bimodal) water currents, such as Tides and Wave Oscillations in Shelf and Marginal- Marine environments and in lakes 3. Structures formed by Eolian Currents in Coastal Dune Complexes, inland Sand Seas, and some Alluvial-Lacustrine environments Fig. 4.23. Planar crossbed sets, showing reactivation surfaces. (Miall1977; after Collinson 1970 Crossbedding Structures may contain evidence of stage fluctuation in the form of reactivation surfaces (Collinson 1970), as shown in Fig. 4.23. These are erosion surfaces formed during a fall in the water level but, again, they are not environmentally diagnostic, as water levels rise and fall in rivers, deltas, and tidal environments.
  • 10. Fig. 4.20 A -F. Hydraulic model for point -bar sedimentation, showing variations in the vertical profile reflecting variations in grain size, D, and flow velocity, V. y/h indicates position on point bar with respect to total depth. Ripples Ripples Ripples Ripples Dunes Dunes Dunes Dunes Plane beds Plane beds Plane beds Plane beds Plane beds Plane beds Plane beds Plane beds Decreasing depth and velocity up this slope result in decreasing grain size and scale of sedimentary structures. Using flow-regime data, such as that shown in Figs. 4.15 and 4.16,Allen (1970) was able to predict the types of sedimentary structures from depth-velocity-grain-size conditions. His series of hypothetical profiles is shown in Fig. 4.20. These can be matched to real examples of fining-up-ward cycles in the Devonian of Wales and the Appalachian region, demonstrating that Allen's model was of considerable value in reconstructing paleo hydraulic conditions. Many elaborations of this model have now been developed (Miall1996 for summary).
  • 11. The Reversing Ripples, Chevron Ripple's, Lenticular Fore sets, and variable symmetry and orientation of Wave-formed Ripple Cross-Lamination (Figs. 2.12B, 4.24) are strongly diagnostic of a low-energy wave environment, such as a gently shelving marine beach or a lake margin . Similar structures could also form in abandoned meanders or floodplain ponds in an alluvial environment but would comprise a less conspicuous part of the overall succession. In many marginal-marine environments, Crossbedding will be formed by both waves and tides, resulting in very complex paleo current patterns . Careful documentation of structure types and their orientations may be necessary to distinguish the precise environment and mode of origin, but such work may also yield invaluable information on sand-body geometry, shoreline orientation, beach and barrier configuration, etc., as discussed in Sect. 5.6
  • 12. The Bouma Sequence of thin-Bedded, outer sub-marine-fan turbidity deposits also contains a succession of structures that can be interpreted in terms of flow-regime.  The Basal (A) Member (Fig. 4.21) is formed by grains settling from suspension. Flow velocities decrease upward, so that  the Plane-Bedded Unit (B), which commonly contains parting lineation, is formed under upper-flow-regime, flat-bed conditions, and  the Rippled Unit (C) represents the lower flow regime .  The Silty Unit (D) is deposited from the dilute tail of the turbidity current as flow ceases altogether. This interpretation has been of considerable use in understanding the mechanics of turbidity currents. Clifton et al. (1971) carried out one of the first detailed studies of the sedimentary structures that form on coastlines under breaking waves. They recognized a direct relationship between Wave Type, resulting Water Motion, and Structure Type (Fig. 4. 22). The gradation from asymmetric ripple to outer, plan are facies represents a shoreward increase in orbital velocity and a transition from lower flow-regime ripples through a dune facies to an upper-flow-regime plane-bed condition. These Structures All Dip Landward. The inner, Rough facies is Characterized by Seaward-dipping ripples and dunes of the Lower Flow Regime, and the inner, Planar Facies by plane beds, Antidunes, and Standing Waves formed under High-Energy, Upper-Flow-Regime, Shallow-Swash conditions. These facies all move up and down the shore