O slideshow foi denunciado.
Seu SlideShare está sendo baixado. ×

Green recovery of energy and nutrients from wastewater in the frame of the Circular Economy.

Anúncio
Anúncio
Anúncio
Anúncio
Anúncio
Anúncio
Anúncio
Anúncio
Anúncio
Anúncio
Anúncio
Anúncio

Confira estes a seguir

1 de 36 Anúncio

Mais Conteúdo rRelacionado

Diapositivos para si (19)

Semelhante a Green recovery of energy and nutrients from wastewater in the frame of the Circular Economy. (20)

Anúncio

Mais de SALTGAEProject (20)

Mais recentes (20)

Anúncio

Green recovery of energy and nutrients from wastewater in the frame of the Circular Economy.

  1. 1. Green recovery of energy and nutrients from wastewater in the frame of the Circular Economy ELENA FICARA POLITECNICO DI MILANO Dipartimento di Ingegneria Civile e Ambientale - Sezione ambientale
  2. 2. Dipartimento di Ingegneria Civile e Ambientale Content - Introduction: general circular economy framework - Technologies for resource recovery in WWTPs - Overview on applying algae for wastewater treatment for nutrients/energy recovery/savings
  3. 3. Dipartimento di Ingegneria Civile e Ambientale The role of wastewater treatment plants Challenges of sanitation systems:  Supply safe (drinking) water  Limit environmental impacts by wastewater discharges Historically… but…  Growing population,  Life style changing,  Climate change are modifying water availability and request new challenges are to be faced Uptake Use discharge
  4. 4. Dipartimento di Ingegneria Civile e Ambientale The circular approach …. Water, energy, resources Water source treatment Reuse treatment discharge New hierarchy use
  5. 5. Dipartimento di Ingegneria Civile e Ambientale The circular approach ….
  6. 6. Dipartimento di Ingegneria Civile e Ambientale Looking beyond the current "take, make and dispose” extractive industrial model, the circular economy is restorative and regenerative by design.
  7. 7. Dipartimento di Ingegneria Civile e Ambientale Which kind of resources to be recovered? Biodegradable organics: 12 – 14 W/PE Total organics: 18 – 20 W/PE Ammoniacal N: 8 W/PE TOTAL: 20 – 28 W/PE (4-5 times energy required for WW treatment) Clean water Chemical energy Nutrients (N, P) Wastewater 40-70 m3/PE/y 2-3 kg N/PE/y 0,5-1 kg P/PE/y = WWTP  WRRP Water Resource Recovery Platform
  8. 8. Dipartimento di Ingegneria Civile e Ambientale Energy request for the water sanitation o 10-17 W/PE o 90-150 kWh/PE/y • Reducing water consumption • Optimizing processes • Recovering energy from wastewater 2-3% of electric energy consumption up to 7% (in EU and USA) How to save energy? In Italy: Total consumption 7500 GWh/y (2,5% national electric energy consumption) Campanelli, Foladori, Vaccari (2013) •water supply 57% •water treatment 43%
  9. 9. Dipartimento di Ingegneria Civile e Ambientale Energy recovery from wastewater Thermal: Wastewater temperature: 14 - 23°C. Heat pumps to warm (winter) or cool (summer) buildings. e.g.: Nosedo (Milano) WWTP recovers 200 kW Hydro-electric: by taking advantages of head loss e.g.: Folgaria (TN) WWTP recovers 40 kW (50 L/s for 236 m) Chemical energy: typically recovered from the sludge line In Italy: today 121 GWh/y from AD of waste sludge (GSE, 2014) Potential: 2100 GWh/y (= all plants with tertiary treatments would use conventional AD)
  10. 10. Dipartimento di Ingegneria Civile e Ambientale Energy positive WWTP: utopic? • Recover energy with effective AD • Optimizing energy intensive processes New pathways in biological treatment Optimization of existing treatment e.g.: Aeration systems Optimized processes Energy consumption P.E. served WWTP of Strauss (Austria) 250 000 P.E. Energy cost for treatment: 11.3 kWh/PE/y, offset by biogas production
  11. 11. Dipartimento di Ingegneria Civile e Ambientale Recovery of phosphorus Accessible stocks of P-rocks are going to be exhausted SOON Use Wastes Agriculture Plants P mining Water bodies (WWTP)  P is fundamental in sustaining agriculture  Demand is growing together with word population  Uneven distribution of P mines (Morocco, Cina, US)  EU is P deficient About 18% of the P request could be recovered from waste streams Cordell & White, 2011, Sustainability, 3(10), pp. 2027-2049
  12. 12. Dipartimento di Ingegneria Civile e Ambientale Recovery of phosphorus Biological processes: P-iperaccumulating microorganisms Recovery from ashes from sludge inciniration: P + N, K, P, Mg, Ca Chemical precipitation: Addition of Al(OH)3 / Ca5(PO4)3OH Struvite precipitation Recovery alternatives
  13. 13. Dipartimento di Ingegneria Civile e Ambientale Recovery of phosphorus - struvite 𝐌𝐠𝐍𝐇 𝟒 𝐏𝐎 𝟒 ∙ 𝟔𝐇 𝟐 𝐎 ∶ 𝐬𝐥𝐨𝐰 𝐫𝐞𝐥𝐞𝐚𝐬𝐞 𝐟𝐞𝐫𝐭𝐢𝐥𝐢𝐬𝐞𝐫 1 2After AD Efficiency up to 90% Low Purity After S/L separation Efficiency: 40% – 60% High Purity http://www.phosphorusplatform.eu/p latform/news/1308-eu-organic- farming-committeepositive-opinion
  14. 14. Dipartimento di Ingegneria Civile e Ambientale Recovery of bioplastics (PHA) “European Strategy for Plastics in a Circular Economy”, 16/1/2018 (http://ec.europa.eu/environment/circula r-economy/pdf/plastics-strategy.pdf Carbonera WWTP – pilot demonstration Expected increase in PHA production by 2022: 24000 tonPHA/y (european-bioplastics.org) Motivation
  15. 15. Dipartimento di Ingegneria Civile e Ambientale San Rocco (1.050.000 PE) Nosedo (1.250.000 PE) Recovery of water in agriculture Milano WWTPS: Tertiary treatments 120 millions m3/y (185 gg) to agriculture Only 2% of WWTP is reused (Lautze et al., 2014)
  16. 16. Dipartimento di Ingegneria Civile e Ambientale HRAP: High rate algal pond Primary sludge PRIMARY SETTLER ACTIVATED SLUDGE SECONDARY SETTLER ANAEROBIC DIGESTION PRE - TREATMENTS INFLUENT EFFLUENT BIOSOLIDS Mixed sludge Recirculation Biogas SOLID/LIQUID SEPARATION TERTIARY TREATMENT Secondary sludge New GREEN solutions: Microalgae & WWTP
  17. 17. Dipartimento di Ingegneria Civile e Ambientale Microalgae Oxygenic photosynthesis H2O  O2 • 2.8 billons years • Allowed aerobic organisms to develop  Large increase in productivity O2 Microalgae • Mostly autotrophic/photosynthetic • Versatile • Biodiverse
  18. 18. Dipartimento di Ingegneria Civile e Ambientale Highly productive Combined production Fine chemicals/goods Biodiesel/biogas Limited competition for soil with crop production Allow nutrients recovery Process Integration WWTP, AD plants Power stations Microalgae - claims
  19. 19. Dipartimento di Ingegneria Civile e Ambientale First applications: earlier than 1960 in California New recent interest «Microalgae + wastewater + treatment» Scopus, 2017 Microalgae & WWTP
  20. 20. Dipartimento di Ingegneria Civile e Ambientale Advantages of microalgae in wastewater treatment: - Low energy cost (extensive treatment based on solar energy) - Integration algae/bacteria - Nutrient recovery + COD removal - Production of algal biomass - Other interesting effects:  Disinfection  Removal of micropollutants  Removal of heavy metals Microalgae & WWTP
  21. 21. Dipartimento di Ingegneria Civile e Ambientale Water-stream - secondary treatment  Activated sludge algae/bacteria processes  Nutrient recovery(N, P) • Uptake • Conversion (CO2, N2) Removal efficiencies • COD: 60 – 95 % • NH4 +: 70 – 99 % • PO4 3-: 50 – 95 % Primary sludge PRIMARY SETTLER ANAEROBIC DIGESTION PRE - TREATMENTS INFLUENT EFFLUENT BIOSOLIDS P-56 Mixed sludge Microalgal biomass Biogas SOLID/LIQUID SEPARATION TERTIARY TREATMENT PBR SOLID/LIQUID SEPARATION (A) Microalgae & WWTP
  22. 22. Dipartimento di Ingegneria Civile e Ambientale Primary sludge PRIMARY SETTLER ACTIVATED SLUDGE SECONDARY SETTLER ANAEROBIC DIGESTION PRE - TREATMENTS INFLUENT EFFLUENT BIOSOLIDS Mixed sludge Recirculation Biogas SOLID/LIQUID SEPARATION (B/C) PBR SOLID/LIQUID SEPARATION Microalgal biomass Secondary sludge Water-STREAM – tertiary treatment  Disinfection  Polishing  Efficiencies (lab -scale): • COD: 85 – 90 % • NH4 +: 80 – 100 % • PO4 3-: 75 – 99 % Microalgae & WWTP
  23. 23. Dipartimento di Ingegneria Civile e Ambientale Side-stream (sludge line) Nutrient removal from the liquid fraction of digestate  Reduction of the N and P load by uptake to the water line  savings  Recycling of N-oxidized forms (nitrification)  Removal efficiencies (lab/pilot scale): • COD: 60 – 70 % • NH4 +: 60 – 95 % • PO4 3-: 50 – 95 % Primary sludge PRIMARY SETTLER ACTIVATED SLUDGE SECONDARY SETTLER ANAEROBIC DIGESTION PRE - TREATMENTS INFLUENT EFFLUENT BIOSOLIDS P-106 Recirculation Biogas SOLID/LIQUID SEPARATION TERTIARY TREATMENT Secondary sludge PBR (D) Microalgal biomass SOLID/LIQUID SEPARATION Mixed sludge Microalgae & WWTP
  24. 24. Dipartimento di Ingegneria Civile e Ambientale Examples of demonstrative WWTP applying algae as a secondary treatment: • South of Spain (Chiclana) • California (Dehli and San Luis Obispo) • New Zealand (Christchurch, Hamilton) • Morocco HARP = High Rate Algal Pond Microalgae & WWTP
  25. 25. Dipartimento di Ingegneria Civile e Ambientale Pilot plant in Chiclana ALL GAS FP7-PROJECT (AQUALIA): • HRAP = primary/secondary treatment • Algal suspension: DAF floatation, AD+biogas upgrading BioCH4 • Energy request = 0,16 kWh/m3 Energy produced = 0,17 kWh/m3 • Land request =2 m2/P.E. Microalgae & WWTP
  26. 26. Dipartimento di Ingegneria Civile e Ambientale Biofuels Biofertilizers Biomaterials Nutrients In WW Simplified (low costs) culturing systems Wastewater treatment WWTP  algae  resources
  27. 27. Dipartimento di Ingegneria Civile e Ambientale Polisaccaride (Porphyridium) PHA (cianobacteria) PHB (Arthrospira, Sinechocystis) Bioplastics Algal Biomass Fermentation to VFA PHA by iperaccumulating bacteria Bioflocculants Bioplastics WWTP  algae  biomaterials
  28. 28. Dipartimento di Ingegneria Civile e Ambientale Conversion Process Product Termochemical Biochemical Fisico-chemical Gasification Pyrolysis, Combustion Syngas Electricity/heat Fermentation Anaerobic digestion Methane Hydrogen Ethanol alcohols Extraction Trans-esterification Biodiesel WWTP  algae  biofuels
  29. 29. Dipartimento di Ingegneria Civile e Ambientale Species Theoretical BMP (Sialve et al. 2009) LCH4/gVS Cell wall Actual BMP (Mussgnug et al. 2010) LCH4/gVS Dunaliella salina 0.68 None 0.32 Chlamydomonas reinhardtii 0.69 Protein 0.39 Arthrospira platensis 0.47–0.69 Protein 0.29 Euglena gracilis 0.5–0.8 Protein 0.32 Chlorella kessleri 0.63–0.8 Polysaccharide 0.22 Scenedesmus obliquus 0.59–0.69 Polysaccharide 0.18 WWTP  algae  biogas
  30. 30. Dipartimento di Ingegneria Civile e Ambientale Issues/limitations • Low C/N ratio co-digestion • Cell wall resistance to biodegradation pretreatment thermophilic digestion • Low economic value compared to other algae-derived products DA integrated into a biorefinery concept WWTP  algae  biogas
  31. 31. Dipartimento di Ingegneria Civile e Ambientale Estimated high productivity (Chisti et al., 2007) crop Oil yield (L ha-1) Maize 172 Soy 446 Colza 1190 Jatropha 1892 Cocco 2689 Palma 5950 Microalgae 136.900 Microalgae 58.700 1: 70% lipids 2: 30% lipids High lipid content: • Special strains (Chlorella, Dunaliella, Isochrysis, Nannochloris, Nannochloropsis, Neochloris, Nitzschia, Phaeodactylum and Porphyridium spp.) • Environmental growth conditions (lack in N/stress) Unrealistic expectations !! More realistic values: 18.000-23000 L/ha WWTP  algae  biodiesel • Production costs (Norsker et al., 2011)  1 ha  10 €/kg  100 ha  4 €/kg  Goal (0.40 €/kg)  combined strategies
  32. 32. Dipartimento di Ingegneria Civile e Ambientale Cost reduction strategies Biomass productivityg/m2/day 20 CO2 usage kg/kgbiomass 4 Water evaporation L/m2/day 10 Mixing power consumption W/m3 2 Labour people/ha 0.1 Production days Days 365 Land area ha 100 Ratio V/S m3/m2 0.15 CO2 fixation efficiency 0.45 Dilution rate 1/day 0.2 Total culture volume m3 150000 Scenario Inputs Reactor Harvesting 1Water, CO2 and fertilizers Raceway Centrifugation 2Water, CO2 and fertilizers Raceway Flocculation-Sedimentation+Centrifugation 3Free flue gases and wastewater Raceway Flocculation-Sedimentation+Centrifugation 4Free flue gases and wastewater Raceway Flocculation- LamellarSedimentation+Centrifugation 5Free flue gases and wastewater Raceway Flocculation-LamellarSedimentation+Filtration 6Free flue gases and wastewater Raceway Flocculation-LamellarSedimentation+Filtration WWTP  algae  biodiesel
  33. 33. Dipartimento di Ingegneria Civile e Ambientale Algal biomass as: -Slow release fertiliser -Natural pesticide -biostimulants Slow release fertilizer Application rate similar to conventional organic fertilisers 6.5–10 t biomass ha−1 Algal biomass • No phyto-toxicity • Stimulating effects as phyto-ormons • Increase in germination indexes Luxury P uptake  P recovery WWTP  algae  biofertilisers
  34. 34. Dipartimento di Ingegneria Civile e Ambientale 1 10 100 1000 10000 Ni Cu Pb Zn (mg/kg) 0 5 10 15 20 25 Cd (mg/kg) D.lgs. 99/1992 Sludge disposal Sludge Directive (in preparation) Metal content in algal biomass 35WWTP  algae  biofertilisers
  35. 35. Dipartimento di Ingegneria Civile e Ambientale First project approved in the water sector (University of Valencia) Sustainable wastewater treatment using innovative anaerobic membrane bioreactors technology (AnMBR). • Acceptable metal content • Pathogens, micropollutants –> same levels as for sludge Legislation barriers WWTP  algae  biofertilisers
  36. 36. Dipartimento di Ingegneria Civile e Ambientale Conclusions • WWTP  resources is mandatory • Technical solutions exist • Potential for applying microalgae-based processes However: • Economics: no established value chain for recovery products / lack on incentives, lack of standard business models • Still on-going pilot/demonstrative projects to validate techno-economic feasibility • Regulatory barriers

Notas do Editor

  • Le nuove sfide  Gerarchia di gestione:
    Ridurre i prelievi (ottimizzare, ridurre consumi, educare)
    Recuperare e riciclare l’acqua usata e ciò che contiene
    Recuperare energia / ridurre i costi energetici dei trattamenti
  • Nel corso dell’anno 2013 è entrata in esercizio la centralina idroelettrica realizzata sfruttando il dislivello di circa 260 m che separa il depuratore dal rio Cavallo, accettore finale dello scarico; la condotta forzata in ghisa, si sviluppa per 642 m ed alimenta la centrale di produzione realizzata sulla sponda destra del rio Cavallo, costituita da una macchina a turbina della potenza di 50 kW e potenza massima di 106 kW. La produzione registrata nel mese di agosto 2013 (primo mese di funzionamento) è stata mediamente di 800 kWh/giorno; da questo impianto ci si attende una produzione annua di circa 260.000 kWh/anno. L’energia prodotta viene autoconsumata o immessa in rete a seconda del fabbisogno del depuratore. L’impianto idroelettrico è stato progettato da SWS engineering, il costo dell’opera ammonta a circa 490.000 euro Iva esclusa. I lavori sono stati realizzati dall’A.T.I. fra Tecnoimpianti Paternoster e Elettreteam.

    Le azioni combinate di efficientamento energetico e di autoproduzione di energia elettrica da fonte rinnovabile hanno portato il bilancio complessivo annuale del depuratore ad un completo autosostentamento: la somma dell’energia derivante dal fotovoltaico pari a 85.000 kWh/anno e dall’idroelettrico pari a 260.000 kWh/anno, equivale infatti al fabbisogno medio annuo di 340.000 kWh/anno; secondo le attuali proiezioni della produzione di energia e del consumo dell’impianto, ci si attende addirittura un bilancio in positivo, con un surplus di energia prodotta rispetto a quella consumata.
  • Controllo aerazione
    Diffusori efficienti
    Sistema fanghi attivi a 2 stadi
    Anammox sul side stream
    Preispessimento
    Motore CHP(38% invece di 33)

    http://www.ewmce.com/Resources/Documents/A%20Case%20Study%20-%20Net%20Energy%20Positive%20WWTP%20near%20Innusbruck,%20Austria%20-%20G%20Crawford.pdf alta efficienza
  • San Rocco + Nosedo 90% del carico trattato
  • Non sono seguite significative alter realizzazioni se non recentemente grazie ad una sostanziale modifica nella modalità con cui si guarda all’impianto di depurazione che oggi, oltre a garantire la necessaria protezione sanitaria ed ambientale deve essere concepito come una piattaforma per il recupero delle risorse ed in particolare di acqua, nutrienti ed enegia ,in un ottica di uso ottimale delle risorse e di economia circolare
  • I fattori che rendono le microalghe interessanti in questo nuovo contest li trovate qui elencati e sono

×