O slideshow foi denunciado.
Utilizamos seu perfil e dados de atividades no LinkedIn para personalizar e exibir anúncios mais relevantes. Altere suas preferências de anúncios quando desejar.
Physics Department & CICECO, Aveiro, Portugal 
L. D. Carlos 
29/09/2014
Carlos Brites Mengistie Debasu 
Patricia Lima 
Vitor Amaral Nuno Silva 
João Rocha 
Duarte Ananias 
Rute Ferreira
Isabel 
Pastoriza- 
Santos 
Angel Millán Fernando Palacio 
Luiz Marzan 
Paulo André 
Instituto de 
Telecomunicações
OUTLINE 
I. Luminescent materials in bio & nanomedicine 
I.1 Contrast agents & biomarkers 
I.2 Nanoparticles for multimoda...
I. Luminescent materials in nanomedicine 
What is luminescence? 
“Emission of light by certain 
materials not resulting fr...
International Year of Light and Light-based Technologies 
UN has recognized the importance of 
raising global awareness ab...
Contrast agents and biomarkers 
World market reaches more than one billion US dollar 
MRI
NMR Imaging (MRI) Contrast Agents 
Gd chelates, e.g. Gadodiamide, Omniscan 
Change the relaxation times (T1, T2) of 1H in ...
Biomarkers 
Fluoroimmunoassay 
Immunological method for clinical diagnosis. Relevant in prenatal and 
neonatal screening t...
Nanoparticles for multimodal imaging and 
theranostic 
The vision: a multifunctional cargo platform 
Imaging agents 
Stimu...
Many examples for bimodal imaging, e.g. MRI & luminescence 
Photos of cellular pellets 
excited at 393 nm 
Control (no NPs...
Engineered design of theranostic UCNPs 
Tri-modal imaging & targeted delivery of anticancer drugs 
G. Tian et al., J. Mate...
II. Challenges for PL in nanomedicine 
NIR optical imaging 
NIR emitting dyes 
Advantages 
NIR photons penetrate deeper in...
NIR-to-NIR down-shifting PL (1 photon excitation) 
Core/shell NaGdF4:Nd3+/NaGdF4 NPs 
PL images of HeLa cells incorporated...
Luminescent thermometers
III. Why nanothermometry 
Which is the need for? 
J. Lee & N.A. Kotov, Nano Today, 2007, 2, 48; K.M. McCabe & M. Hernandez...
Sensing temperature in 
an accurate way with 
sub–micron resolution 
numerous features of 
micro and nanoscale 
electronic...
Intracellular temperature distribution 
Electron Microscope Photos of Brain Cancer 
Cells(http://www.alternative-cancer. 
...
Temperature of living cells is 
modified during every cellular 
activity transfer rates as: 
cell division 
gene expressio...
IV. Ratiometric temperature sensing 
Unavailability of a nanothermometer with: 
C.D.S. Brites et al., Nanoscale, 2012, 4, ...
How it works? 
Part of the energy level diagram for Ln3+ aquo ions Energy separation 
between levels 
comparable to the 
t...
|1> is optically populated (from the ground state) 
Due to the proximity of the |2> level (E), the initial |1> 
populatio...
V. Joining heating and thermometry at 
the nanoscale
Advantages relatively to the dual-particle 
approach: 
ACS Nano, 2014, 8 (5), 5199–5207
Uncontrolled spatial distribution of 
nanoheaters and nanothermometers 
Large distribution of the 
nanoheater-nanothermome...
M. L. Debasu et al., 25, 4868 (2013) 
V.1 All-In-One 
Optical Heater- 
Thermometer 
Nanoplatform 
Assess the local tempera...
Heater-Thermometer Nanoplatforms 
Synthesis 
(Gd0.95Yb0.03Er0.02)2O3 NRs: simple wet-chemical route 
M. L. Debasu et al., ...
NRs-AuNPs-C 
C (1.25-37.5) nominal Au amount (μmoles of the metal) 
AuNPs immobilized on the NRs by the in situ reduction ...
TEM IMAGES NRs-AuNPs 
Crystallographic planes 
and interplanar distances 
for NRs (first image) and 
AuNPs (second image) ...
C = 12.5 
C = 25
UV-VIS-NIR Absorption 
bare NRs 
NRs-AuNPs-1.25 
NRs-AuNPs-2.5 
NRs-AuNPs-5.0 
NRs-AuNPs-12.5 
NRs-AuNPs-37.5 
390 585 780...
Up-conversion emission spectra 
ΔE≈ 760 cm-1 
2H11/2 
4S3/2 
2F9/2 
4I11/2 
4I13/2 
4I15/2 
980 nm 
ET 
Er3+ Yb3+ 
2F5/2 
...
FIR = 
I ( 2H11/2 ® 4I15/2 ) 
I ( 4S3/2 ® 4I15/2 ) 
= 
gH AHwH 
gSASwS 
exp - 
DE 
kT 
æ 
è ç 
ö 
ø ÷ 
= Bexp - 
DE 
kT 
æ...
Evolution of FIR with pump power 
NRs-AuNPs-2.5 
NRs-AuNPs-1.25 
bare NRs 
NRs-AuNPs-5.0 
100 200 300 400 500 600 
4 
3 
2...
FIR vs. absolute local temperature 
Pump power density 
32–600 W.cm-2 (1.25) 
95–455W.cm-2 (2.5) 
95–205 W.cm-2 (5.0)
 
 
 
relative sensitivit y 
thermometeric parameter (FIR) 
absolute sensitivit y 
 
S 
  
 
temperature 
 
 
 
...
What are the influence of exciting 
the nanoplataform (through Yb3+) in 
resonance with the Au surface 
plasmon? 
bare NRs...
STEM IMAGES NRs-AuNRs C = 3.05 
Au NRs 
Gd2O3:Er/Yb NRs 
in preparation
UV-VIS-NIR Absorption 
AuNRs-808nm 
NRs@PSS@AuNRs-808nm-C=2.28 
500 600 700 800 900 
1.0 
0.5 
0.0 
Normalized Absorbance ...
150 300 450 600 
2.0 
1.5 
1.0 
0.5 
NRs-AuNPs-1.25 
NRs@PSS@AuNRs-850nm-1.25 
FIR 
Laser power density /Wcm-2 
AuNRs hav...
41 
VI. Messages to take home 
Luminescent materials play a crucial role in the development of bio 
and nanomedicine 
NIR ...
THERMOMETRY AT THE NANOSCALE 
L. D. Carlos & F. Palacio, Eds.
ACKNOWLEDGEMENTS 
FUNDAÇÃO PARA A CIÊNCIA E TECNOLOGIA 
PEst-C/CTM/LA0011/2013; PTDC/CTM/101324/2008 
EUROPEAN MULTIFUNCTI...
Próximos SlideShares
Carregando em…5
×

de

Luminescent materials for biomedical applications: the example of nanothermometers. Slide 1 Luminescent materials for biomedical applications: the example of nanothermometers. Slide 2 Luminescent materials for biomedical applications: the example of nanothermometers. Slide 3 Luminescent materials for biomedical applications: the example of nanothermometers. Slide 4 Luminescent materials for biomedical applications: the example of nanothermometers. Slide 5 Luminescent materials for biomedical applications: the example of nanothermometers. Slide 6 Luminescent materials for biomedical applications: the example of nanothermometers. Slide 7 Luminescent materials for biomedical applications: the example of nanothermometers. Slide 8 Luminescent materials for biomedical applications: the example of nanothermometers. Slide 9 Luminescent materials for biomedical applications: the example of nanothermometers. Slide 10 Luminescent materials for biomedical applications: the example of nanothermometers. Slide 11 Luminescent materials for biomedical applications: the example of nanothermometers. Slide 12 Luminescent materials for biomedical applications: the example of nanothermometers. Slide 13 Luminescent materials for biomedical applications: the example of nanothermometers. Slide 14 Luminescent materials for biomedical applications: the example of nanothermometers. Slide 15 Luminescent materials for biomedical applications: the example of nanothermometers. Slide 16 Luminescent materials for biomedical applications: the example of nanothermometers. Slide 17 Luminescent materials for biomedical applications: the example of nanothermometers. Slide 18 Luminescent materials for biomedical applications: the example of nanothermometers. Slide 19 Luminescent materials for biomedical applications: the example of nanothermometers. Slide 20 Luminescent materials for biomedical applications: the example of nanothermometers. Slide 21 Luminescent materials for biomedical applications: the example of nanothermometers. Slide 22 Luminescent materials for biomedical applications: the example of nanothermometers. Slide 23 Luminescent materials for biomedical applications: the example of nanothermometers. Slide 24 Luminescent materials for biomedical applications: the example of nanothermometers. Slide 25 Luminescent materials for biomedical applications: the example of nanothermometers. Slide 26 Luminescent materials for biomedical applications: the example of nanothermometers. Slide 27 Luminescent materials for biomedical applications: the example of nanothermometers. Slide 28 Luminescent materials for biomedical applications: the example of nanothermometers. Slide 29 Luminescent materials for biomedical applications: the example of nanothermometers. Slide 30 Luminescent materials for biomedical applications: the example of nanothermometers. Slide 31 Luminescent materials for biomedical applications: the example of nanothermometers. Slide 32 Luminescent materials for biomedical applications: the example of nanothermometers. Slide 33 Luminescent materials for biomedical applications: the example of nanothermometers. Slide 34 Luminescent materials for biomedical applications: the example of nanothermometers. Slide 35 Luminescent materials for biomedical applications: the example of nanothermometers. Slide 36 Luminescent materials for biomedical applications: the example of nanothermometers. Slide 37 Luminescent materials for biomedical applications: the example of nanothermometers. Slide 38 Luminescent materials for biomedical applications: the example of nanothermometers. Slide 39 Luminescent materials for biomedical applications: the example of nanothermometers. Slide 40 Luminescent materials for biomedical applications: the example of nanothermometers. Slide 41 Luminescent materials for biomedical applications: the example of nanothermometers. Slide 42 Luminescent materials for biomedical applications: the example of nanothermometers. Slide 43
Próximos SlideShares
How can collaborative global research and education benefit the world?
Avançar
Transfira para ler offline e ver em ecrã inteiro.

2 gostaram

Compartilhar

Baixar para ler offline

Luminescent materials for biomedical applications: the example of nanothermometers.

Baixar para ler offline

Plenary lecture of the XIII SBPMat (Brazilian MRS) meeting, given on September 29th 2014 by Prof. Luís Carlos Dias (Universidade de Aveiro, Portugal).

Audiolivros relacionados

Gratuito durante 30 dias do Scribd

Ver tudo

Luminescent materials for biomedical applications: the example of nanothermometers.

  1. 1. Physics Department & CICECO, Aveiro, Portugal L. D. Carlos 29/09/2014
  2. 2. Carlos Brites Mengistie Debasu Patricia Lima Vitor Amaral Nuno Silva João Rocha Duarte Ananias Rute Ferreira
  3. 3. Isabel Pastoriza- Santos Angel Millán Fernando Palacio Luiz Marzan Paulo André Instituto de Telecomunicações
  4. 4. OUTLINE I. Luminescent materials in bio & nanomedicine I.1 Contrast agents & biomarkers I.2 Nanoparticles for multimodal imaging and theranostic II. Challenges for luminescence in bio & nanomedicine II.1 NIR optical imaging (in vivo and in vitro) II.2 Luminescent nanothermometers III. Why nanothermometry? Which is need for? IV. Ratiometric temperature sensing @ GFHybrids (Aveiro) V. Joining heating and thermometry at the nanoscale V.1 All-in-one optical heater-thermometer nanoplatform (plasmonic-induced heating) VI. Conclusions
  5. 5. I. Luminescent materials in nanomedicine What is luminescence? “Emission of light by certain materials not resulting from heat.” Why light matters? Central to linking cultural, economic and political aspects of the global society …and God said, "Let there be light" (fiat lux), and there …was light! The Book of Genesis
  6. 6. International Year of Light and Light-based Technologies UN has recognized the importance of raising global awareness about how light-based technologies promote sustainable development and provide solutions to global challenges in energy, education, agriculture & health. Light plays a vital role in our daily lives and is an imperative cross-cutting discipline of science in the 21st century Medicine revolution; XX century telecommunications revolution (laser, laser-diode, optical fiber, Er3+-doped amplifier); Infrastructure for the Internet http://www.light2015.org/Home/About.html
  7. 7. Contrast agents and biomarkers World market reaches more than one billion US dollar MRI
  8. 8. NMR Imaging (MRI) Contrast Agents Gd chelates, e.g. Gadodiamide, Omniscan Change the relaxation times (T1, T2) of 1H in tissues and body cavities where they are present Without CA With CA Defect of the blood-brain barrier after stroke shown in MRI (T1-weighted images)
  9. 9. Biomarkers Fluoroimmunoassay Immunological method for clinical diagnosis. Relevant in prenatal and neonatal screening tests, UV as well as to detect Energy transfer proteins, viruses, antibodies, tumor biomarkers and medicine residues. Cisbio-US, Inc. Long (ca. 10-3 s) 5D0 lifetime in the Eu3+ cryptate eliminates the fluorescence interference from other compounds or any unbound XL665. Concentrations of CD86 and CD28 species are quantify through the intensity of the XL665 luminescence.
  10. 10. Nanoparticles for multimodal imaging and theranostic The vision: a multifunctional cargo platform Imaging agents Stimulus sensitive agents Specific targeting moiety Biocompatible polymer Drugs Cell penetrating agents M. Ferrari, Nature Rev. Cancer, 2005, 5, 161
  11. 11. Many examples for bimodal imaging, e.g. MRI & luminescence Photos of cellular pellets excited at 393 nm Control (no NPs internalization) Cell internalized ϒ-Fe2O3 NPs negative contrast, T2-shortening Fe2O3 NPs Cell internalized T1- & T2-weighted MRI images of cellular pellets SiO2@APS/DTPA:Eu,Gd NPs positive contrast, r1=4.4 s-1mM-1 S. L. C. Pinho et al., Biomaterials, 2012, 33, 925; M. L. Debasu et al., Nanoscale, 2012, 4, 5154
  12. 12. Engineered design of theranostic UCNPs Tri-modal imaging & targeted delivery of anticancer drugs G. Tian et al., J. Mater. Chem. B, 2014, 2, 1379
  13. 13. II. Challenges for PL in nanomedicine NIR optical imaging NIR emitting dyes Advantages NIR photons penetrate deeper in biological tissues, compared to visible light; Tissues present less autofluorescence; Better signal-to-noise discrimination; Improved detection sensibility; NIR photons interact less with biological tissues, reducing the risk of disturbance or damage. In-vivo multispectral imaging systems (spectral deconvolution filters excitation wavelengths, 390–770 nm, from a white-light source) Mouse also imaged in X-ray mode. http://acs.ufl.edu/?page_id=226
  14. 14. NIR-to-NIR down-shifting PL (1 photon excitation) Core/shell NaGdF4:Nd3+/NaGdF4 NPs PL images of HeLa cells incorporated the NPS (λex=740 nm) G. Chen et al., Acc. Chem. Res., 2013, 46, 1474 In vivo whole body imaging of a mouse subcutaneously injected with the NPs Depth penetration of light Primary obstacle to applying in-vivo optical molecular imaging (OMI), light cannot penetrate more than 5-6 cm into human tissue; In-vivo OMI market will reaches $400 million in 2014
  15. 15. Luminescent thermometers
  16. 16. III. Why nanothermometry Which is the need for? J. Lee & N.A. Kotov, Nano Today, 2007, 2, 48; K.M. McCabe & M. Hernandez, Pediatr. Res., 2010, 67, 469; D. Jaque & F. Vetrone, Nanoscale, 2012, 4, 4301; J. Millen et al. Nature Nanotech., 2014, 9 425
  17. 17. Sensing temperature in an accurate way with sub–micron resolution numerous features of micro and nanoscale electronic devices (thermal transport, heat dissipation, and profiles of heat transfer) critical for understanding
  18. 18. Intracellular temperature distribution Electron Microscope Photos of Brain Cancer Cells(http://www.alternative-cancer. net/Cell_photos.htm) Increased metabolic activity: Higher T than those of normal tissues C.L. Wang et al., Cell. Res., 2011, 21, 1517; G. Kucsko et al., Nature, 2013, 500, 54; N. Inada & S. Uchiyama, Imaging Med., 2013, 5, 303
  19. 19. Temperature of living cells is modified during every cellular activity transfer rates as: cell division gene expression enzyme reaction changes in metabolic activity Lung cancer cell division (SEM) STEVE GSCHMEISSNER/SCIENCE PHOTO LIBRARY http://www.sciencephoto.com/set/1336
  20. 20. IV. Ratiometric temperature sensing Unavailability of a nanothermometer with: C.D.S. Brites et al., Nanoscale, 2012, 4, 4799
  21. 21. How it works? Part of the energy level diagram for Ln3+ aquo ions Energy separation between levels comparable to the thermal energy kBT Impossible to populate a single energy level Boltzmann statistics: the population will be re-distributed among energy levels with similar energy
  22. 22. |1> is optically populated (from the ground state) Due to the proximity of the |2> level (E), the initial |1> population is thermally re-distributed among the two levels The |2> population (N2) is (steady-state): exp ( / ) 2 1 N N E k T B   I1 & I2 are proportional to the corresponding populations: N C I  I2/I1 ratio: C 2 E k T exp ( / ) 2 1 1 C I I B   ΔE I2 I1 2 1 depends on geometrical factors and intrinsic properties of the emitting level (e.g. branching ratios and quantum efficiency)
  23. 23. V. Joining heating and thermometry at the nanoscale
  24. 24. Advantages relatively to the dual-particle approach: ACS Nano, 2014, 8 (5), 5199–5207
  25. 25. Uncontrolled spatial distribution of nanoheaters and nanothermometers Large distribution of the nanoheater-nanothermometer distances d Average temperature of the sample volume under irradiation (emission intensity includes the contribution of the nanothermometers that are away from the nanoheaters); Thermal sensing not achieved at the same heating volume. d d Heater-thermometer joint venture at the nanoscale
  26. 26. M. L. Debasu et al., 25, 4868 (2013) V.1 All-In-One Optical Heater- Thermometer Nanoplatform Assess the local temperature of laser-excited Au nanostructures using an all-in-one nanoplatform comprising (Gd,Yb,Er)2O3 nanorods (thermometers) surface-decorated with Au NPs (heaters). Unambiguous attribution of the white-light emission to an incandescence process.
  27. 27. Heater-Thermometer Nanoplatforms Synthesis (Gd0.95Yb0.03Er0.02)2O3 NRs: simple wet-chemical route M. L. Debasu et al., J. Phys. Chem. C, 2011, 115, 15297 Citrate stabilized spherical AuNPs: standard Turkevic method J. Turkevich et al., Discuss. Faraday Soc., 1951, 11, 55
  28. 28. NRs-AuNPs-C C (1.25-37.5) nominal Au amount (μmoles of the metal) AuNPs immobilized on the NRs by the in situ reduction of HAuCl4 .3H2O using NaBH4 as a strong reducing agent in aqueous dispersion of the NRs. The lower the amount of Au precursor, the fewer the number of AuNPs supported on the NRs Lower Au amount Higher Au amount I. Pastoriza-Santos et al., Phys. Chem. Chem. Phys., 2004, 6, 5056
  29. 29. TEM IMAGES NRs-AuNPs Crystallographic planes and interplanar distances for NRs (first image) and AuNPs (second image) The images on the right side zoom in the regions depicted by the white circles on left. C = 1.25 C = 2.5
  30. 30. C = 12.5 C = 25
  31. 31. UV-VIS-NIR Absorption bare NRs NRs-AuNPs-1.25 NRs-AuNPs-2.5 NRs-AuNPs-5.0 NRs-AuNPs-12.5 NRs-AuNPs-37.5 390 585 780 975 1170 1365 Normalized Absorbance Wavelength /nm Localized surface Au plasmon resonance, LSP (aqueous dispersions of NRs-AuNPs-C)
  32. 32. Up-conversion emission spectra ΔE≈ 760 cm-1 2H11/2 4S3/2 2F9/2 4I11/2 4I13/2 4I15/2 980 nm ET Er3+ Yb3+ 2F5/2 2F7/2 Bare NRs (black lines) and NRs-AuNPs-1.25 (red lines) (600 W.cm-2 excitation with a 980 nm CW laser diode)
  33. 33. FIR = I ( 2H11/2 ® 4I15/2 ) I ( 4S3/2 ® 4I15/2 ) = gH AHwH gSASwS exp - DE kT æ è ç ö ø ÷ = Bexp - DE kT æ è ç ö ø ÷ ΔE(2H11/2-4S3/2)≈760 cm-1 limit of no laser excitation (RT)
  34. 34. Evolution of FIR with pump power NRs-AuNPs-2.5 NRs-AuNPs-1.25 bare NRs NRs-AuNPs-5.0 100 200 300 400 500 600 4 3 2 1 FIR Laser power density /Wcm-2 FIR plot of the 2H11/2→4I15/2 to 4S3/2→4I15/2 transitions vs. laser power density for NRs-AuNPs-C, with C = 0 – 5.0.
  35. 35. FIR vs. absolute local temperature Pump power density 32–600 W.cm-2 (1.25) 95–455W.cm-2 (2.5) 95–205 W.cm-2 (5.0)
  36. 36.    relative sensitivit y thermometeric parameter (FIR) absolute sensitivit y  S    temperature         S T T S S a a Temperature sensitivity Sensitivity of C=1.25 in the range of physiological interest!
  37. 37. What are the influence of exciting the nanoplataform (through Yb3+) in resonance with the Au surface plasmon? bare NRs NRs-AuNPs-1.25 NRs-AuNPs-2.5 NRs-AuNPs-5.0 NRs-AuNPs-12.5 NRs-AuNPs-37.5 390 585 780 975 1170 1365 Normalized Absorbance Wavelength /nm How to do this?
  38. 38. STEM IMAGES NRs-AuNRs C = 3.05 Au NRs Gd2O3:Er/Yb NRs in preparation
  39. 39. UV-VIS-NIR Absorption AuNRs-808nm NRs@PSS@AuNRs-808nm-C=2.28 500 600 700 800 900 1.0 0.5 0.0 Normalized Absorbance Wavelength /nm
  40. 40. 150 300 450 600 2.0 1.5 1.0 0.5 NRs-AuNPs-1.25 NRs@PSS@AuNRs-850nm-1.25 FIR Laser power density /Wcm-2 AuNRs have strong heating effect, compared to AuNPs, resonance of the LSP band with the laser beam wavelength. Distinct dependence of FIR (and temperature) with laser power density (mechanism?) 360 420 480 540 600 2.0 1.5 1.0 0.5 NRs-AuNPs-1.25 NRs@PSS@AuNRs-850nm-1.25 FIR Temperature /K
  41. 41. 41 VI. Messages to take home Luminescent materials play a crucial role in the development of bio and nanomedicine NIR optical imaging may promote a revolution in the fluorescence microscopy Heater-thermometer nanoplatforms can improve the efficiency of hyperthermia processes and are exciting tools to study heat transfer processes at the nanoscale (probes to new phenomena?)
  42. 42. THERMOMETRY AT THE NANOSCALE L. D. Carlos & F. Palacio, Eds.
  43. 43. ACKNOWLEDGEMENTS FUNDAÇÃO PARA A CIÊNCIA E TECNOLOGIA PEst-C/CTM/LA0011/2013; PTDC/CTM/101324/2008 EUROPEAN MULTIFUNCTIONAL MATERIALS INSTITUTE LUMINET— European Network on Luminescent Materials, FP7-PEOPLE-2012-ITN (316906) COST ACTION MP1202 PVE Grant 313778/2013-2, Science without borders Spatial averaging > 1.5×103 μm
  • DivyaRehani1

    Oct. 8, 2018
  • dilaratemirbayeva

    Jan. 27, 2015

Plenary lecture of the XIII SBPMat (Brazilian MRS) meeting, given on September 29th 2014 by Prof. Luís Carlos Dias (Universidade de Aveiro, Portugal).

Vistos

Vistos totais

3.909

No Slideshare

0

De incorporações

0

Número de incorporações

1.343

Ações

Baixados

66

Compartilhados

0

Comentários

0

Curtir

2

×