O slideshow foi denunciado.
Seu SlideShare está sendo baixado. ×

Innelastic Light Scattering in Carbon Nanostructures: from the micro to the nanoscale.

Anúncio
Anúncio
Anúncio
Anúncio
Anúncio
Anúncio
Anúncio
Anúncio
Anúncio
Anúncio
Anúncio
Anúncio

Confira estes a seguir

1 de 58 Anúncio

Innelastic Light Scattering in Carbon Nanostructures: from the micro to the nanoscale.

Baixar para ler offline

Plenary lecture - XV B-MRS Meeting - Campinas, SP, Brazil - September, 25 to 29, 2016.
Author: Ado Jorio (UFMG).

Plenary lecture - XV B-MRS Meeting - Campinas, SP, Brazil - September, 25 to 29, 2016.
Author: Ado Jorio (UFMG).

Anúncio
Anúncio

Mais Conteúdo rRelacionado

Diapositivos para si (20)

Quem viu também gostou (20)

Anúncio

Semelhante a Innelastic Light Scattering in Carbon Nanostructures: from the micro to the nanoscale. (20)

Mais de Sociedade Brasileira de Pesquisa em Materiais (20)

Anúncio

Mais recentes (20)

Innelastic Light Scattering in Carbon Nanostructures: from the micro to the nanoscale.

  1. 1. Innelastic Light Scattering in Carbon Nanostructures: From the micro do the nanoscale Ado JORIO Departamento de Física Universidade Federal de Minas Gerais BRAZIL 27 September 2016
  2. 2. INNELASTIC LIGHT SCATTERING RAMAN SPECTROSCOPY
  3. 3. Vibrational modes in sp2 carbons... 3 ... nanotubes and graphene RBM G band D band RBM = C/dt
  4. 4. “Toy-model” sp2 carbon nanostructures Time line Graphite Fullerene Nanotube Graphene 1960 1985 1991 2004 Moore et al. Kroto et al. Iijima et al. Novoselov et al. C – 1s2 2s2 2p2
  5. 5. Graphite amorphization https://www.sglgroup.com/cms/international/products/ lexicon-of-materials/index.html?letter=C&__locale=en http://www.che.udel.edu/research_groups/ nanomodeling/research.html
  6. 6. C nanostructures in the market Carbon blackC fibers GIC Amorphous carbon
  7. 7. Terras Pretas de Índios (TIPs) da Amazonia Indian black earth in Amazon B. Glaser et al. Naturwis 88, 31-41 (2001) B. Glaser et al. Org Geochem. (31), 669-678 (2000) Highly stable carbon in the soil improve fertility
  8. 8. G and D band imaging of a nano-graphite Confocal G band and D band imaging 2005 - Experiment performed with Achim Hartschuh in the laboratory of Prof. A. J. Meixner (Tuebingen) 2m Published in PCCP 9, 1276–1291 (2007)
  9. 9. Near-Field Imaging of a graphene step? D band optical image AFM D band image with 20nm resolution Umpublished AFM
  10. 10. AFM Image J. H. Hafner, C. L. Cheung, T. H. Oosterkamp, and C. M. Lieber, J. Phys. Chem. B 105, 743 (2001) Single carbon nanotube spectroscopy “in micro”
  11. 11. RBM (cm-1) Raman spectrum Si AFM Image A. Jorio et al., PRL 86, 1118 (2001) Also Duesberg et al., PRL 85, 5436 (2000) Single nanotube spectroscopy
  12. 12. Marked Sample Resonant Raman Intensity with Tunable Laser A. Jorio et al., Phys. Rev. B 63, 245416 (2001) Anti-Stokes Raman CNT JDOS RBM spectra changing laser line Resonance window LaserEnergy
  13. 13. 0.44 0.88 1.32 1/dt (nm-1) E11 S E22 S E11 ME33 SE44 SE22 M The Kataura plot Optics addresses (n,m)-dependent physics SWNT optical transitions Single nanotube spectroscopy Physical Properties of Carbon Nanotubes Riichiro Saito, G. Dresselhaus, M. S. Dresselhaus Imperial College Press 1998 RBM 
  14. 14. Raman spectra AFM Image A. Jorio et al., Phys. Rev. Letters 86, 1118 (2001) Single nanotube spectroscopy Si Kataura plot
  15. 15. RBM Raman spectra from SWNTs bundles Araujo et al. PRB 77, 241403(R) (2008)
  16. 16. (Eii, RBM) (n, m) E11 S E22 S E11 ME33 S E44 S E22 M 0.44 1.32 E11 S E22 S E11 ME33 SE44 SE22 M 0.88 1/dt (nm-1) Many laser lines probe the Kataura plot Araujo et al. PRL 98, 067401 (2007) Araujo et al. Physica E 42, 1251 (2010)
  17. 17. The density of states and dimensionality DOS E 0 Dimensional
  18. 18. The density of states and dimensionality DOS E 1 Dimensional dE dE
  19. 19. 19 Excitons
  20. 20. Characterization of CNT structures The gray scale gives the G band frequency or strain Study of intertube interactions @ carbon nanotube superloops Shadmi et al. Nano Lett. 2016, 16, 2152−2158 Araujo et al. Nano Lett. 2012, 12, 4110−4116 Soares and Jorio, J. of Nanotech 2012, ID 512738 Soares et al Nano Letters 10, 5043–5048, 2010 Study of tube-substrate interactions @ Carbon nanotube serpentines
  21. 21. Bioengineering Applications Carbon Nanotubes “inside the body” Biocompatibility assessment of fibrous nanomaterials in mammalian embryos Nanomedicine: Nanotechnology, Biology, and Medicine 12 (2016) 1151– 1159 Efficient delivery of DNA into bovine preimplantation embryos by multiwall carbon nanotubes Scientific Reports | 6:33588 | DOI: 10.1038/srep33588 Highly efficient siRNA delivery system into human and murine cells using single-wall carbon nanotubes Nanotechnology 21, 385101 (2010)
  22. 22. Single nanotube spectroscopy “in nano“ Tip enhanced Raman Spectroscopy (TERS) of Carbon nanotubes AFM TERS Achim Hartschuh et al. Phys. Rev. Lett. 90, 095503 (2003)
  23. 23. Local G' (2D) emission at the defect location Localized light emission Red-shifted G´ (2D) at the defect site: n-type doping I. O. Maciel et al. Nat. Materials 7, 878 (2008)
  24. 24. OPTICAL MICROSCOPY THE PINHOLE CAMERA PARADIGM
  25. 25. OPTICAL MICROSCOPY THE PINHOLE CAMERA PARADIGM
  26. 26. Tip Enhanced Raman Spectroscopy special resolution beyond the diffraction limit Conventional microscope “Near-field” microscope Abbé, Arch. Mikrosk., Anat.,(1873). Wessel, JOSA B, (1985). Novotny et al., Ultramicroscopy, (1998).
  27. 27. TIP UP AND TIP DOWN IN CARBONO NANOTUBES Jorio & Cancado PCCP 14, 15246 (2012)Cancado et al. PRL 103, 186101 (2009)
  28. 28. TERS VS. AFM – CHEMICAL SELECTIVITY TOPOGRAPHY TERS
  29. 29. Oil Objective 60x NA 1.4 XY STAGE Gold Tip Raman Spectro meter Dichroic mirror Laser Source Sample Tunning fork Gold tip • “Home-built” We can do AFM, STM… and optical spectroscopy (Raman, Rayleigh, photoluminecence…) in situ. • Our best resolution is 10nm The system
  30. 30. The system • “Home-built” We can do AFM, STM… and optical spectroscopy (Raman, Rayleigh, photoluminecence…) in situ.
  31. 31. 31
  32. 32. NUMERICAL APERTURE OPTICAL MICROSCOPY RESOLVING POWER DEPENDS ON THE INCIDENCE ANGLE AND NUMERICAL APERTURE
  33. 33. NUMERICAL APERTURE OPTICAL MICROSCOPY 1086420 10 8 6 4 2 0 X[µm] Y[µm] PL FROM NYON BLUE
  34. 34. Oil Objective 60x NA 1.4 XY STAGE Gold Tip Sample Tunning fork
  35. 35. Radially polarized mode 35
  36. 36. TERS SYSTEM
  37. 37. ESQUEMA DO FILTRO NOTCH (Z), CENTRADO NA FREQUÊNCIA DE 32, 7 KHZ
  38. 38. ESTÁGIOS DE AMPLIFICAÇÃO
  39. 39. PI 1105968-0 BR 1020120333040 BR 1020120269732 lhos 93 MEV de uma nanoponteira estruturada por desbaste de íons Tip fabrication and control BR1020150103522 BR1020150312032 14.12.2015 BR1020150312032 DISPOSITIVO METÁLICO PARA MICROSCOPIA POR VARREDURA POR SONDA E MÉTODO DE FABRICAÇÃO DO MESMO 07.05.2015 BR1020150103522 DISPOSITIVO METÁLICO PARA MICROSCOPIA E ESPECTROSCOPIA ÓPTICA DE CAMPO PRÓXIMO E MÉTODO DE FABRICAÇÃO DO MESMO 27.12.2012 BR 1020120333040 DISPOSITIVO MACIÇO COM EXTREMIDADE UNIDIMENSIONAL PARA MICROSCOPIA E ESPECTROSCOPIA ÓPTICA DE CAMPO PRÓXIMO 22.10.2012 BR 1020120269732 DISPOSITIVO MACIÇO ENCAPADO COM NANOCONE DE CARBONO PARA MICROSCOPIA E ESPECTROSCOPIA POR VARREDURA DE SONDA 29.12.2011 PI 1105972-9 DISPOSITIVO DE FIBRA ÓPTICA COM ELEMENTO UNIDIMENSIONAL PARA MICROSCOPIA E ESPECTROSCOPIA ÓPTICA DE CAMPO PRÓXIMO 29.12.2011 PI 1107185-0 DISPOSITIVO VAZADO COM EXTREMIDADE UNIDIMENSIONAL PARA MICROSCOPIA E ESPECTROSCOPIA ÓPTICA DE CAMPO PRÓXIMO 29.12.2011 PI 1105968-0 DISPOSITIVO MACIÇO COM EXTREMIDADE UNIDIMENSIONAL PARA MICROSCOPIA E ESPECTROSCOPIA ÓPTICA DE CAMPO PRÓXIMO
  40. 40. Tungsten wire 0.1mm diameter LARGE SCALE PRODUCTION OF PIRAMID TIPS 15.05.2015 BR1020150112335 MÉTODO E EQUIPAMENTO DE POSICIONAMENTO AUTOMÁTICO PARA MICROSCOPIA POR VARREDURA DE SONDA E ESPECTROSCOPIA ÓPTICA IN SITU
  41. 41. A. Cano Marques et al. Scientific Reports |5:10408 | DOI: 10.1038/srep10408 Carbon nanocone@gold nanotip
  42. 42. A. Cano Marques et al. Scientific Reports | 5:10408 | DOI: 10.1038/srep10408 Carbon nanocone@gold nanotip
  43. 43. Gold nanotip with plasmonic confinement Vasconcelos et al. ACSNano 9(6) 6297 (2015) Schematics SEM EELS
  44. 44. Gold nanotip with plasmonic confinement Vasconcelos et al. ACSNano 9(6) 6297 (2015) TIP UP TIP DOWNTIP
  45. 45. Symmetry dependence for coherent near-field Raman Maximiano et al. PRB 85, 235434 (2012); Cancado et al. PRX 4, 031054 (2014)
  46. 46. Calculation for spatially coherent near-field Raman D G G’ (2D) Tip approach curves Distance (nm) Distance (nm) Distance Beams et al. PRL 113, 186101 (2014); Cancado et al. PRX 4, 031054 (2014) Phonon coherence length lC = 30nm
  47. 47. 1 10 100 1000 0 20 40 60 80 100 120 La (nm) A G (cm -1 ) 1.96 eV 2.33 eV 2.71 eV Phonon coherence length (lC) and crystallite size (La) 1000 1200 1400 1600 1800 2800°C 2600°C 2400°C 2300°C 2200°C 2000°C 1800°C 1600°C 1400°C 1200°C Intensity(arb.units) Raman shift (cm-1 ) 3.8 nm 4.6 nm 10 nm 17 nm 30 nm 58 nm 140 nm 217 nm 526 nm 2300 nm J. Ribeiro Soares et al. Carbon 95 646-652 (2015) The G band width STM D G La lC = 30nm
  48. 48. Structurally damaged area
  49. 49. ActivatedActivated areaarea Structurally damaged area
  50. 50. http://www.globalccsinstitute.com/publications/global-status-beccs-projects-2010/online/27026 (2010) Carbon release in the atmosphere With and without CCS With CCS (carbon capture storage)
  51. 51. M. W. I. Schmidt et al., NATURE 478, 49 (2011) Data from surface horizons of 20 long- term field experiments (up to 23 years) in temperate climate, using 13C labeling to trace the residence time of bulk SOM and of individual molecular compounds The persistence of soil organic matter
  52. 52. Tropical soils (google images)
  53. 53. Terras Pretas de Índios (TIPs) da Amazonia Indian black earth in Amazon B. Glaser et al. Naturwis 88, 31-41 (2001) B. Glaser et al. Org Geochem. (31), 669-678 (2000) Highly stable carbon in the soil improve fertility Researchers are trying to reproduce this soil in laboratory TPI form Balbina Presidente Figueiredo, AM Lat. 1º 54’ sul Long. 59º 28’ O altitude 60 m.
  54. 54. The role of carbon on soil cation exchange capacity Liang et al. Soil Sci. Am. J. 70, September-October (2006). DS: Dona Stella ACU: Acutuba LG: Lago Grande HAT: Hatahara
  55. 55. The nanocrystallite size have special dimensions 2 to 8 nanometers Stable Inert Unstable Reactive Jorio et al. Soil & Tillage Research 122 (2012) 61–66
  56. 56. Comparison of grain size between different types of biochar Jorio et al. Soil & Tillage Research (2012) G  La -1 G band Raman FWHM
  57. 57. Acknowledgements UFMG Luiz Gustavo Cançado Cassiano Rabelo Douglas S. Ribeiro Mateus G. da Silva João Luiz E. Campos Marcela Pagano Sugandha Pandei Jenaina Ribeiro-Soares Rodolfo Maximiano Indhira Maciel Jaqueline S. Ribeiro Paulo T. Araujo INMETRO Carlos Alberto Achete Marcia Lucchese Braulio Archanjo Thiago Vasconcelos Erlon Ferreira Soares UFRJ Rodrogo Barbosa Capaz ETH Zurich Lukas Novotny Mark Kasperczik Univ. Basel Patrick Maletinsky Univ. Manchester Aravind Vijayaraghavan NIST Ryan Beams FINEPFINEP INPA Newton Falcão Aalto J. Riikonen Weitzman Inst Ernesto Joselevich UNICAMP Pedro A.S. Autreto R. Paupitz Douglas S. Galvão U. Munich Achim Hartschuh CNRS Alain Penicaud

×