SlideShare a Scribd company logo
1 of 53
Download to read offline
APPLICATION OF
DIFFERENTIAL EQUATION
OF First and SECOND
ORDER
1
CONTENTS:
1.NEWTONโ€™S LAW OF COOLING
2.RADIOACTIVE DECAY
3.L-R AND C-R CIRCUITS
4.FREE UNDAMPED AND DAMPED VIBRATIONS
5.FORCED OSCILLATIONS-RESONANCE PHENOMENON
6.SERIES LCR CIRCUIT
7.ANALOGY WITH MASS SPRING SYSTEM
8.LCR CIRCUIT WITH VOLTAGE SOURCE
9.COMPLEX IMPEDENCE
10. RESONANCE PHENOMENA
2
3
Radioactive Decay
The D.E.
๐‘‘๐‘ข
๐‘‘๐‘ก
= โˆ’๐‘˜๐‘ข, ๐‘˜>0
describes the decay phenomena where it is assumed that the
material ๐‘ข(๐‘ก) at any time ๐‘ก decays at a rate which is proportional to
the amount present. The solution is
๐‘ข(๐‘ก) = ๐‘๐‘’โˆ’๐‘˜๐‘ก
If initially at , ๐‘ก =0 ๐‘ข0 is the amount present then ๐‘ = ๐‘ข0
๐‘ข(๐‘ก) = ๐‘ข0๐‘’โˆ’๐‘˜๐‘ก
๐‘‘๐‘ข
๐‘ข
= โˆ’ ๐‘˜๐‘‘๐‘ก (Separate the variables)
เถฑ
1
๐‘ข
๐‘‘๐‘ข = โˆ’ เถฑ๐‘˜๐‘‘๐‘ก (Integrate both sides)
ln ๐‘ข = โˆ’๐‘˜๐‘ก + A (Apply integration formulas)
๐‘’ln |๐‘ข| = ๐‘’โˆ’๐‘˜๐‘ก+๐ด (Raise both sides to exponential function of base ๐‘’)
๐‘ข = ๐‘’โˆ’๐‘˜๐‘ก
๐‘’๐ด
(Use inverse property ๐‘’ln ๐‘˜
= ๐‘˜ and law of exponents ๐‘๐‘ฅ+๐‘ฆ
= ๐‘๐‘ฅ
๐‘๐‘ฆ
)
๐‘ข(๐‘ก) = ๐ถ๐‘’โˆ’๐‘˜๐‘ก
(Use absolute value definition ยฑ ๐‘’๐ด
๐‘’๐‘˜๐‘ก
and replace constant ยฑ ๐‘’๐ด
with ๐ถ. )
4
Ex. A certain radioactive material is known to decay at rate
proportional to the amount present. If initially 500 mg of the
material is present and after 3 years 20% of the original mass was
decayed,find the expression for the mass at any time.
5
Sol. Let ๐‘ข(๐‘ก) denote the amount of material present at any time t. Then
according to the given condition
๐‘‘๐‘ข
๐‘‘๐‘ก
= โˆ’๐‘˜๐‘ข
or
๐‘‘๐‘ข
๐‘ข
= โˆ’๐‘˜. ๐‘‘๐‘ก
On integration log ๐‘ข = โˆ’๐‘˜๐‘ก + ๐‘. . . . . . . . . . . . . (1)
Let ๐‘ข0 be the amount of the material at ๐‘ก = 0 so that when ๐‘ก = 0 ,๐‘ข = ๐‘ข0
๐‘“๐‘Ÿ๐‘œ๐‘š (1) log ๐‘ข0 = ๐‘
so from (1) log ๐‘ข = โˆ’๐‘˜๐‘ก + log ๐‘ข0
log
๐‘ข
๐‘ข0
= โˆ’๐‘˜๐‘ก
or
๐‘ข
๐‘ข0
= ๐‘’โˆ’๐‘˜๐‘ก
or ๐‘ข = ๐‘ข0๐‘’โˆ’๐‘˜๐‘ก
. . . . . . . . . . . . . . . (2)
After 3 years 20 % of the original mass decayed
Now mass ๐‘ข = ๐‘ข0 โˆ’
20
100
๐‘ข0 =
4
5
๐‘ข0
๐‘๐‘œ๐‘›๐‘ก๐‘–๐‘›๐‘ข๐‘’๐‘‘
6
๐‘๐‘œ๐‘›๐‘ก๐‘–๐‘›๐‘ข๐‘’๐‘‘
Hence from (2)
4
5
๐‘ข0 = ๐‘ข0๐‘’โˆ’3๐‘˜
(๐‘ก = 3)
๐‘œ๐‘Ÿ ๐‘’โˆ’3๐‘˜ = 0.8
๐‘˜ = 0.07438
from (2) ๐‘ข = ๐‘ข0๐‘’โˆ’๐‘˜๐‘ก
or ๐‘ข = 500 ๐‘’โˆ’0.07438๐‘ก๐‘š๐‘” ans. (๐‘ข0 = 500)
7
Ex. Radium decomposes at a rate proportional to the amount of radium
present. Suppose it is found that in 25 years approximately 1.1% of a certain
quantity of Radium has decomposed. Determine approximately how long will it
take for one half of the original amount of radium to decompose.
Sol. Let ๐‘ข(๐‘ก) denote the amount of material present at any time t.
Let ๐‘ข0 be the initial amount of radium at ๐‘ก = 0
By decay rule
๐‘‘๐‘ข
๐‘‘๐‘ก
= โˆ’๐‘˜u
or
๐‘‘๐‘ข
๐‘ข
= โˆ’๐‘˜. ๐‘‘๐‘ก
On integration log ๐‘ข = โˆ’๐‘˜๐‘ก + ๐‘
or ๐‘ข = ๐‘๐‘’โˆ’๐‘˜๐‘ก. . . . . . . . . . . . . . . . (1)
8
๐‘๐‘œ๐‘›๐‘ก๐‘–๐‘›๐‘ข๐‘’๐‘‘
using initial condition , at ๐‘ก = 0, ๐‘ข = ๐‘ข0 in (1)
๐‘ข0 = ๐‘ or ๐‘ข = ๐‘ข0๐‘’โˆ’๐‘˜๐‘ก...............(2)
when ๐‘ก = 25 , ๐‘ข = ๐‘ข0 โˆ’
1.1
100
๐‘ข0
๐น๐‘Ÿ๐‘œ๐‘š (2) 1 โˆ’
1.1
100
๐‘ข0 = ๐‘ข0๐‘’โˆ’25๐‘˜
๐‘˜ = 0.000443
๐‘ข = ๐‘ข0๐‘’โˆ’0.000443๐‘ก. . . . . . . (3)
Now we have to find the time taken for half the radium to disintegrate
u =
๐‘ข0
2
๐‘ข0
2
= ๐‘ข0๐‘’โˆ’0.000443๐‘ก(๐‘“๐‘Ÿ๐‘œ๐‘š 3)
๐‘ก = 1565 years app.
9
1
10
History
โ€ขIn the 17th century, Isaac Newton studied the nature of
cooling
โ€ขIn his studies he found that if there is a less than 10 degree
difference between two objects the rate of heat loss is
proportional to the temperature difference
โ€ขNewton applied this principle to estimate the temperature of
a red-hot iron ball by observing the time which it took to
cool from a red heat to a known temperature, and comparing
this with the time taken to cool through a known range at
ordinary temperatures.
โ€ขAccording to this law, if the excess of the temperature of the
body above its surroundings is observed at equal intervals of
time, the observed values will form a geometrical
progression with a common ratio
โ€ขHowever, Newtonโ€™s law was inaccurate at high temperatures
โ€ขPierre Dulong and Alexis Petit corrected Newtonโ€™s law by
clarifying the effect of the temperature of the surroundings
11
โ€ข Newton's Law of Cooling is used to model the temperature
change of an object of some temperature placed in an
environment of a different temperature. The law states that:
= the temperature of the object at time t
= the temperature of the surrounding environment (constant)
k = the constant of proportionality
โ€ข This law says that the rate of change of temperature is
proportional to the difference between the temperature of the
object and that of the surrounding environment.
๐‘‘๐‘‡
๐‘‘๐‘ก
= โˆ’๐‘˜(๐‘‡ โˆ’ ๐‘‡๐ด)
๐‘‡๐ด
๐‘‡
12
The Basic Concept
TO solve the differential equation steps are given below.
โ€ข Separate the variables. Get all the T 's on one side and the t on
the other side. The constants can be on either side.
โ€ข Integrate each side
โ€ข Leave in the previous form or solve for T
Find antiderivative of each side
๐‘‘๐‘‡
(๐‘‡ โˆ’ ๐‘‡๐ด)
= โˆ’๐‘˜๐‘‘๐‘ก
log( ๐‘‡ โˆ’ ๐‘‡๐ด) = โˆ’๐‘˜๐‘ก + ๐‘0
๐‘‡ โˆ’ ๐‘‡๐ด = ๐‘’โˆ’๐‘˜๐‘ก+๐‘0
๐‘‡ = ๐‘‡๐ด + ๐‘’โˆ’๐‘˜๐‘ก+๐‘0 = ๐‘‡๐ด + ๐‘’โˆ’๐‘˜๐‘ก
๐‘’๐‘0
T = ๐‘‡๐ด + ๐‘’โˆ’๐‘˜๐‘ก
๐‘
13
Ex. If a substance cools from 370k to 330k in 10minutes, when the temperature of the
surrounding air is 290k, find the temperature of the substance after 40 minutes.
Sol. Here ๐‘‡๐ด = 290 so that the solution is
๐‘‡ ๐‘ก = 290 + ๐‘๐‘’โˆ’๐‘˜๐‘ก
(T = ๐‘‡๐ด + ๐‘’โˆ’๐‘˜๐‘ก
๐‘ )
using condition at t=0 , ๐‘‡ = 370 (to find ๐‘)
370 =290+c ๐‘’0
or ๐‘ = 80
Thus ๐‘‡ ๐‘ก = 290 + 80๐‘’โˆ’๐‘˜๐‘ก
using condition ๐‘‡ 10 = 330 (to find ๐‘˜)
Thus 330 =290+80 ๐‘’โˆ’๐‘˜ .10
so that ๐‘˜ =
๐‘™๐‘œ๐‘”2
10
= 0.069314718
The required solution is
๐‘‡ ๐‘ก = 290 + 80๐‘’โˆ’.06931๐‘ก
Putting ๐‘ก = 40 ๐‘š๐‘–๐‘›๐‘  in the above solution
๐‘‡ 40 = 290 + 80๐‘’โˆ’.06931ร—40 โ‰ˆ 295
14
Example 2: A body of temperature 80ยฐF is placed in a room of constant temperature
50ยฐF at time t = 0. At the end of 5 minutes the body has cooled to a temperature of
70ยฐF. (a) Find the temperature of the body at the end of 10 minutes. (b) When will
the temperature of the body be 60ยฐF?
โ€ข Sol.
๐ฟ๐‘’๐‘ก ๐‘‡ ๐‘๐‘’ ๐‘กโ„Ž๐‘’ ๐‘ก๐‘’๐‘š๐‘๐‘’๐‘Ÿ๐‘Ž๐‘ก๐‘ข๐‘Ÿ๐‘’ ๐‘œ๐‘“ ๐‘กโ„Ž๐‘’ ๐‘๐‘œ๐‘‘๐‘ฆ. ๐‘‡โ„Ž๐‘’๐‘› ๐‘‡ ๐‘ก = 50 + ๐‘ ๐‘’โˆ’๐‘˜๐‘ก
๐‘ ๐‘–๐‘›๐‘๐‘’ ๐‘‡๐ด = 50.
๐ด๐‘๐‘๐‘™๐‘ฆ ๐‘กโ„Ž๐‘’ ๐‘๐‘œ๐‘›๐‘‘๐‘–๐‘ก๐‘–๐‘œ๐‘› ๐‘‡ 0 = 80, (๐‘ก๐‘œ ๐‘“๐‘–๐‘›๐‘‘ ๐‘);
80 = 50 + ๐‘ ๐‘’0 ๐‘œ๐‘Ÿ ๐‘ = 30
๐‘‡ ๐‘ก = 50+ 30 ๐‘’โˆ’๐‘˜๐‘ก
o๐‘Ÿ ๐‘ข๐‘ ๐‘–๐‘›๐‘” ๐‘๐‘œ๐‘›๐‘‘๐‘–๐‘ก๐‘–๐‘œ๐‘› ๐‘‡ 5 = 70 (๐‘ก๐‘œ ๐‘‘๐‘’๐‘ก๐‘’๐‘Ÿ๐‘š๐‘–๐‘›๐‘’ ๐‘˜);
70 = 50+ 30 ๐‘’โˆ’๐‘˜5
๐‘ ๐‘œ ๐‘กโ„Ž๐‘Ž๐‘ก ๐‘˜ =
1
5
log
3
2
๐‘˜ = .08109
๐‘‡โ„Ž๐‘ข๐‘  ๐‘กโ„Ž๐‘’ ๐‘Ÿ๐‘’๐‘ž๐‘ข๐‘–๐‘Ÿ๐‘’๐‘‘ ๐‘ ๐‘œ๐‘™๐‘ข๐‘ก๐‘–๐‘œ๐‘› ๐‘คโ„Ž๐‘–๐‘โ„Ž ๐‘”๐‘–๐‘ฃ๐‘’๐‘  ๐‘กโ„Ž๐‘’ ๐‘ก๐‘’๐‘š๐‘๐‘’๐‘Ÿ๐‘Ž๐‘ก๐‘ข๐‘Ÿ๐‘’ ๐‘œ๐‘“
๐‘กโ„Ž๐‘’ ๐‘๐‘œ๐‘‘๐‘ฆ ๐‘Ž๐‘ก ๐‘Ž๐‘›๐‘ฆ ๐‘ก๐‘–๐‘š๐‘’ ๐‘ก ๐‘–๐‘ 
๐‘‡ ๐‘ก = 50+ 30 ๐‘’โˆ’.08109 ๐‘ก
(a). ๐‘‡ 10 = 50 + 30 ๐‘’โˆ’.08109(10) โ‰ˆ 63.330F
(b). 60 = 50 + 30 ๐‘’โˆ’.08109๐‘ก ๐‘ ๐‘œ๐‘™๐‘ฃ๐‘–๐‘›๐‘” ๐‘ค๐‘’ ๐‘”๐‘’๐‘ก ๐‘ก โ‰ˆ13.55mts
15
Ans. It takes about 8.88 more minutes For the object to cool to a temperature of 110ยฐ
110ยฐ
For the object to cool to a temperature of
110ยฐ
The Problem
Spencer and Vikalp are cranking out math problems at Safeway. Shankar is at home
making pizza. He calls Spencer and tells him that he is taking the pizza out from
the oven right now. Spencer and Vikalp need to get back home in time so that
they can enjoy the pizza at a warm temperature of 110ยฐF.
The pizza, heated to a temperature of 450ยฐF, is taken out of an oven and placed in a
75ยฐF room at time t=0 minutes. If the pizza cools from 450ยฐ to 370ยฐ in 1 minute,
how much longer will it take for its temperature to decrease to 110ยฐ?
16
A copper ball is heated to a
temperature 0f 100 0 C and it is
placed in water which is maintained
at a temperature of 400 C. If in 4
mins the temperature of the ball is
reduced to 600 ,find the time at
which the temperature of the ball is
500 C.
ANS.6.5 mins
17
Real Life Applications
โ€ข To predict how long it takes for a hot cup of tea to cool down to a
certain temperature
โ€ข To find the temperature of a soda placed in a refrigerator by a
certain amount of time.
โ€ข In crime scenes, Newtonโ€™s law of cooling can indicate the time
of death given the probable body temperature at time of
death and the current body temperature
โ€ข
18
SIMPLE ELECTRIC CIRCUITS
๐ด๐‘› ๐‘’๐‘™๐‘’๐‘๐‘ก๐‘Ÿ๐‘–๐‘ ๐‘๐‘–๐‘Ÿ๐‘๐‘ข๐‘–๐‘ก ๐‘๐‘œ๐‘›๐‘ ๐‘–๐‘ ๐‘ก๐‘  ๐‘œ๐‘“ ๐‘Ž ๐‘ ๐‘œ๐‘ข๐‘Ÿ๐‘๐‘’ ๐‘œ๐‘“ ๐‘’๐‘™๐‘’๐‘๐‘ก๐‘Ÿ๐‘–๐‘ ๐‘’๐‘›๐‘’๐‘Ÿ๐‘”๐‘ฆ ๐‘’๐‘™๐‘’๐‘๐‘ก๐‘Ÿ๐‘œ๐‘š๐‘œ๐‘ก๐‘–๐‘ฃ๐‘’ ๐‘“๐‘œ๐‘Ÿ๐‘๐‘’
๐‘Ž๐‘›๐‘‘ ๐‘’๐‘™๐‘’๐‘š๐‘’๐‘›๐‘ก๐‘  ๐‘ ๐‘ข๐‘โ„Ž ๐‘Ž๐‘  ๐‘Ÿ๐‘’๐‘ ๐‘–๐‘ ๐‘ก๐‘œ๐‘Ÿ๐‘  , ๐‘–๐‘›๐‘‘๐‘ข๐‘๐‘ก๐‘œ๐‘Ÿ๐‘  ๐‘œ๐‘Ÿ ๐‘ฃ๐‘œ๐‘™๐‘ก๐‘Ž๐‘”๐‘’ ๐‘Ž๐‘›๐‘‘ ๐‘๐‘Ž๐‘๐‘Ž๐‘๐‘–๐‘ก๐‘œ๐‘Ÿ๐‘ .
๐ด ๐‘š๐‘Ž๐‘กโ„Ž๐‘’๐‘š๐‘Ž๐‘ก๐‘–๐‘๐‘Ž๐‘™ ๐‘š๐‘œ๐‘‘๐‘’๐‘™ ๐‘œ๐‘“ ๐‘Ž๐‘› ๐‘’๐‘™๐‘’๐‘๐‘ก๐‘Ÿ๐‘–๐‘ ๐‘๐‘–๐‘Ÿ๐‘๐‘ข๐‘–๐‘ก ๐‘–๐‘  ๐‘Ÿ๐‘’๐‘๐‘Ÿ๐‘’๐‘ ๐‘’๐‘›๐‘ก๐‘’๐‘‘ ๐‘๐‘ฆ ๐‘™๐‘–๐‘›๐‘’๐‘Ž๐‘Ÿ
๐‘‘๐‘–๐‘“๐‘“๐‘’๐‘Ÿ๐‘’๐‘›๐‘ก๐‘–๐‘Ž๐‘™ ๐‘’๐‘ž๐‘ข๐‘Ž๐‘ก๐‘–๐‘œ๐‘›๐‘ . ๐‘‡๐‘œ ๐‘“๐‘œ๐‘Ÿ๐‘š ๐‘ ๐‘ข๐‘โ„Ž ๐‘Ž๐‘› ๐‘’๐‘ž๐‘ข๐‘Ž๐‘ก๐‘–๐‘œ๐‘› , ๐‘กโ„Ž๐‘’ ๐‘“๐‘œ๐‘™๐‘™๐‘œ๐‘ค๐‘–๐‘›๐‘”
๐‘Ÿ๐‘’๐‘™๐‘Ž๐‘ก๐‘–๐‘œ๐‘›๐‘ โ„Ž๐‘–๐‘๐‘  ๐‘Ž๐‘Ÿ๐‘’ ๐‘›๐‘’๐‘’๐‘‘๐‘’๐‘‘:
๐‘‡โ„Ž๐‘’ ๐‘ฃ๐‘œ๐‘™๐‘ก๐‘Ž๐‘”๐‘’ ๐‘‘๐‘Ÿ๐‘œ๐‘ ๐ธ๐‘… ๐‘Ž๐‘๐‘Ÿ๐‘œ๐‘ ๐‘  ๐‘Ž ๐‘Ÿ๐‘’๐‘ ๐‘–๐‘ ๐‘ก๐‘œ๐‘Ÿ ๐‘–๐‘  ๐‘๐‘Ÿ๐‘œ๐‘๐‘œ๐‘Ÿ๐‘ก๐‘–๐‘œ๐‘›๐‘Ž๐‘™ ๐‘ก๐‘œ ๐‘กโ„Ž๐‘’ ๐‘–๐‘›๐‘ ๐‘ก๐‘Ž๐‘›๐‘ก๐‘Ž๐‘›๐‘’๐‘œ๐‘ข๐‘ 
๐‘๐‘ข๐‘Ÿ๐‘Ÿ๐‘’๐‘›๐‘ก ๐ผ(๐‘ก) ๐‘กโ„Ž๐‘Ÿ๐‘œ๐‘ข๐‘”โ„Ž ๐‘–๐‘ก:
๐‘ฌ๐‘น= ๐‘น๐‘ฐ ๐ป๐‘’๐‘Ÿ๐‘’ ๐‘กโ„Ž๐‘’ ๐‘๐‘œ๐‘›๐‘ ๐‘ก๐‘Ž๐‘›๐‘ก ๐‘œ๐‘“ ๐‘๐‘Ÿ๐‘œ๐‘๐‘œ๐‘Ÿ๐‘ก๐‘–๐‘œ๐‘›๐‘Ž๐‘™๐‘–๐‘ก๐‘ฆ ๐‘… ๐‘–๐‘  ๐‘˜๐‘›๐‘œ๐‘ค๐‘›
๐‘Ž๐‘  ๐‘กโ„Ž๐‘’ ๐‘Ÿ๐‘’๐‘ ๐‘–๐‘ ๐‘ก๐‘Ž๐‘›๐‘๐‘’ ๐‘œ๐‘“ ๐‘กโ„Ž๐‘’ ๐‘Ÿ๐‘’๐‘ ๐‘–๐‘ ๐‘ก๐‘œ๐‘Ÿ๐‘ .
๐‘‡โ„Ž๐‘’ ๐‘ฃ๐‘œ๐‘™๐‘ก๐‘Ž๐‘”๐‘’ ๐‘‘๐‘Ÿ๐‘œ๐‘ ๐ธ๐ฟ ๐‘Ž๐‘๐‘Ÿ๐‘œ๐‘ ๐‘  ๐‘Ž๐‘› ๐‘–๐‘›๐‘‘๐‘ข๐‘๐‘ก๐‘œ๐‘Ÿ ๐‘–๐‘  ๐‘๐‘Ÿ๐‘œ๐‘๐‘œ๐‘Ÿ๐‘ก๐‘–๐‘œ๐‘›๐‘Ž๐‘™ ๐‘ก๐‘œ ๐‘กโ„Ž๐‘’ ๐‘–๐‘›๐‘ ๐‘ก๐‘Ž๐‘›๐‘ก๐‘Ž๐‘›๐‘’๐‘œ๐‘ข๐‘ 
๐‘ก๐‘–๐‘š๐‘’ ๐‘Ÿ๐‘Ž๐‘ก๐‘’ ๐‘œ๐‘“ ๐‘โ„Ž๐‘Ž๐‘›๐‘”๐‘’ ๐‘œ๐‘“ ๐‘๐‘ข๐‘Ÿ๐‘Ÿ๐‘’๐‘›๐‘ก: ๐‘ฌ๐‘ณ = ๐‘ณ
๐’…๐‘ฐ
๐’…๐‘ป
๐ป๐‘’๐‘Ÿ๐‘’ ๐‘กโ„Ž๐‘’ ๐‘๐‘œ๐‘›๐‘ ๐‘ก๐‘Ž๐‘›๐‘ก ๐‘œ๐‘“ ๐‘๐‘Ÿ๐‘œ๐‘๐‘œ๐‘Ÿ๐‘ก๐‘–๐‘œ๐‘›๐‘Ž๐‘™๐‘–๐‘ก๐‘ฆ ๐ฟ ๐‘–๐‘  ๐‘˜๐‘›๐‘œ๐‘ค๐‘›
๐‘Ž๐‘  ๐‘กโ„Ž๐‘’ ๐‘–๐‘›๐‘‘๐‘ข๐‘๐‘ก๐‘Ž๐‘›๐‘๐‘’ ๐‘œ๐‘“ ๐‘กโ„Ž๐‘’ ๐‘–๐‘›๐‘‘๐‘ข๐‘๐‘ก๐‘œ๐‘Ÿ๐‘ .
๐‘‡โ„Ž๐‘’ ๐‘ฃ๐‘œ๐‘™๐‘ก๐‘Ž๐‘”๐‘’ ๐‘‘๐‘Ÿ๐‘œ๐‘ ๐ธ๐‘ ๐‘Ž๐‘๐‘Ÿ๐‘œ๐‘ ๐‘  ๐‘Ž ๐‘๐‘Ž๐‘๐‘Ž๐‘๐‘–๐‘ก๐‘œ๐‘Ÿ ๐‘–๐‘  ๐‘๐‘Ÿ๐‘œ๐‘๐‘œ๐‘Ÿ๐‘ก๐‘–๐‘œ๐‘›๐‘Ž๐‘™ ๐‘ก๐‘œ ๐‘กโ„Ž๐‘’ ๐‘–๐‘›๐‘ ๐‘ก๐‘Ž๐‘›๐‘ก๐‘Ž๐‘›๐‘’๐‘œ๐‘ข๐‘ 
๐‘’๐‘™๐‘’๐‘๐‘ก๐‘Ÿ๐‘–๐‘ ๐‘โ„Ž๐‘Ž๐‘Ÿ๐‘”๐‘’ ๐‘„ ๐‘œ๐‘› ๐‘กโ„Ž๐‘’ ๐‘๐‘Ž๐‘๐‘Ž๐‘๐‘–๐‘ก๐‘Ž๐‘›๐‘๐‘’: ๐‘ฌ๐‘ช =
๐Ÿ
๐‘ช
๐‘ธ
๐ป๐‘’๐‘Ÿ๐‘’ ๐ถ ๐‘–๐‘  ๐‘˜๐‘›๐‘œ๐‘ค๐‘› ๐‘Ž๐‘  ๐‘กโ„Ž๐‘’ ๐‘๐‘Ž๐‘๐‘Ž๐‘๐‘–๐‘ก๐‘Ž๐‘›๐‘๐‘’. 19
LEIBNITZโ€™S FIRST ORDER DIFFERENTIAL EQUATION
๐‘‘๐‘ฆ
๐‘‘๐‘ฅ
+ ๐‘ƒ ๐‘ฅ ๐‘ฆ = ๐‘„(๐‘ฅ)
๐ผ๐‘ก๐‘  ๐‘ ๐‘œ๐‘™๐‘ข๐‘ก๐‘–๐‘œ๐‘› ๐‘–๐‘  ๐‘ฆ ร— ๐ผ. ๐น =สƒ ๐‘„ ร— ๐ผ. ๐น. ๐‘‘๐‘ฅ + ๐‘
๐‘คโ„Ž๐‘’๐‘Ÿ๐‘’ ๐ผ. ๐น. = ๐‘’สƒ ๐‘ƒ ๐‘‘๐‘ฅ
20
๐พ๐ผ๐‘…๐ถ๐ป๐ป๐‘‚๐น๐นโ€ฒ๐‘† ๐ฟ๐ด๐‘Š
๐‘‡โ„Ž๐‘’ ๐‘Ž๐‘™๐‘”๐‘’๐‘๐‘Ÿ๐‘Ž๐‘–๐‘ ๐‘ ๐‘ข๐‘š ๐‘œ๐‘“ ๐‘Ž๐‘™๐‘™ ๐‘กโ„Ž๐‘’ ๐‘–๐‘›๐‘ ๐‘ก๐‘Ž๐‘›๐‘ก๐‘Ž๐‘›๐‘’๐‘œ๐‘ข๐‘  ๐‘ฃ๐‘œ๐‘™๐‘ก๐‘Ž๐‘”๐‘’ ๐‘‘๐‘Ÿ๐‘œ๐‘๐‘  ๐‘Ž๐‘Ÿ๐‘œ๐‘ข๐‘›๐‘‘
๐‘Ž๐‘›๐‘ฆ ๐‘๐‘™๐‘œ๐‘ ๐‘’๐‘‘ ๐‘™๐‘œ๐‘œ๐‘ ๐‘–๐‘  ๐‘ง๐‘’๐‘Ÿ๐‘œ ๐‘œ๐‘Ÿ ๐‘กโ„Ž๐‘’ ๐‘ฃ๐‘œ๐‘™๐‘ก๐‘Ž๐‘”๐‘’ ๐‘–๐‘š๐‘๐‘Ÿ๐‘’๐‘ ๐‘ ๐‘’๐‘‘ ๐‘œ๐‘› ๐‘Ž ๐‘๐‘™๐‘œ๐‘ ๐‘’๐‘‘ ๐‘™๐‘œ๐‘œ๐‘ ๐‘–๐‘  ๐‘’๐‘ž๐‘ข๐‘Ž๐‘™
๐‘ก๐‘œ ๐‘กโ„Ž๐‘’ ๐‘ ๐‘ข๐‘š ๐‘œ๐‘“ ๐‘กโ„Ž๐‘’ ๐‘ฃ๐‘œ๐‘™๐‘ก๐‘Ž๐‘”๐‘’ ๐‘‘๐‘Ÿ๐‘œ๐‘๐‘  ๐‘–๐‘› ๐‘กโ„Ž๐‘’ ๐‘Ÿ๐‘’๐‘ ๐‘ก ๐‘œ๐‘“ ๐‘กโ„Ž๐‘’ ๐‘™๐‘œ๐‘œ๐‘. ๐ถ๐‘œ๐‘›๐‘ ๐‘–๐‘‘๐‘’๐‘Ÿ ๐‘ก๐‘ค๐‘œ
๐‘ ๐‘–๐‘š๐‘๐‘™๐‘’ ๐‘๐‘Ž๐‘ ๐‘’๐‘  of electric circuits.
๐‘…๐ฟ ๐ถ๐‘–๐‘Ÿ๐‘๐‘ข๐‘–๐‘ก:๐‘‡โ„Ž๐‘’ ๐‘ฃ๐‘œ๐‘™๐‘ก๐‘Ž๐‘”๐‘’ ๐‘‘๐‘Ÿ๐‘œ๐‘ ๐‘Ž๐‘๐‘Ÿ๐‘œ๐‘ ๐‘  ๐‘กโ„Ž๐‘’ ๐‘Ÿ๐‘’๐‘ ๐‘–๐‘ ๐‘ก๐‘œ๐‘Ÿ ๐‘–๐‘ 
๐‘…๐ผ ๐‘Ž๐‘›๐‘‘ ๐‘Ž๐‘๐‘Ÿ๐‘œ๐‘ ๐‘  ๐‘กโ„Ž๐‘’ ๐‘–๐‘›๐‘‘๐‘ข๐‘๐‘ก๐‘œ๐‘Ÿ ๐‘–๐‘  L
๐‘‘๐ผ
๐‘‘๐‘ก
Using kirchhoffโ€ฒs law
๐ผ๐‘› ๐‘…๐ฟ โˆ’ ๐ถ๐‘–๐‘Ÿ๐‘๐‘ข๐‘–๐‘ก ๐‘กโ„Ž๐‘’ ๐‘‘๐‘–๐‘“๐‘“๐‘’๐‘Ÿ๐‘’๐‘›๐‘ก๐‘–๐‘Ž๐‘™ ๐‘’๐‘ž๐‘ข๐‘Ž๐‘ก๐‘–๐‘œ๐‘› ๐‘–๐‘  ๐‘”๐‘–๐‘ฃ๐‘’๐‘› ๐‘๐‘ฆ
L
๐‘‘๐ผ
๐‘‘๐‘ก
+ ๐‘…๐ผ = ๐ธ ๐‘ก ๐‘œ๐‘Ÿ
๐‘‘๐ผ
๐‘‘๐‘ก
+
๐‘…
๐ฟ
๐ผ =
๐ธ ๐‘ก
๐ฟ
๐‘คโ„Ž๐‘–๐‘โ„Ž โ„Ž๐‘Ž๐‘  ๐‘Ž๐‘› ๐‘–๐‘›๐‘ก๐‘’๐‘”๐‘Ÿ๐‘Ž๐‘ก๐‘–๐‘›๐‘” ๐‘“๐‘Ž๐‘๐‘ก๐‘œ๐‘Ÿ ๐‘’โ€ซืฌโ€ฌ
๐‘…
๐ฟ
๐‘‘๐‘ก
= ๐‘’
๐‘…
๐ฟ
๐‘ก
= ๐‘’๐›ผ๐‘ก
๐‘‡โ„Ž๐‘’ ๐‘”๐‘’๐‘›๐‘’๐‘Ÿ๐‘Ž๐‘™ ๐‘ ๐‘œ๐‘™๐‘ข๐‘ก๐‘–๐‘œ๐‘› ๐‘–๐‘  ๐ผ ๐‘ก . ๐‘’๐›ผ๐‘ก
= เถฑ
๐ธ ๐‘ก
๐ฟ
. ๐‘’๐›ผ๐‘ก
๐‘‘๐‘ก + ๐ถ
21
๐‘…๐ถ ๐ถ๐‘–๐‘Ÿ๐‘๐‘ข๐‘–๐‘ก:
Tโ„Ž๐‘’ ๐‘ฃ๐‘œ๐‘™๐‘ก๐‘Ž๐‘”๐‘’ ๐‘‘๐‘Ÿ๐‘œ๐‘ ๐ธ๐‘ ๐‘Ž๐‘๐‘Ÿ๐‘œ๐‘ ๐‘  ๐‘Ž ๐‘๐‘Ž๐‘๐‘Ž๐‘๐‘–๐‘ก๐‘œ๐‘Ÿ ๐‘–๐‘  ๐‘๐‘Ÿ๐‘œ๐‘๐‘œ๐‘Ÿ๐‘ก๐‘–๐‘œ๐‘›๐‘Ž๐‘™ ๐‘ก๐‘œ ๐‘กโ„Ž๐‘’ ๐‘–๐‘›๐‘ ๐‘ก๐‘Ž๐‘›๐‘ก๐‘Ž๐‘›๐‘’๐‘œ๐‘ข๐‘ 
๐‘’๐‘™๐‘’๐‘๐‘ก๐‘Ÿ๐‘–๐‘ ๐‘โ„Ž๐‘Ž๐‘Ÿ๐‘”๐‘’ ๐‘„ ๐‘œ๐‘› ๐‘กโ„Ž๐‘’ ๐‘๐‘Ž๐‘๐‘Ž๐‘๐‘–๐‘ก๐‘Ž๐‘›๐‘๐‘’: ๐ธ๐ถ =
1
๐ถ
๐‘„ โ€ฆ โ€ฆ โ€ฆ โ€ฆ โ€ฆ (1)
๐ป๐‘’๐‘Ÿ๐‘’ ๐ถ ๐‘–๐‘  ๐‘˜๐‘›๐‘œ๐‘ค๐‘› ๐‘Ž๐‘  ๐‘กโ„Ž๐‘’ ๐‘๐‘Ž๐‘๐‘Ž๐‘๐‘–๐‘ก๐‘Ž๐‘›๐‘๐‘’. ๐‘†๐‘–๐‘›๐‘๐‘’ ๐‘๐‘ข๐‘Ÿ๐‘Ÿ๐‘’๐‘›๐‘ก ๐‘–๐‘  ๐‘กโ„Ž๐‘’ ๐‘ก๐‘–๐‘š๐‘’ ๐‘Ÿ๐‘Ž๐‘ก๐‘’ ๐‘œ๐‘“ ๐‘โ„Ž๐‘Ž๐‘›๐‘”๐‘’
๐‘œ๐‘“ ๐‘โ„Ž๐‘Ž๐‘Ÿ๐‘”๐‘’ , ๐ผ ๐‘ก =
๐‘‘๐‘„
๐‘‘๐‘ก
๐‘œ๐‘Ÿ ๐‘ข๐‘ ๐‘–๐‘›๐‘” ๐‘–๐‘ก (1) ๐‘๐‘Ž๐‘› ๐‘๐‘’ ๐‘ค๐‘Ÿ๐‘–๐‘ก๐‘ก๐‘’๐‘› ๐‘Ž๐‘ 
๐ธ๐ถ =
1
๐ถ
เถฑ
๐‘ก0
๐‘ก
๐ผ ๐‘ก ๐‘‘๐‘ก
๐ผ๐‘› ๐‘กโ„Ž๐‘–๐‘  ๐‘๐‘Ž๐‘ ๐‘’ ๐‘‘๐‘–๐‘“๐‘“๐‘’๐‘Ÿ๐‘’๐‘›๐‘ก๐‘–๐‘Ž๐‘™ ๐‘’๐‘ž๐‘ข๐‘Ž๐‘ก๐‘–๐‘œ๐‘› ๐‘–๐‘  ๐‘”๐‘–๐‘ฃ๐‘’๐‘› ๐‘๐‘ฆ
๐‘…๐ผ +
1
๐ถ
เถฑ
๐‘ก0
๐‘ก
๐ผ ๐‘ก ๐‘‘๐‘ก = E t ๐‘คโ„Ž๐‘–๐‘โ„Ž ๐‘œ๐‘› ๐‘‘๐‘–๐‘“๐‘“๐‘’๐‘Ÿ๐‘’๐‘›๐‘ก๐‘–๐‘Ž๐‘ก๐‘–๐‘œ๐‘› ๐‘Ÿ๐‘’๐‘‘๐‘ข๐‘๐‘’๐‘  ๐‘ก๐‘œ
๐‘…
๐‘‘๐ผ
๐‘‘๐‘ก
+
1
๐ถ
๐ผ =
๐‘‘๐ธ
๐‘‘๐‘ก
๐‘œ๐‘Ÿ
๐‘‘๐ผ
๐‘‘๐‘ก
+
1
๐‘…๐ถ
๐ผ =
1
๐‘…
๐‘‘๐ธ
๐‘‘๐‘ก
(first order linear D .E.)
๐‘คโ„Ž๐‘–๐‘โ„Ž โ„Ž๐‘Ž๐‘  ๐‘Ž๐‘› ๐‘–๐‘›๐‘ก๐‘’๐‘”๐‘Ÿ๐‘Ž๐‘ก๐‘–๐‘›๐‘” ๐‘“๐‘Ž๐‘๐‘ก๐‘œ๐‘Ÿ ๐‘’โ€ซืฌโ€ฌ
1
๐ถ๐‘…
๐‘‘๐‘ก
= ๐‘’
๐‘ก
๐ถ๐‘…
๐‘‡โ„Ž๐‘’ ๐‘”๐‘’๐‘›๐‘’๐‘Ÿ๐‘Ž๐‘™ ๐‘ ๐‘œ๐‘™๐‘ข๐‘ก๐‘–๐‘œ๐‘› ๐‘–๐‘  ๐ผ ๐‘ก . ๐‘’
๐‘ก
๐ถ๐‘… = เถฑ
1
๐‘…
๐‘‘๐ธ
๐‘‘๐‘ก
. ๐‘’
๐‘ก
๐ถ๐‘…๐‘‘๐‘ก + ๐‘
22
Example.Find the current at any time ๐‘ก > 0 in a circuit having in series
a constant e.m.f. 40v, a resistor 10๐‘œโ„Ž๐‘š , an inductor 0.2H given that
initial current is zero.
โ€ข ๐‘†๐‘‚๐ฟ. ๐ธ๐‘ž๐‘ข๐‘Ž๐‘ก๐‘–๐‘œ๐‘› ๐‘“๐‘œ๐‘Ÿ ๐‘…๐ฟ ๐‘๐‘–๐‘Ÿ๐‘๐‘ข๐‘–๐‘ก ๐‘–๐‘ 
L
๐‘‘๐ผ
๐‘‘๐‘ก
+ ๐‘…๐ผ = ๐ธ ๐‘ก
๐ป๐‘’๐‘Ÿ๐‘’ ๐ฟ = 0.2 , ๐‘… = 10, ๐ธ = 40
.2
๐‘‘๐ผ
๐‘‘๐‘ก
+ 10๐ผ = 40 ๐‘œ๐‘Ÿ
๐‘‘๐ผ
๐‘‘๐‘ก
+ 50๐ผ = 200((first order linear D .E.))
๐ผ๐‘ก๐‘  ๐‘”๐‘’๐‘›๐‘’๐‘Ÿ๐‘Ž๐‘™ ๐‘ ๐‘œ๐‘™๐‘ข๐‘ก๐‘–๐‘œ๐‘› ๐‘–๐‘  ๐ผ ๐‘ก . ๐‘’50๐‘ก = โ€ซืฌโ€ฌ(200. ๐‘’50๐‘ก ๐‘‘๐‘ก + ๐‘)
๐‘ข๐‘ ๐‘–๐‘›๐‘” ๐‘–๐‘›๐‘–๐‘ก๐‘–๐‘Ž๐‘™ ๐‘๐‘œ๐‘›๐‘‘๐‘–๐‘ก๐‘–๐‘œ๐‘› ๐‘ค๐‘’ ๐‘”๐‘’๐‘ก ๐‘ = โˆ’4
๐ผ ๐‘ก = 4(1 โˆ’ ๐‘’โˆ’50๐‘ก) ans.
23
Example.2 A capacitor ๐ถ = 0.01๐น ๐‘–๐‘› ๐‘ ๐‘’๐‘Ÿ๐‘–๐‘’๐‘  ๐‘ค๐‘–๐‘กโ„Ž ๐‘Ž ๐‘Ÿ๐‘’๐‘ ๐‘–๐‘ ๐‘ก๐‘œ๐‘Ÿ ๐‘… = 20 ๐‘œโ„Ž๐‘š๐‘ 
๐‘–๐‘  ๐‘โ„Ž๐‘Ž๐‘Ÿ๐‘”๐‘’๐‘‘ ๐‘“๐‘Ÿ๐‘œ๐‘š ๐‘Ž ๐‘๐‘Ž๐‘ก๐‘ก๐‘’๐‘Ÿ๐‘ฆ ๐ธ0 = 10 ๐‘‰ . ๐ด๐‘ ๐‘ ๐‘ข๐‘š๐‘–๐‘›๐‘” ๐‘กโ„Ž๐‘Ž๐‘ก ๐‘–๐‘›๐‘–๐‘ก๐‘–๐‘Ž๐‘™๐‘™๐‘ฆ ๐‘กโ„Ž๐‘’ capacitor
๐‘–๐‘  ๐‘๐‘œ๐‘š๐‘๐‘™๐‘’๐‘ก๐‘’๐‘™๐‘ฆ ๐‘ข๐‘›๐‘โ„Ž๐‘Ž๐‘Ÿ๐‘”๐‘’๐‘‘ , ๐‘‘๐‘’๐‘ก๐‘’๐‘Ÿ๐‘š๐‘–๐‘›๐‘’ ๐‘กโ„Ž๐‘’ ๐‘โ„Ž๐‘Ž๐‘Ÿ๐‘”๐‘’ ๐‘„ ๐‘ก , ๐‘ฃ๐‘œ๐‘™๐‘ก๐‘Ž๐‘”๐‘’ ๐‘ฃ ๐‘ก ๐‘œ๐‘› ๐‘กโ„Ž๐‘’
๐‘๐‘Ž๐‘๐‘Ž๐‘๐‘–๐‘ก๐‘œ๐‘Ÿ ๐‘Ž๐‘›๐‘‘ ๐‘กโ„Ž๐‘’ ๐‘๐‘ข๐‘Ÿ๐‘Ÿ๐‘’๐‘›๐‘ก.
๐‘†๐‘‚๐ฟ. ๐ธ๐‘ž๐‘ข๐‘Ž๐‘ก๐‘–๐‘œ๐‘› ๐‘–๐‘  ๐‘…๐ผ +
๐‘„
๐ถ
= ๐ธ
20๐ผ +
๐‘„
0.01
= 10 ๐‘œ๐‘Ÿ
๐‘‘๐‘„
๐‘‘๐‘ก
+ 5๐‘„ = 0.5
๐‘‡โ„Ž๐‘’ ๐‘”๐‘’๐‘›๐‘’๐‘Ÿ๐‘Ž๐‘™ ๐‘ ๐‘œ๐‘™๐‘ข๐‘ก๐‘–๐‘œ๐‘› ๐‘–๐‘  ๐‘„ = 0.1 + ๐‘๐‘’โˆ’5๐‘ก
๐‘ข๐‘ ๐‘–๐‘›๐‘” ๐‘–๐‘›๐‘–๐‘ก๐‘–๐‘Ž๐‘™ ๐‘๐‘œ๐‘›๐‘‘๐‘–๐‘ก๐‘–๐‘œ๐‘› ๐‘ค๐‘’ ๐‘”๐‘’๐‘ก ๐‘ = โˆ’0.1
๐‘‡โ„Ž๐‘ข๐‘  ๐‘กโ„Ž๐‘’ ๐‘โ„Ž๐‘Ž๐‘Ÿ๐‘”๐‘’ ๐‘„ ๐‘ก = 0.1(1 โˆ’ ๐‘’โˆ’5๐‘ก)
๐‘‰๐‘œ๐‘™๐‘ก๐‘Ž๐‘”๐‘’ ๐‘ฃ ๐‘ก =
๐‘„ ๐‘ก
๐ถ
= 10(1 โˆ’ ๐‘’โˆ’5๐‘ก)
๐ถ๐‘ข๐‘Ÿ๐‘Ÿ๐‘’๐‘›๐‘ก ๐ผ ๐‘ก =
๐‘‘๐‘„
๐‘‘๐‘ก
= 0.5๐‘’โˆ’5๐‘ก
.
24
MASS โ€“SPRING MECHANICAL SYSTEM
Airplanes, bridges, ships, machines, cars etc. are vibrating mechanical systems. The
simplest mechanical system is the mass-spring system which consists of a coil spring of
natural length L, suspended vertically from a fixed point support(such a ceiling or beam).A
constant mass โ€˜mโ€™ attached to the lower end of the spring to a length(๐ฟ + ๐‘’) and comes to
rest which is known as the static equilibrium position. Here ๐‘’ > 0 is the static deflection
due to hanging the mass on the spring.
Now the mass is set in motion either by pushing or
pulling the mass from equilibrium position. Since
the motion takes place in the vertical direction,
we consider the downward direction as positive.
25
In order to determine the displacement ๐‘ฅ(t) of the mass from the static
equilibrium position, we use Newtonโ€™s second law and Hookeโ€™s law. The
mass ๐‘š is subjected to the following forces ;
1. A gravitational force ๐‘š๐‘” acting downwards.
2. A spring restoring force โˆ’k(๐‘ฅ ๐‘ก + ๐‘’) due to displacement of the spring
from rest position .
3. a frictional force of the medium , opposing the motion and of magnitude
โˆ’ ๐‘ แˆถ
๐‘ฅ(๐‘ก).
4. an external force F(๐‘ก)
The differential equation describing the motion of the mass is obtained by
Newtonโ€™s second law as
26
๐‘š แˆท
๐‘ฅ(๐‘ก)=๐‘š๐‘” โˆ’ k(๐‘ฅ ๐‘ก + ๐‘’) โˆ’ ๐‘ แˆถ
๐‘ฅ(๐‘ก)+๐น(๐‘ก)
Here k> 0 is known as spring constant , ๐‘ โ‰ฅ 0 damping constant , g is the
gravitational constant. Since the force on the mass exerted by the spring must
be equal and opposite to the gravitational force on the mass, we have
k๐‘’ = ๐‘š๐‘”.Thus the D.E. modelling the motion of mass is
๐‘š แˆท
๐‘ฅ(๐‘ก)+๐‘ แˆถ
๐‘ฅ(๐‘ก)+ k ๐‘ฅ ๐‘ก = ๐น(๐‘ก)โ€ฆโ€ฆโ€ฆ..(1)
which is a second order linear non-homogeneous equation with constant
coefficients. The displacement of the mass at any time ๐‘ก is ๐‘ฅ(๐‘ก) which is the
solution of the differential equation (1) .The three important cases of D.E. (1)
are referred to as free motion ,damped motion, and forced motion.
27
Free, Undamped Oscillations of a spring
In the absence of the external force ( ๐น ๐‘ก = 0) and neglecting the damping force(๐‘ = 0) D.E.
(1) reduce to ๐‘š แˆท
๐‘ฅ(๐‘ก)+ k๐‘ฅ=0โ€ฆโ€ฆโ€ฆ..(2)
which is harmonic oscillator equation. Putting ๐œ”2 =
๐‘˜
๐‘š
, the equation (2) takes the form
แˆท
๐‘ฅ+ ๐œ”2๐‘ฅ=0
whose general solution is given by ๐‘ฅ ๐‘ก = ๐‘1๐‘๐‘œ๐‘  ๐œ”t+ ๐‘2๐‘ ๐‘–๐‘› ๐œ”t โ€ฆโ€ฆโ€ฆ(3)
Introducing ๐‘1=A๐‘๐‘œ๐‘ ๐œ™, ๐‘2=โˆ’A๐‘ ๐‘–๐‘›๐œ™ equation (3) can be written as
๐‘ฅ ๐‘ก = A ๐‘๐‘œ๐‘ ๐œ™ ๐‘๐‘œ๐‘  ๐œ”t - A ๐‘ ๐‘–๐‘›๐œ™ ๐‘ ๐‘–๐‘› ๐œ”t ,
i.e. ๐‘ฅ ๐‘ก =๐ด ๐‘๐‘œ๐‘ (๐œ”t+๐œ™)โ€ฆโ€ฆโ€ฆโ€ฆโ€ฆ(4)
where ๐ด = ๐‘1
2 + ๐‘2
2 , tan๐œ™=โˆ’
๐‘2
๐‘1
. The constant A is called the amplitude of the motion
and gives the maximum displacement of the mass from its equilibrium position. Thus the free
, undamped motion of the mass is a simple harmonic motion , which is periodic.
28
The period of the motion is the time interval between two successive
maxima and is given by ๐‘‡ =
2๐œ‹
๐œ”
= 2๐œ‹
๐‘š
๐‘˜
the natural frequency of the
motion is the reciprocal of the period , which gives the number of
oscillations per second. Thus the natural frequency is the undamped
Frequency (i.e. frequency of the system without damping)
29
Free, Damped Motion of a Mass
Every system has some damping , otherwise the system continues to move forever.
Damping force opposes oscillations. Damping not only decreases the amplitude but
also alters the natural frequency of the system. With external force absent (๐น ๐‘ก = 0)
and damping present (๐‘ โ‰  0), the D.E.(1) takes the form
๐‘š แˆท
๐‘ฅ+๐‘ แˆถ
๐‘ฅ+ k๐‘ฅ=0 or แˆท
๐‘ฅ +
๐‘
๐‘š
แˆถ
๐‘ฅ +
๐‘˜
๐‘š
๐‘ฅ=0
Let 2๐‘ =
๐‘
๐‘š
๐‘Ž๐‘›๐‘‘ ๐œ”2
=
๐‘˜
๐‘š
or แˆท
๐‘ฅ +2๐‘ แˆถ
๐‘ฅ +๐œ”2
๐‘ฅ=0 โ€ฆโ€ฆโ€ฆ..(5)
whose auxiliary equation is
๐‘Ÿ2+2๐‘๐‘Ÿ + ๐œ”2 = 0โ€ฆโ€ฆโ€ฆโ€ฆโ€ฆ..(6)
The roots of eq(6) are ๐‘Ÿ =
โˆ’2๐‘ยฑ 4๐‘2โˆ’4๐œ”2
2
= โˆ’๐‘ ยฑ ๐‘2 โˆ’ ๐œ”2 โ€ฆโ€ฆโ€ฆ(7)
30
The motion of mass depends on the damping through the nature of the
discriminant ๐‘2 โˆ’ ๐œ”2
Case 1; ๐‘2 โˆ’ ๐œ”2 >0 i.e. ๐‘2 > 4๐‘š๐‘˜ since ๐‘> ๐œ”, the roots
๐‘Ÿ1 = โˆ’๐‘ + ๐‘2 โˆ’ ๐œ”2 ๐‘Ž๐‘›๐‘‘ ๐‘Ÿ2 = โˆ’๐‘ โˆ’ ๐‘2 โˆ’ ๐œ”2
are distinct ,real negative numbers. The general solution is
๐‘ฅ ๐‘ก = ๐‘1๐‘’๐‘Ÿ1๐‘ก + ๐‘2๐‘’๐‘Ÿ2๐‘ก โ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆ.(8)
which tends to zero as ๐‘ก โ†’ โˆž.Thus the damping is so great that no oscillations
can occur. The motion is said to be over critically damped (over damped).
Case 2; ๐‘2 โˆ’ ๐œ”2=0 Here both the roots are equal , real negative number ๐‘. The
general solution is
๐‘ฅ ๐‘ก = (๐‘1+ ๐‘2๐‘ก)๐‘’โˆ’๐‘๐‘ก โ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆ.(9)
This situation of motion is called critical damping and is not oscillatory .
31
Case 3; When ๐‘ < ๐œ” then ๐‘2 โˆ’ ๐œ”2<0 so the roots of the auxiliary
equation (7) are complex and given by โˆ’๐‘ ยฑ ๐œ”2 โˆ’ ๐‘2๐‘–.
The general solution is
๐‘ฅ(๐‘ก) = ๐‘’โˆ’๐‘๐‘ก ๐‘1cos( ๐œ”2 โˆ’ ๐‘2)๐‘ก + ๐‘2sin( ๐œ”2 โˆ’ ๐‘2)๐‘ก โ€ฆโ€ฆโ€ฆโ€ฆ.(10)
which can be written in the alternative form(as in eq 4)
๐‘ฅ(๐‘ก) = ๐ด๐‘’โˆ’๐‘๐‘ก
cos( ๐œ”2 โˆ’ ๐‘2)๐‘ก + ๐œ™ โ€ฆโ€ฆโ€ฆโ€ฆโ€ฆ(11)
Here ๐ด= ๐‘1
2 + ๐‘2
2 and ๐œ™ = ๐‘ก๐‘Ž๐‘›โˆ’1
(โˆ’
๐‘1
๐‘2
).
In this case the motion is said to be underdamped.
32
Forced Oscillation: Damped
In the presence of an external force F(t), also known as input or driving force, the
solutions of D.E. (1) are known as output or response of the system to the external
force. In this case, the oscillations are said to be forced oscillations, which are of
two types damped forced oscillations and undamped forced oscillations.
Case 1.The D.E in this case is ๐‘š แˆท
๐‘ฅ+c แˆถ
๐‘ฅ + ๐‘˜๐‘ฅ = ๐น(๐‘ก)
Suppose the external force ๐น(๐‘ก)=๐น1๐‘๐‘œ๐‘ ๐›ฝ๐‘ก, (๐น1 > 0; ๐›ฝ > 0)
Then D.E. takes the form ๐‘š แˆท
๐‘ฅ+c แˆถ
๐‘ฅ + ๐‘˜๐‘ฅ = ๐น1๐‘๐‘œ๐‘ ๐›ฝ๐‘ก
Or แˆท
๐‘ฅ+2b แˆถ
๐‘ฅ+ ๐œ”2๐‘ฅ= ๐ธ1๐‘๐‘œ๐‘ ๐›ฝ๐‘กโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆ.(12)
where 2b=
๐‘
๐‘š
๐‘Ž๐‘›๐‘‘ ๐œ”2
=
๐‘˜
๐‘š
, ๐ธ1=
๐น1
๐‘š
33
Assuming b < ๐œ” the complimentary function of (12) is
๐‘ฅ๐‘ = ๐ด๐‘’โˆ’๐‘๐‘ก cos( ๐œ”2 โˆ’ ๐‘2)๐‘ก + ๐œ™ โ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆ(13) (as in eq 4)
which approaches to zero as ๐‘ก โ†’ โˆž. The particular integral of (12) is
๐‘ฅ๐‘ =
1
๐ท2+2๐‘๐ท+๐œ”2 ๐ธ1๐‘๐‘œ๐‘ ๐›ฝ๐‘ก
or ๐‘ฅ๐‘=
๐ธ1
๐œ”2โˆ’๐›ฝ2 2+4๐‘2๐›ฝ2 ๐œ”2
โˆ’ ๐›ฝ2
๐‘๐‘œ๐‘ ๐›ฝ๐‘ก + 2๐‘๐›ฝ๐‘ ๐‘–๐‘›๐›ฝ๐‘ก โ€ฆโ€ฆ..(14)
The general solution is
๐‘ฅ ๐‘ก = ๐‘ฅ๐‘+ ๐‘ฅ๐‘
34
Case 2. Undamped forced Oscillation: Resonance
In the undamped case ๐‘ = 0 and D.E. (1) takes the form
๐‘š แˆท
๐‘ฅ+๐‘˜๐‘ฅ = ๐น ๐‘ก = ๐น1๐‘๐‘œ๐‘ ๐›ฝ๐‘ก
or แˆท
๐‘ฅ+ ๐œ”2๐‘ฅ= ๐ธ1๐‘๐‘œ๐‘ ๐›ฝ๐‘กโ€ฆโ€ฆโ€ฆ(16) where ๐œ”2=
๐‘˜
๐‘š
,and ๐ธ1=
๐น1
๐‘š
and ๐œ” , ๐ธ1,
๐›ฝ are positive constant. The complimentary function of (16) is
๐‘ฅ๐‘ = ๐‘1๐‘๐‘œ๐‘ ๐œ”๐‘ก+ ๐‘2๐‘ ๐‘–๐‘›๐œ”๐‘ก โ€ฆ โ€ฆ โ€ฆ โ€ฆ โ€ฆ โ€ฆ โ€ฆ (17)
Now we study the nature of solution of D.E. (16). When ๐œ” = ๐›ฝ: In this
case the particular integral of D.E. (16), which is the forced solution, is
๐‘ฅ๐‘ =
1
๐ท2+๐œ”2 ๐ธ1๐‘๐‘œ๐‘ ๐›ฝ๐‘ก=
๐ธ1
2๐œ”
๐‘ก ๐‘ ๐‘–๐‘›๐›ฝ๐‘กโ€ฆโ€ฆโ€ฆโ€ฆ(18)
35
General solution :
The general solution in this case is
๐‘ฅ = ๐‘ฅ๐‘ + ๐‘ฅ๐‘ ๐‘œ๐‘Ÿ ๐‘ฅ = ๐‘1๐‘๐‘œ๐‘ ๐œ”๐‘ก+ ๐‘2๐‘ ๐‘–๐‘›๐œ”๐‘ก+
๐ธ1
2๐œ”
๐‘ก ๐‘ ๐‘–๐‘›๐›ฝ๐‘กโ€ฆโ€ฆโ€ฆโ€ฆ.(19)
The forced solution (the particular integral (18)) grows with time and
becomes larger and larger (because of the presence of โ€˜๐‘กโ€™). Thus, in an
undamped system if ๐œ” = ๐›ฝ i.e., the frequency ๐›ฝ of external force matches
(equals) with the natural frequency ๐œ”.
The phenomenon of unbounded oscillations occurs, which is known as
resonance. In resonance, for a bounded input the system responds with an
unbounded output. Thus resonance, the phenomenon of excitation of large
oscillation, is undesirable because the system may get destroyed due to these
unwanted large vibrations.
36
Example 1: An 8 lb weight is placed at one end of a spring suspended
from the ceiling. The weight is raised to 5 inches above the equilibrium
position and left free. Assuming the spring constant 12 lb/ft, find the
equation of motion, displacement function ๐’™(๐’•), amplitude, period,
frequency and maximum velocity.
37
38
๐‘†๐‘‚๐ฟ. ๐ป๐‘’๐‘Ÿ๐‘’ ๐‘š แˆท
๐‘ฅ = โˆ’๐‘˜๐‘ฅ
๐‘Š
๐‘”
แˆท
๐‘ฅ = โˆ’๐‘˜๐‘ฅ (๐‘Š = ๐‘š๐‘”). ๐ป๐‘’๐‘Ÿ๐‘’ ๐‘Š = 8, ๐‘” = 32, ๐‘˜ = 12. ๐‘‡โ„Ž๐‘’ ๐‘’๐‘ž๐‘ข๐‘Ž๐‘ก๐‘–๐‘œ๐‘› ๐‘œ๐‘“ ๐‘š๐‘œ๐‘ก๐‘–๐‘œ๐‘› ๐‘–๐‘ 
แˆท
๐‘ฅ + 48๐‘ฅ = 0
๐‘‡โ„Ž๐‘’ ๐‘Ž๐‘ข๐‘ฅ๐‘–๐‘™๐‘™๐‘–๐‘Ž๐‘Ÿ๐‘ฆ ๐‘’๐‘ž๐‘ข๐‘Ž๐‘ก๐‘–๐‘œ๐‘› ๐‘Ÿ2 + 48 = 0 โ„Ž๐‘Ž๐‘  ๐‘ก๐‘ค๐‘œ ๐‘๐‘œ๐‘š๐‘๐‘™๐‘’๐‘ฅ ๐‘๐‘œ๐‘›๐‘—๐‘ข๐‘”๐‘Ž๐‘ก๐‘’ ๐‘Ÿ๐‘œ๐‘œ๐‘ก๐‘  ๐‘”๐‘–๐‘ฃ๐‘’๐‘› ๐‘๐‘ฆ
๐‘Ÿ = ยฑ4 3๐‘–. ๐‘‡โ„Ž๐‘’ ๐‘‘๐‘–๐‘ ๐‘๐‘™๐‘Ž๐‘๐‘’๐‘š๐‘’๐‘›๐‘ก ๐‘œ๐‘“ ๐‘กโ„Ž๐‘’ ๐‘“๐‘ข๐‘›๐‘๐‘ก๐‘–๐‘œ๐‘› ๐‘ฅ ๐‘ก ๐‘–๐‘ 
๐‘ฅ ๐‘ก =๐ถ1cos๐œ”t + ๐ถ2sin๐œ”tโ€ฆโ€ฆโ€ฆ..(1)
where ๐œ” = 4 3
๐‘‡โ„Ž๐‘’ ๐‘”๐‘–๐‘ฃ๐‘’๐‘› ๐‘๐‘œ๐‘›๐‘‘๐‘–๐‘ก๐‘–๐‘œ๐‘›๐‘  ๐‘Ž๐‘Ÿ๐‘’ ๐‘ฅ = โˆ’5 ๐‘–๐‘›๐‘โ„Ž๐‘’๐‘  = โˆ’
5
12
๐‘“๐‘ก and แˆถ
๐‘ฅ = 0 ๐‘Ž๐‘ก ๐‘ก = 0.
๐‘ˆ๐‘ ๐‘–๐‘›๐‘” ๐‘ฅ = โˆ’
5
12
๐‘Ž๐‘ก ๐‘ก = 0, ๐‘ค๐‘’ ๐‘”๐‘’๐‘ก ๐ถ1 = โˆ’
5
12
Differentiating ๐‘ฅ ๐‘ก ๐‘ค๐‘–๐‘กโ„Ž ๐‘Ÿ๐‘’๐‘ ๐‘๐‘’๐‘๐‘ก ๐‘ก๐‘œ โ€ฒ๐‘กโ€ฒ ๐‘ค๐‘’ ๐‘”๐‘’๐‘ก
แˆถ
๐‘ฅ = โˆ’๐ถ1๐œ”๐‘ ๐‘–๐‘›๐œ”t + ๐ถ2๐œ”๐‘๐‘œ๐‘ ๐œ”t
U๐‘ ๐‘–๐‘›๐‘” แˆถ
๐‘ฅ = 0 ๐‘Ž๐‘ก ๐‘ก = 0, ๐‘ค๐‘’ ๐‘”๐‘’๐‘ก ๐ถ2 = 0
๐ท๐‘–๐‘ ๐‘๐‘™๐‘Ž๐‘๐‘’๐‘š๐‘’๐‘›๐‘ก ๐‘“๐‘ข๐‘›๐‘๐‘ก๐‘–๐‘œ๐‘› ๐‘ฅ ๐‘ก =โˆ’
5
12
cos4 3t =
5
12
sin(4 3t โˆ’
๐œ‹
2
)โ€ฆโ€ฆโ€ฆโ€ฆโ€ฆ(from 1)(amplitude phase form)
Amplitude is
5
12
Period T=
2๐œ‹
๐œ”
=
๐œ‹โˆš3
6
sec
Maximum Velocity= ๐œ”. ๐ด๐‘š๐‘๐‘™๐‘–๐‘ก๐‘ข๐‘‘๐‘’ = 4 3 .
5
12
=
5
3
๐‘“๐‘ก/๐‘ ๐‘’๐‘2
Free ,Damped Problem
โ€ข Example 2: A 2 lb weight suspended from one end of a spring stretches it
to 6 inches. A velocity of 5 ft/sec2 upwards is imparted to the weight at its
equilibrium position. Suppose a damping force ๐œท๐Š acts on the weight.
Here 0<๐œท < ๐Ÿ and ๐Š = แˆถ
๐’™ =velocity. Assuming the spring constant 4
lb/ft, (a) Determine the position and velocity of the weight at any time
(b) Express the displacement function ๐’™(๐’•) in the amplitude-phase form.
(c) Find the amplitude, period, frequency, maximum velocity.
39
SOL.๐‘‡โ„Ž๐‘’ ๐‘’๐‘ž๐‘ข๐‘Ž๐‘ก๐‘–๐‘œ๐‘› ๐‘œ๐‘“ ๐‘š๐‘œ๐‘ก๐‘–๐‘œ๐‘› ๐‘–๐‘  ๐‘š แˆท
๐‘ฅ + ๐›ฝ แˆถ
๐‘ฅ + ๐‘˜๐‘ฅ = 0
๐‘œ๐‘Ÿ 2
32
แˆท
๐‘ฅ + ๐›ฝ แˆถ
๐‘ฅ + 4๐‘ฅ = 0 (๐‘Š = ๐‘š๐‘”)
or แˆท
๐‘ฅ + 16๐›ฝ แˆถ
๐‘ฅ + 64๐‘ฅ = 0
๐ผ๐‘ก๐‘  ๐‘Ž๐‘ข๐‘ฅ๐‘–๐‘™๐‘–๐‘Ž๐‘Ÿ๐‘ฆ ๐‘’๐‘ž๐‘ข๐‘Ž๐‘ก๐‘–๐‘œ๐‘› ๐‘–๐‘  ๐‘Ÿ2
+ 16 ๐›ฝ ๐‘Ÿ + 64 = 0
๐‘ค๐‘–๐‘กโ„Ž ๐‘Ÿ๐‘œ๐‘œ๐‘ก๐‘  ๐‘Ÿ = 8 โˆ’๐›ฝ ยฑ (๐›ฝ2 โˆ’ 1) = 8 โˆ’๐›ฝ ยฑ 1 โˆ’ ๐›ฝ2 ๐‘–
= 8 โˆ’๐›ฝ ยฑ ๐›ผ๐‘– ๐‘คโ„Ž๐‘’๐‘Ÿ๐‘’ ๐›ผ = 1 โˆ’ ๐›ฝ2
๐‘‡โ„Ž๐‘’ ๐‘”๐‘’๐‘›๐‘’๐‘Ÿ๐‘Ž๐‘™ ๐‘ ๐‘œ๐‘™๐‘ข๐‘ก๐‘–๐‘œ๐‘› ๐‘–๐‘  ๐‘ฅ ๐‘ก =๐‘’โˆ’8๐›ฝ๐‘ก(๐ถ1cos8๐›ผt + ๐ถ2sin8๐›ผt)
๐‘ˆ๐‘ ๐‘–๐‘›๐‘” ๐‘–๐‘›๐‘–๐‘ก๐‘–๐‘Ž๐‘™ ๐‘๐‘œ๐‘›๐‘‘๐‘–๐‘ก๐‘–๐‘œ๐‘› ๐‘ฅ = 0 ๐‘Ž๐‘ก ๐‘ก = 0, ๐‘ค๐‘’ ๐‘”๐‘’๐‘ก ๐ถ1=0 โˆด ๐‘ฅ ๐‘ก =๐‘’โˆ’8๐›ฝ๐‘ก
๐ถ2sin8๐›ผt
๐ท๐‘–๐‘“๐‘“๐‘’๐‘Ÿ๐‘’๐‘›๐‘ก๐‘–๐‘Ž๐‘ก๐‘–๐‘›๐‘” ๐‘ฅ ๐‘ก ๐‘ค. ๐‘Ÿ. ๐‘ก. โ€ฒ
๐‘กโ€ฒ
๐‘Ž๐‘›๐‘‘ ๐‘ข๐‘ ๐‘–๐‘›๐‘” ๐‘กโ„Ž๐‘’ ๐‘๐‘œ๐‘›๐‘‘๐‘–๐‘ก๐‘–๐‘œ๐‘›
แˆถ
๐‘ฅ = โˆ’5 ๐‘›๐‘’๐‘”๐‘Ž๐‘ก๐‘–๐‘ฃ๐‘’ ๐‘Ž๐‘๐‘ก๐‘–๐‘›๐‘” ๐‘ข๐‘๐‘ค๐‘Ž๐‘Ÿ๐‘‘๐‘  ๐‘Ž๐‘ก ๐‘ก = 0 ๐‘ค๐‘’ ๐‘”๐‘’๐‘ก ๐ถ2 =
โˆ’5
8๐›ผ
(a) ๐‘‡โ„Ž๐‘ข๐‘  ๐‘กโ„Ž๐‘’ ๐‘‘๐‘–๐‘ ๐‘๐‘™๐‘Ž๐‘๐‘’๐‘š๐‘’๐‘›๐‘ก ๐‘“๐‘ข๐‘›๐‘๐‘ก๐‘–๐‘œ๐‘› ๐‘–๐‘ 
๐‘ฅ ๐‘ก = ๐‘’โˆ’8๐›ฝ๐‘ก (
โˆ’5
8๐›ผ
) sin8๐›ผt
40
๐‘‰๐‘’๐‘™๐‘œ๐‘๐‘–๐‘ก๐‘ฆ ๐‘‘๐‘œ๐‘ค๐‘›๐‘ค๐‘Ž๐‘Ÿ๐‘‘ ๐‘๐‘œ๐‘ ๐‘–๐‘ก๐‘–๐‘ฃ๐‘’ ๐‘–๐‘  ๐œ = แˆถ
๐‘ฅ = (5/๐›ผ)๐‘’โˆ’๐›ฝ๐‘ก
(โˆ’๐›ผ cos8๐›ผt + ๐›ฝsin8๐›ผt)
(b).๐ด๐‘š๐‘๐‘™๐‘–๐‘ก๐‘ข๐‘‘๐‘’ ๐‘ƒโ„Ž๐‘Ž๐‘ ๐‘’ ๐‘“๐‘œ๐‘Ÿ๐‘š ๐‘ฅ ๐‘ก =
5
8๐›ผ
๐‘’โˆ’8๐›ฝ๐‘ก
sin(8๐›ผt + ฯ€)
(c). Amplitude is
5
8๐›ผ
๐‘’โˆ’8๐›ฝ๐‘ก
Period T=
2๐œ‹
๐œ”
=
๐œ‹
4๐›ผ
(๐œ” = 8๐›ผ)
Maximum Velocity= ๐œ”. ๐ด๐‘š๐‘๐‘™๐‘–๐‘ก๐‘ข๐‘‘๐‘’ = 5 ๐‘’โˆ’8๐›ฝ๐‘ก
41
42
43
RLC Circuit
An RLC-series circuit consists of a resistor, a conductor, a capacitor and an emf as
shown in the figure .
Using the Kirchhoffโ€™s law, the sum of the voltage drops across the three elements
inductor, resistor and Capacitance equal to the external source ๐ธ. Thus, the RLC-circuit
is modeled by ๐ฟ
๐‘‘๐ผ
๐‘‘๐‘ก
+ ๐‘…๐ผ +
1
๐ถ
๐‘„=๐ธ(๐‘ก)โ€ฆโ€ฆโ€ฆ. (1)
which contains two dependent variables ๐‘„ and ๐ผ.
44
Since I =
๐‘‘Q
๐‘‘๐‘ก
. the above equation can be written as
๐ฟ
๐‘‘2Q
๐‘‘๐‘ก2 + ๐‘…
๐‘‘๐‘„
๐‘‘๐‘ก
+
1
๐ถ
๐‘„ = ๐ธ(๐‘ก)โ€ฆโ€ฆโ€ฆโ€ฆโ€ฆ (2)
which contains only one dependent variable ๐‘„. Differentiating (1) w.r.t. โ€˜tโ€™, we obtain
๐ฟ
๐‘‘2I
๐‘‘๐‘ก2 + ๐‘…
๐‘‘๐ผ
๐‘‘๐‘ก
+
1
๐ถ
๐ผ =
๐‘‘๐ธ
๐‘‘๐‘ก
โ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆ (3)
which contains only one dependent variable ๐ผ. Thus, the charge ๐‘„ and current ๐ผ at any time
in the RLC circuit are obtained as solutions of (2) and (3) which are both linear 2nd order
non homogeneous ordinary differential equations. The equation (3) is used more often,
since current I(๐‘ก) is more important than charge Q(๐‘ก), in most of the practical problems.
The RLC circuit reduces to an RL-circuit in absence of capacitor and to RC-circuit when no
inductor is present.
To find the solution we find the complimentary function and particular integral.
45
๐ถ๐‘‚๐‘€๐‘ƒ๐ฟ๐ธ๐‘‹ ๐ผ๐‘€๐‘ƒ๐ธ๐ท๐ธ๐‘๐ถ๐ธ
๐ธ๐‘‹. 1 ๐ท๐‘’๐‘ก๐‘’๐‘Ÿ๐‘š๐‘–๐‘›๐‘’ ๐‘กโ„Ž๐‘’ ๐‘ ๐‘œ๐‘™๐‘ข๐‘ก๐‘–๐‘œ๐‘› ๐‘œ๐‘“ ๐‘‘๐‘–๐‘“๐‘“๐‘’๐‘Ÿ๐‘’๐‘›๐‘ก๐‘–๐‘Ž๐‘™ ๐‘’๐‘ž๐‘ข๐‘Ž๐‘ก๐‘–๐‘œ๐‘› ๐‘Ÿ๐‘’๐‘๐‘Ÿ๐‘’๐‘ ๐‘’๐‘›๐‘ก๐‘–๐‘›๐‘” ๐‘กโ„Ž๐‘’ ๐‘…๐ฟ๐ถ โˆ’ ๐‘๐‘–๐‘Ÿ๐‘๐‘ข๐‘–๐‘ก ๐‘ค๐‘–๐‘กโ„Ž
๐‘Ž emf ๐ธ(๐‘ก) = ๐ธ0๐‘๐‘œ๐‘ ๐œ”๐‘ก (๐‘) emf ๐ธ(๐‘ก) = ๐ธ0๐‘ ๐‘–๐‘›๐œ”๐‘ก.
๐‘†๐‘œ๐‘™. ๐‘‡โ„Ž๐‘’ ๐‘‘๐‘–๐‘“๐‘“๐‘’๐‘Ÿ๐‘’๐‘›๐‘ก๐‘–๐‘Ž๐‘™ ๐‘’๐‘ž๐‘ข๐‘Ž๐‘ก๐‘–๐‘œ๐‘› ๐‘Ÿ๐‘’๐‘๐‘Ÿ๐‘’๐‘ ๐‘’๐‘›๐‘ก๐‘–๐‘›๐‘” ๐‘กโ„Ž๐‘’ ๐‘…๐ฟ๐ถ โˆ’ ๐‘๐‘–๐‘Ÿ๐‘๐‘ข๐‘–๐‘ก ๐‘ค๐‘–๐‘กโ„Ž
๐ผ ๐‘Ž๐‘  ๐‘กโ„Ž๐‘’ ๐‘‘๐‘’๐‘๐‘’๐‘›๐‘‘๐‘’๐‘›๐‘ก variable is given by ๐ฟ
๐‘‘2I
๐‘‘๐‘ก2 + ๐‘…
๐‘‘๐ผ
๐‘‘๐‘ก
+
1
๐ถ
๐ผ =
๐‘‘๐ธ
๐‘‘๐‘ก
โ€ฆโ€ฆโ€ฆโ€ฆโ€ฆ.(4)
๐‘ ๐‘–๐‘›๐‘๐‘’ ๐‘’๐‘–๐œƒ
= ๐‘๐‘œ๐‘ ๐œƒ + ๐‘–๐‘ ๐‘–๐‘›๐œƒ , ๐‘๐‘œ๐‘›๐‘ ๐‘–๐‘‘๐‘’๐‘Ÿ ๐ธ ๐‘ก = ๐ธ0 ๐‘’๐‘–๐œ”๐‘ก
= ๐ธ0 (๐‘๐‘œ๐‘ ๐œ”๐‘ก + ๐‘–๐‘ ๐‘–๐‘›๐œ”๐‘ก)
๐‘ ๐‘œ ๐‘๐‘œ๐‘กโ„Ž ๐‘กโ„Ž๐‘’ ๐‘๐‘Ÿ๐‘œ๐‘๐‘™๐‘’๐‘š๐‘  ๐‘Ž ๐‘Ž๐‘›๐‘‘ ๐‘ ๐‘๐‘Ž๐‘› ๐‘๐‘’ ๐‘ ๐‘œ๐‘™๐‘ฃ๐‘’๐‘‘ ๐‘ ๐‘–๐‘š๐‘ข๐‘™๐‘ก๐‘Ž๐‘›๐‘’๐‘œ๐‘ข๐‘ ๐‘™๐‘ฆ ๐‘๐‘ฆ ๐‘ข๐‘ ๐‘–๐‘›๐‘” ๐‘กโ„Ž๐‘’ ๐‘๐‘œ๐‘š๐‘๐‘™๐‘’๐‘ฅ ๐‘“๐‘œ๐‘Ÿ๐‘š
๐‘“๐‘œ๐‘Ÿ ๐‘’๐‘š๐‘“ ๐ธ ๐‘ก . ๐‘‡โ„Ž๐‘ข๐‘ 
๐ฟ
๐‘‘2I
๐‘‘๐‘ก2 + ๐‘…
๐‘‘๐ผ
๐‘‘๐‘ก
+
1
๐ถ
๐ผ = ๐ธ0 . ๐‘–๐œ”. ๐‘’๐‘–๐œ”๐‘กโ€ฆโ€ฆโ€ฆโ€ฆ.(5)
46
๐‘‡โ„Ž๐‘’ ๐‘”๐‘’๐‘›๐‘’๐‘Ÿ๐‘Ž๐‘™ ๐‘ ๐‘œ๐‘™๐‘ข๐‘ก๐‘–๐‘œ๐‘› ๐‘œ๐‘“ ๐‘’๐‘ž 5 ๐‘–๐‘  ๐‘๐‘œ๐‘š๐‘๐‘™๐‘–๐‘š๐‘’๐‘›๐‘ก๐‘Ž๐‘Ÿ๐‘ฆ ๐‘“๐‘ข๐‘›๐‘๐‘ก๐‘–๐‘œ๐‘› ๐‘Ž๐‘›๐‘‘ ๐‘๐‘Ž๐‘Ÿ๐‘ก๐‘–๐‘๐‘ข๐‘™๐‘Ž๐‘Ÿ ๐‘–๐‘›๐‘ก๐‘’๐‘”๐‘Ÿ๐‘Ž๐‘™.
๐ถ๐‘œ๐‘š๐‘๐‘™๐‘–๐‘š๐‘’๐‘›๐‘ก๐‘Ž๐‘Ÿ๐‘ฆ ๐‘“๐‘ข๐‘›๐‘๐‘ก๐‘–๐‘œ๐‘›
๐ฟ๐‘š2 + ๐‘…๐‘š +
1
๐ถ
= 0 ๐‘œ๐‘Ÿ ๐‘š2+
๐‘…
๐ฟ
๐‘š +
1
๐ฟ๐ถ
= 0 ๐‘ค๐‘–๐‘กโ„Ž ๐‘ก๐‘ค๐‘œ ๐‘‘๐‘–๐‘ ๐‘ก๐‘–๐‘›๐‘๐‘ก ๐‘Ÿ๐‘œ๐‘œ๐‘ก๐‘ 
๐‘š1,2 =
โˆ’
๐‘…
๐ฟ
ยฑ
๐‘…
๐ฟ
2
โˆ’ 4.
1
๐ฟ๐ถ
2
๐‘š1,2 = โˆ’
๐‘…
2๐ฟ
ยฑ
1
2๐ฟ
๐‘… 2 โˆ’
4๐ฟ
๐ถ
โ€ฆโ€ฆโ€ฆโ€ฆโ€ฆ(6)
๐‘š1 = โˆ’๐‘Ž + ๐‘ ๐‘Ž๐‘›๐‘‘ ๐‘š2 = โˆ’๐‘Ž โˆ’ ๐‘ ๐‘คโ„Ž๐‘’๐‘Ÿ๐‘’ ๐‘ =
1
2๐ฟ
๐‘… 2 โˆ’
4๐ฟ
๐ถ
, ๐‘Ž =
๐‘…
2๐ฟ
๐‘‡โ„Ž๐‘’ ๐‘๐‘œ๐‘š๐‘๐‘™๐‘–๐‘š๐‘’๐‘›๐‘ก๐‘Ž๐‘Ÿ๐‘ฆ ๐‘“๐‘ข๐‘›๐‘๐‘ก๐‘–๐‘œ๐‘› ๐ผ๐‘ = ๐‘1๐‘’๐‘š1๐‘ก + ๐‘2๐‘’๐‘š2๐‘ก โ€ฆ โ€ฆ โ€ฆ โ€ฆ โ€ฆ โ€ฆ โ€ฆ โ€ฆ โ€ฆ โ€ฆ โ€ฆ โ€ฆ โ€ฆ โ€ฆ โ€ฆ โ€ฆ (7)
47
๐‘ƒ๐‘Ž๐‘Ÿ๐‘ก๐‘–๐‘๐‘ข๐‘™๐‘Ž๐‘Ÿ ๐ผ๐‘›๐‘ก๐‘’๐‘”๐‘Ÿ๐‘Ž๐‘™; ๐ผ๐‘=
๐ธ0
๐‘…+๐‘–๐‘†
๐‘’๐‘–๐œ”๐‘ก where ๐‘† = ฯ‰๐ฟ โˆ’
1
๐œ”๐ถ
๐ป๐‘’๐‘Ÿ๐‘’ ๐‘† ๐‘–๐‘  ๐‘˜๐‘›๐‘œ๐‘ค๐‘› ๐‘Ž๐‘  ๐‘Ÿ๐‘’๐‘Ž๐‘๐‘ก๐‘Ž๐‘›๐‘๐‘’ ๐‘œ๐‘“ ๐‘กโ„Ž๐‘’ ๐‘๐‘–๐‘Ÿ๐‘๐‘ข๐‘–๐‘ก.
๐‘Šโ„Ž๐‘’๐‘› ๐‘† = 0, ๐‘กโ„Ž๐‘’ ๐‘Ž๐‘š๐‘๐‘™๐‘–๐‘ก๐‘ข๐‘‘๐‘’ ๐‘œ๐‘“ ๐ผ ๐‘–๐‘  ๐‘”๐‘Ÿ๐‘’๐‘Ž๐‘ก๐‘’๐‘ ๐‘ก ๐‘Ž๐‘›๐‘‘ ๐‘กโ„Ž๐‘’ ๐‘๐‘–๐‘Ÿ๐‘๐‘ข๐‘–๐‘ก ๐‘–๐‘  ๐‘–๐‘› ๐‘Ÿ๐‘’๐‘ ๐‘œ๐‘›๐‘Ž๐‘›๐‘๐‘’.
๐‘ˆ๐‘ ๐‘–๐‘›๐‘” ๐‘กโ„Ž๐‘’ ๐‘๐‘œ๐‘™๐‘Ž๐‘Ÿ ๐‘“๐‘œ๐‘Ÿ๐‘š ๐‘œ๐‘“ ๐‘Ž ๐‘๐‘œ๐‘š๐‘๐‘™๐‘’๐‘ฅ ๐‘›๐‘ข๐‘š๐‘๐‘’๐‘Ÿ
๐‘Ž + ๐‘–๐‘ = ๐‘Ÿ๐‘’๐‘–๐œƒ ๐‘คโ„Ž๐‘’๐‘Ÿ๐‘’ ๐‘Ÿ = ๐‘Ž2 + ๐‘2 , ๐œƒ = ๐‘ก๐‘Ž๐‘›โˆ’1 ๐‘
๐‘Ž
, similarly ๐‘ค๐‘’ ๐‘๐‘Ž๐‘› ๐‘ค๐‘Ÿ๐‘–๐‘ก๐‘’ ๐‘… + ๐‘–๐‘†= ๐‘…2 + ๐‘ 2 . ๐‘’๐‘–๐›ฟ
๐ผ๐‘ =
๐ธ0
๐‘…+๐‘–๐‘†
๐‘’๐‘–๐œ”๐‘ก
=
๐ธ0
๐‘…2+๐‘ 2 .๐‘’๐‘–๐›ฟ
๐‘’๐‘–๐œ”๐‘ก
=
๐ธ0
๐‘…2+๐‘ 2
๐‘’๐‘–(๐œ”๐‘กโˆ’๐›ฟ)
=
๐ธ0[๐‘๐‘œ๐‘  ๐œ”๐‘กโˆ’๐›ฟ +๐‘–๐‘ ๐‘–๐‘› ๐œ”๐‘กโˆ’๐›ฟ ]
๐‘…2+๐‘ 2
โ€ฆ โ€ฆ โ€ฆ . . (8)
๐‘‡โ„Ž๐‘’ ๐‘ž๐‘ข๐‘Ž๐‘›๐‘ก๐‘–๐‘ก๐‘ฆ ๐‘…2 + ๐‘ 2 ๐‘–๐‘  ๐‘˜๐‘›๐‘œ๐‘ค๐‘› ๐‘Ž๐‘  ๐‘–๐‘š๐‘๐‘’๐‘‘๐‘’๐‘›๐‘๐‘’ ๐‘œ๐‘“ ๐‘กโ„Ž๐‘’ ๐‘๐‘–๐‘Ÿ๐‘๐‘ข๐‘–๐‘ก.
๐‘Šโ„Ž๐‘’๐‘› ๐ธ = ๐ธ0๐‘๐‘œ๐‘ ๐œ”๐‘ก , ๐‘กโ„Ž๐‘’ ๐‘ ๐‘ก๐‘’๐‘Ž๐‘‘๐‘ฆ โˆ’ ๐‘ ๐‘ก๐‘Ž๐‘ก๐‘’ ๐‘ ๐‘œ๐‘™๐‘ข๐‘ก๐‘–๐‘œ๐‘› ๐‘–๐‘  ๐‘กโ„Ž๐‘’ ๐‘Ÿ๐‘’๐‘Ž๐‘™ ๐‘๐‘Ž๐‘Ÿ๐‘ก ๐‘œ๐‘“ ๐ผ๐‘ ๐‘–. ๐‘’
๐ธ0[๐‘๐‘œ๐‘  ๐œ”๐‘ก โˆ’ ๐›ฟ
๐‘…2 + ๐‘ 2
โ€ฆ โ€ฆ โ€ฆ โ€ฆ 9
48
๐‘†๐‘–๐‘š๐‘–๐‘™๐‘Ž๐‘Ÿ๐‘™๐‘ฆ when ๐ธ = ๐ธ0๐‘ ๐‘–๐‘›๐œ”๐‘ก ,
๐ถ๐‘œ๐‘š๐‘๐‘™๐‘’๐‘ฅ ๐‘›๐‘ข๐‘š๐‘๐‘’๐‘Ÿ ๐‘ง = ๐‘… + ๐‘–๐‘† ๐‘–๐‘  ๐‘˜๐‘›๐‘œ๐‘ค๐‘› ๐‘Ž๐‘  ๐‘กโ„Ž๐‘’ ๐‘๐‘œ๐‘š๐‘๐‘™๐‘’๐‘ฅ ๐‘–๐‘š๐‘๐‘’๐‘‘๐‘Ž๐‘›๐‘๐‘’. ๐ผ๐‘ก๐‘  ๐‘š๐‘Ž๐‘”๐‘›๐‘–๐‘ก๐‘ข๐‘‘๐‘’ ๐‘…2 + ๐‘ 2
๐‘–๐‘  ๐‘˜๐‘›๐‘œ๐‘ค๐‘› ๐‘ ๐‘–๐‘š๐‘๐‘™๐‘ฆ ๐‘–๐‘š๐‘๐‘’๐‘‘๐‘Ž๐‘›๐‘๐‘’.
49
๐ธ๐‘ฅ. 2 ๐‘‡โ„Ž๐‘’ ๐ท. ๐ธ. ๐‘“๐‘œ๐‘Ÿ ๐‘Ž ๐‘๐‘–๐‘Ÿ๐‘๐‘ข๐‘–๐‘ก ๐‘–๐‘› ๐‘คโ„Ž๐‘–๐‘โ„Ž ๐‘ ๐‘’๐‘™๐‘“ ๐‘–๐‘›๐‘‘๐‘ข๐‘๐‘ก๐‘Ž๐‘›๐‘๐‘’ ๐‘Ž๐‘›๐‘‘ ๐‘๐‘Ž๐‘๐‘Ž๐‘๐‘–๐‘ก๐‘Ž๐‘›๐‘๐‘’ ๐‘›๐‘’๐‘ข๐‘ก๐‘Ÿ๐‘Ž๐‘™๐‘–๐‘ง๐‘’ ๐‘’๐‘Ž๐‘โ„Ž ๐‘œ๐‘กโ„Ž๐‘’๐‘Ÿ ๐‘–๐‘ 
๐ฟ
๐‘‘2๐ผ
๐‘‘๐‘ก2
+
๐ผ
๐ถ
= 0. ๐น๐‘–๐‘›๐‘‘ ๐‘กโ„Ž๐‘’ ๐‘๐‘ข๐‘Ÿ๐‘Ÿ๐‘’๐‘›๐‘ก ๐ผ ๐‘Ž๐‘  ๐‘Ž ๐‘“๐‘ข๐‘›๐‘๐‘ก๐‘–๐‘œ๐‘› ๐‘œ๐‘“ ๐‘ก ๐‘”๐‘–๐‘ฃ๐‘’๐‘› ๐‘กโ„Ž๐‘Ž๐‘ก ๐ผ๐‘š ๐‘–๐‘  ๐‘š๐‘Ž๐‘ฅ๐‘–๐‘š๐‘ข๐‘š ๐‘๐‘ข๐‘Ÿ๐‘Ÿ๐‘’๐‘›๐‘ก , ๐‘Ž๐‘›๐‘‘
๐ผ = 0 ๐‘Ž๐‘ก ๐‘ก = 0.
๐‘†๐‘œ๐‘™. ๐ท. ๐ธ. ๐‘–๐‘  ๐ฟ
๐‘‘2๐ผ
๐‘‘๐‘ก2
+
๐ผ
๐ถ
= 0 ๐‘œ๐‘Ÿ
๐‘‘2๐ผ
๐‘‘๐‘ก2
+
๐ผ
๐ฟ๐ถ
= 0
๐ผ๐‘ก๐‘  ๐‘๐‘œ๐‘š๐‘๐‘™๐‘’๐‘ก๐‘’ ๐‘ ๐‘œ๐‘™๐‘ข๐‘ก๐‘–๐‘œ๐‘› ๐‘–๐‘  ๐ผ = ๐ด ๐‘๐‘œ๐‘ 
1
๐ฟ๐ถ
๐‘ก + ๐ต ๐‘ ๐‘–๐‘›
1
๐ฟ๐ถ
๐‘ก
๐‘ข๐‘ ๐‘–๐‘›๐‘” ๐‘–๐‘›๐‘–๐‘ก๐‘–๐‘Ž๐‘™ ๐‘๐‘œ๐‘›๐‘‘๐‘–๐‘ก๐‘–๐‘œ๐‘› ๐‘ค๐‘’ ๐‘”๐‘’๐‘ก ๐ด = 0 โˆด ๐ผ = ๐ต ๐‘ ๐‘–๐‘›
1
๐ฟ๐ถ
๐‘ก
๐‘๐‘œ๐‘ค ๐‘ฃ๐‘Ž๐‘™๐‘ข๐‘’ ๐‘œ๐‘“ ๐‘๐‘ข๐‘Ÿ๐‘Ÿ๐‘’๐‘›๐‘ก ๐ผ ๐‘ก ๐‘ค๐‘–๐‘™๐‘™ ๐‘๐‘’ ๐‘š๐‘Ž๐‘ฅ๐‘–๐‘š๐‘ข๐‘š ๐‘คโ„Ž๐‘’๐‘› ๐‘ ๐‘–๐‘›
1
๐ฟ๐ถ
๐‘ก = 1 ๐‘กโ„Ž๐‘’๐‘Ÿ๐‘’๐‘๐‘ฆ ๐‘–๐‘š๐‘๐‘™๐‘ฆ ๐ต = ๐ผ๐‘š
โˆด ๐ผ ๐‘ก = ๐ผ๐‘š ๐‘ ๐‘–๐‘›
1
๐ฟ๐ถ
๐‘ก required solution.
50
51
ANALOGY WITH MASS SPRING SYSTEM
๐ธ๐‘›๐‘ก๐‘–๐‘Ÿ๐‘’๐‘™๐‘ฆ ๐‘‘๐‘–๐‘“๐‘“๐‘’๐‘Ÿ๐‘’๐‘›๐‘ก ๐‘โ„Ž๐‘ฆ๐‘ ๐‘–๐‘๐‘Ž๐‘™ ๐‘œ๐‘Ÿ ๐‘œ๐‘กโ„Ž๐‘’๐‘Ÿ ๐‘ ๐‘ฆ๐‘ ๐‘ก๐‘’๐‘š๐‘  ๐‘š๐‘Ž๐‘ฆ โ„Ž๐‘Ž๐‘ฃ๐‘’ ๐‘กโ„Ž๐‘’ ๐‘ ๐‘Ž๐‘š๐‘’ ๐‘š๐‘Ž๐‘กโ„Ž๐‘’๐‘š๐‘Ž๐‘ก๐‘–๐‘๐‘Ž๐‘™ ๐‘š๐‘œ๐‘‘๐‘’๐‘™.
๐‘‚. ๐ท. ๐ธ ๐‘“๐‘œ๐‘Ÿ ๐‘Ž๐‘› ๐‘’๐‘™๐‘’๐‘๐‘ก๐‘Ÿ๐‘–๐‘ ๐‘…๐ฟ๐ถ โˆ’ ๐‘๐‘–๐‘Ÿ๐‘๐‘ข๐‘–๐‘ก ๐‘Ž๐‘›๐‘‘ ๐‘กโ„Ž๐‘’ ๐‘‚. ๐ท. ๐ธ ๐‘“๐‘œ๐‘Ÿ ๐‘Ž ๐‘š๐‘Ž๐‘ ๐‘  ๐‘ ๐‘๐‘Ÿ๐‘–๐‘›๐‘” ๐‘ ๐‘ฆ๐‘ ๐‘ก๐‘’๐‘š ๐‘Ž๐‘Ÿ๐‘’ ๐‘œ๐‘“ ๐‘กโ„Ž๐‘’
๐‘ ๐‘Ž๐‘š๐‘’ ๐‘“๐‘œ๐‘Ÿ๐‘š .
๐ฟ
๐‘‘2I
๐‘‘๐‘ก2 + ๐‘…
๐‘‘๐ผ
๐‘‘๐‘ก
+
1
๐ถ
๐ผ =
๐‘‘๐ธ
๐‘‘๐‘ก
or ๐ฟ
๐‘‘2I
๐‘‘๐‘ก2 + ๐‘…
๐‘‘๐ผ
๐‘‘๐‘ก
+
1
๐ถ
๐ผ = ๐ธ0๐œ”๐‘๐‘œ๐‘ ๐œ”๐‘ก (๐ธ = ๐ธ0๐‘ ๐‘–๐‘›๐œ”๐‘ก)
and ๐‘š แˆท
๐‘ฅ+c แˆถ
๐‘ฅ + ๐‘˜๐‘ฅ = ๐น1๐‘๐‘œ๐‘ ๐›ฝ๐‘ก
๐‘‡โ„Ž๐‘’ ๐‘”๐‘–๐‘ฃ๐‘’๐‘› ๐‘ก๐‘Ž๐‘๐‘™๐‘’ ๐‘ โ„Ž๐‘œ๐‘ค๐‘  ๐‘กโ„Ž๐‘’ ๐‘Ž๐‘›๐‘Ž๐‘™๐‘œ๐‘”๐‘ฆ ๐‘๐‘’๐‘ก๐‘ค๐‘’๐‘’๐‘› ๐‘กโ„Ž๐‘’ ๐‘ฃ๐‘Ž๐‘Ÿ๐‘–๐‘œ๐‘ข๐‘  ๐‘ž๐‘ข๐‘Ž๐‘›๐‘ก๐‘–๐‘ก๐‘–๐‘’๐‘  ๐‘–๐‘›๐‘ฃ๐‘œ๐‘™๐‘ฃ๐‘’๐‘‘.
๐‘จ๐‘ต๐‘จ๐‘ณ๐‘ถ๐‘ฎ๐’€ ๐‘ถ๐‘ญ ๐‘ฌ๐‘ณ๐‘ฌ๐‘ช๐‘ป๐‘น๐‘ฐ๐‘ช๐‘จ๐‘ณ ๐‘จ๐‘ต๐‘ซ ๐‘ด๐‘ฌ๐‘ช๐‘ฏ๐‘จ๐‘ต๐‘ฐ๐‘ช๐‘จ๐‘ณ ๐‘ธ๐‘ผ๐‘จ๐‘ต๐‘ป๐‘ฐ๐‘ป๐‘ฐ๐‘ฌ๐‘บ
52
๐‘ฌ๐’๐’†๐’„๐’•๐’“๐’Š๐’„๐’‚๐’ ๐‘บ๐’š๐’”๐’•๐’†๐’Ž
๐‘ฐ๐’๐’…๐’–๐’„๐’•๐’‚๐’๐’„๐’† ๐‘ณ
๐‘น๐’†๐’”๐’Š๐’”๐’•๐’‚๐’๐’„๐’† ๐‘น
๐‘น๐’†๐’„๐’Š๐’‘๐’“๐’๐’„๐’‚๐’ ๐Ÿ/๐‘ช ๐’๐’‡ ๐’„๐’‚๐’‘๐’‚๐’„๐’Š๐’•๐’‚๐’๐’„๐’†
๐‘ช๐’–๐’“๐’“๐’†๐’๐’• ๐‘ฐ(๐’•)
๐‘ซ๐’†๐’“๐’Š๐’—๐’‚๐’•๐’Š๐’—๐’† (๐‘ฌ๐ŸŽ๐Ž๐’„๐’๐’”๐Ž๐’• ) ๐’๐’‡ ๐’†. ๐’Ž. ๐’‡
๐‘ด๐’†๐’„๐’‰๐’‚๐’๐’Š๐’„๐’‚๐’ ๐‘บ๐’š๐’”๐’•๐’†๐’Ž
๐‘ด๐’‚๐’”๐’” ๐’Ž
๐‘ซ๐’‚๐’Ž๐’‘๐’Š๐’๐’ˆ ๐‘ช๐’๐’๐’”๐’•๐’‚๐’๐’• ๐’„
๐‘บ๐’‘๐’“๐’Š๐’๐’ˆ ๐’„๐’๐’๐’”๐’•๐’‚๐’๐’• ๐’Œ
๐‘ซ๐’Š๐’”๐’‘๐’๐’‚๐’„๐’†๐’Ž๐’†๐’๐’• ๐’™ ๐’•
๐‘ซ๐’“๐’Š๐’—๐’Š๐’๐’ˆ ๐’‡๐’๐’“๐’„๐’† ๐น1๐‘๐‘œ๐‘ ๐›ฝ๐‘ก
53
PRACTICAL IMPOTTANCE
This analogy is strictly quantitative in the sense that to a given mechanical system
we can construct an electric circuit whose current will give the exact values of the
displacement in the mechanical system when suitable scale factors are introduced.
The practical importance of this analogy is almost obvious. The analogy may be
used for constructing an โ€œ electrical modelโ€ of a given mechanical model ,
resulting in substantial savings of time and money because electric circuits are easy
to assemble , and electric quantities can be measured much more quickly and
accurately than mechanical ones.

More Related Content

Recently uploaded

18-04-UA_REPORT_MEDIALITERAะกY_INDEX-DM_23-1-final-eng.pdf
18-04-UA_REPORT_MEDIALITERAะกY_INDEX-DM_23-1-final-eng.pdf18-04-UA_REPORT_MEDIALITERAะกY_INDEX-DM_23-1-final-eng.pdf
18-04-UA_REPORT_MEDIALITERAะกY_INDEX-DM_23-1-final-eng.pdfssuser54595a
ย 
Call Girls in Dwarka Mor Delhi Contact Us 9654467111
Call Girls in Dwarka Mor Delhi Contact Us 9654467111Call Girls in Dwarka Mor Delhi Contact Us 9654467111
Call Girls in Dwarka Mor Delhi Contact Us 9654467111Sapana Sha
ย 
APM Welcome, APM North West Network Conference, Synergies Across Sectors
APM Welcome, APM North West Network Conference, Synergies Across SectorsAPM Welcome, APM North West Network Conference, Synergies Across Sectors
APM Welcome, APM North West Network Conference, Synergies Across SectorsAssociation for Project Management
ย 
MENTAL STATUS EXAMINATION format.docx
MENTAL     STATUS EXAMINATION format.docxMENTAL     STATUS EXAMINATION format.docx
MENTAL STATUS EXAMINATION format.docxPoojaSen20
ย 
URLs and Routing in the Odoo 17 Website App
URLs and Routing in the Odoo 17 Website AppURLs and Routing in the Odoo 17 Website App
URLs and Routing in the Odoo 17 Website AppCeline George
ย 
Introduction to ArtificiaI Intelligence in Higher Education
Introduction to ArtificiaI Intelligence in Higher EducationIntroduction to ArtificiaI Intelligence in Higher Education
Introduction to ArtificiaI Intelligence in Higher Educationpboyjonauth
ย 
mini mental status format.docx
mini    mental       status     format.docxmini    mental       status     format.docx
mini mental status format.docxPoojaSen20
ย 
Concept of Vouching. B.Com(Hons) /B.Compdf
Concept of Vouching. B.Com(Hons) /B.CompdfConcept of Vouching. B.Com(Hons) /B.Compdf
Concept of Vouching. B.Com(Hons) /B.CompdfUmakantAnnand
ย 
Solving Puzzles Benefits Everyone (English).pptx
Solving Puzzles Benefits Everyone (English).pptxSolving Puzzles Benefits Everyone (English).pptx
Solving Puzzles Benefits Everyone (English).pptxOH TEIK BIN
ย 
Crayon Activity Handout For the Crayon A
Crayon Activity Handout For the Crayon ACrayon Activity Handout For the Crayon A
Crayon Activity Handout For the Crayon AUnboundStockton
ย 
_Math 4-Q4 Week 5.pptx Steps in Collecting Data
_Math 4-Q4 Week 5.pptx Steps in Collecting Data_Math 4-Q4 Week 5.pptx Steps in Collecting Data
_Math 4-Q4 Week 5.pptx Steps in Collecting DataJhengPantaleon
ย 
Measures of Central Tendency: Mean, Median and Mode
Measures of Central Tendency: Mean, Median and ModeMeasures of Central Tendency: Mean, Median and Mode
Measures of Central Tendency: Mean, Median and ModeThiyagu K
ย 
The basics of sentences session 2pptx copy.pptx
The basics of sentences session 2pptx copy.pptxThe basics of sentences session 2pptx copy.pptx
The basics of sentences session 2pptx copy.pptxheathfieldcps1
ย 
Science 7 - LAND and SEA BREEZE and its Characteristics
Science 7 - LAND and SEA BREEZE and its CharacteristicsScience 7 - LAND and SEA BREEZE and its Characteristics
Science 7 - LAND and SEA BREEZE and its CharacteristicsKarinaGenton
ย 
Q4-W6-Restating Informational Text Grade 3
Q4-W6-Restating Informational Text Grade 3Q4-W6-Restating Informational Text Grade 3
Q4-W6-Restating Informational Text Grade 3JemimahLaneBuaron
ย 
Organic Name Reactions for the students and aspirants of Chemistry12th.pptx
Organic Name Reactions  for the students and aspirants of Chemistry12th.pptxOrganic Name Reactions  for the students and aspirants of Chemistry12th.pptx
Organic Name Reactions for the students and aspirants of Chemistry12th.pptxVS Mahajan Coaching Centre
ย 
A Critique of the Proposed National Education Policy Reform
A Critique of the Proposed National Education Policy ReformA Critique of the Proposed National Education Policy Reform
A Critique of the Proposed National Education Policy ReformChameera Dedduwage
ย 
PSYCHIATRIC History collection FORMAT.pptx
PSYCHIATRIC   History collection FORMAT.pptxPSYCHIATRIC   History collection FORMAT.pptx
PSYCHIATRIC History collection FORMAT.pptxPoojaSen20
ย 
SOCIAL AND HISTORICAL CONTEXT - LFTVD.pptx
SOCIAL AND HISTORICAL CONTEXT - LFTVD.pptxSOCIAL AND HISTORICAL CONTEXT - LFTVD.pptx
SOCIAL AND HISTORICAL CONTEXT - LFTVD.pptxiammrhaywood
ย 

Recently uploaded (20)

18-04-UA_REPORT_MEDIALITERAะกY_INDEX-DM_23-1-final-eng.pdf
18-04-UA_REPORT_MEDIALITERAะกY_INDEX-DM_23-1-final-eng.pdf18-04-UA_REPORT_MEDIALITERAะกY_INDEX-DM_23-1-final-eng.pdf
18-04-UA_REPORT_MEDIALITERAะกY_INDEX-DM_23-1-final-eng.pdf
ย 
Call Girls in Dwarka Mor Delhi Contact Us 9654467111
Call Girls in Dwarka Mor Delhi Contact Us 9654467111Call Girls in Dwarka Mor Delhi Contact Us 9654467111
Call Girls in Dwarka Mor Delhi Contact Us 9654467111
ย 
APM Welcome, APM North West Network Conference, Synergies Across Sectors
APM Welcome, APM North West Network Conference, Synergies Across SectorsAPM Welcome, APM North West Network Conference, Synergies Across Sectors
APM Welcome, APM North West Network Conference, Synergies Across Sectors
ย 
MENTAL STATUS EXAMINATION format.docx
MENTAL     STATUS EXAMINATION format.docxMENTAL     STATUS EXAMINATION format.docx
MENTAL STATUS EXAMINATION format.docx
ย 
URLs and Routing in the Odoo 17 Website App
URLs and Routing in the Odoo 17 Website AppURLs and Routing in the Odoo 17 Website App
URLs and Routing in the Odoo 17 Website App
ย 
Introduction to ArtificiaI Intelligence in Higher Education
Introduction to ArtificiaI Intelligence in Higher EducationIntroduction to ArtificiaI Intelligence in Higher Education
Introduction to ArtificiaI Intelligence in Higher Education
ย 
mini mental status format.docx
mini    mental       status     format.docxmini    mental       status     format.docx
mini mental status format.docx
ย 
Concept of Vouching. B.Com(Hons) /B.Compdf
Concept of Vouching. B.Com(Hons) /B.CompdfConcept of Vouching. B.Com(Hons) /B.Compdf
Concept of Vouching. B.Com(Hons) /B.Compdf
ย 
Solving Puzzles Benefits Everyone (English).pptx
Solving Puzzles Benefits Everyone (English).pptxSolving Puzzles Benefits Everyone (English).pptx
Solving Puzzles Benefits Everyone (English).pptx
ย 
Crayon Activity Handout For the Crayon A
Crayon Activity Handout For the Crayon ACrayon Activity Handout For the Crayon A
Crayon Activity Handout For the Crayon A
ย 
_Math 4-Q4 Week 5.pptx Steps in Collecting Data
_Math 4-Q4 Week 5.pptx Steps in Collecting Data_Math 4-Q4 Week 5.pptx Steps in Collecting Data
_Math 4-Q4 Week 5.pptx Steps in Collecting Data
ย 
Measures of Central Tendency: Mean, Median and Mode
Measures of Central Tendency: Mean, Median and ModeMeasures of Central Tendency: Mean, Median and Mode
Measures of Central Tendency: Mean, Median and Mode
ย 
The basics of sentences session 2pptx copy.pptx
The basics of sentences session 2pptx copy.pptxThe basics of sentences session 2pptx copy.pptx
The basics of sentences session 2pptx copy.pptx
ย 
Science 7 - LAND and SEA BREEZE and its Characteristics
Science 7 - LAND and SEA BREEZE and its CharacteristicsScience 7 - LAND and SEA BREEZE and its Characteristics
Science 7 - LAND and SEA BREEZE and its Characteristics
ย 
Q4-W6-Restating Informational Text Grade 3
Q4-W6-Restating Informational Text Grade 3Q4-W6-Restating Informational Text Grade 3
Q4-W6-Restating Informational Text Grade 3
ย 
Organic Name Reactions for the students and aspirants of Chemistry12th.pptx
Organic Name Reactions  for the students and aspirants of Chemistry12th.pptxOrganic Name Reactions  for the students and aspirants of Chemistry12th.pptx
Organic Name Reactions for the students and aspirants of Chemistry12th.pptx
ย 
A Critique of the Proposed National Education Policy Reform
A Critique of the Proposed National Education Policy ReformA Critique of the Proposed National Education Policy Reform
A Critique of the Proposed National Education Policy Reform
ย 
PSYCHIATRIC History collection FORMAT.pptx
PSYCHIATRIC   History collection FORMAT.pptxPSYCHIATRIC   History collection FORMAT.pptx
PSYCHIATRIC History collection FORMAT.pptx
ย 
Cรณdigo Creativo y Arte de Software | Unidad 1
Cรณdigo Creativo y Arte de Software | Unidad 1Cรณdigo Creativo y Arte de Software | Unidad 1
Cรณdigo Creativo y Arte de Software | Unidad 1
ย 
SOCIAL AND HISTORICAL CONTEXT - LFTVD.pptx
SOCIAL AND HISTORICAL CONTEXT - LFTVD.pptxSOCIAL AND HISTORICAL CONTEXT - LFTVD.pptx
SOCIAL AND HISTORICAL CONTEXT - LFTVD.pptx
ย 

Featured

2024 State of Marketing Report โ€“ by Hubspot
2024 State of Marketing Report โ€“ by Hubspot2024 State of Marketing Report โ€“ by Hubspot
2024 State of Marketing Report โ€“ by HubspotMarius Sescu
ย 
Everything You Need To Know About ChatGPT
Everything You Need To Know About ChatGPTEverything You Need To Know About ChatGPT
Everything You Need To Know About ChatGPTExpeed Software
ย 
Product Design Trends in 2024 | Teenage Engineerings
Product Design Trends in 2024 | Teenage EngineeringsProduct Design Trends in 2024 | Teenage Engineerings
Product Design Trends in 2024 | Teenage EngineeringsPixeldarts
ย 
How Race, Age and Gender Shape Attitudes Towards Mental Health
How Race, Age and Gender Shape Attitudes Towards Mental HealthHow Race, Age and Gender Shape Attitudes Towards Mental Health
How Race, Age and Gender Shape Attitudes Towards Mental HealthThinkNow
ย 
AI Trends in Creative Operations 2024 by Artwork Flow.pdf
AI Trends in Creative Operations 2024 by Artwork Flow.pdfAI Trends in Creative Operations 2024 by Artwork Flow.pdf
AI Trends in Creative Operations 2024 by Artwork Flow.pdfmarketingartwork
ย 
PEPSICO Presentation to CAGNY Conference Feb 2024
PEPSICO Presentation to CAGNY Conference Feb 2024PEPSICO Presentation to CAGNY Conference Feb 2024
PEPSICO Presentation to CAGNY Conference Feb 2024Neil Kimberley
ย 
Content Methodology: A Best Practices Report (Webinar)
Content Methodology: A Best Practices Report (Webinar)Content Methodology: A Best Practices Report (Webinar)
Content Methodology: A Best Practices Report (Webinar)contently
ย 
How to Prepare For a Successful Job Search for 2024
How to Prepare For a Successful Job Search for 2024How to Prepare For a Successful Job Search for 2024
How to Prepare For a Successful Job Search for 2024Albert Qian
ย 
Social Media Marketing Trends 2024 // The Global Indie Insights
Social Media Marketing Trends 2024 // The Global Indie InsightsSocial Media Marketing Trends 2024 // The Global Indie Insights
Social Media Marketing Trends 2024 // The Global Indie InsightsKurio // The Social Media Age(ncy)
ย 
Trends In Paid Search: Navigating The Digital Landscape In 2024
Trends In Paid Search: Navigating The Digital Landscape In 2024Trends In Paid Search: Navigating The Digital Landscape In 2024
Trends In Paid Search: Navigating The Digital Landscape In 2024Search Engine Journal
ย 
5 Public speaking tips from TED - Visualized summary
5 Public speaking tips from TED - Visualized summary5 Public speaking tips from TED - Visualized summary
5 Public speaking tips from TED - Visualized summarySpeakerHub
ย 
ChatGPT and the Future of Work - Clark Boyd
ChatGPT and the Future of Work - Clark Boyd ChatGPT and the Future of Work - Clark Boyd
ChatGPT and the Future of Work - Clark Boyd Clark Boyd
ย 
Getting into the tech field. what next
Getting into the tech field. what next Getting into the tech field. what next
Getting into the tech field. what next Tessa Mero
ย 
Google's Just Not That Into You: Understanding Core Updates & Search Intent
Google's Just Not That Into You: Understanding Core Updates & Search IntentGoogle's Just Not That Into You: Understanding Core Updates & Search Intent
Google's Just Not That Into You: Understanding Core Updates & Search IntentLily Ray
ย 
Introduction to Data Science
Introduction to Data ScienceIntroduction to Data Science
Introduction to Data ScienceChristy Abraham Joy
ย 
Time Management & Productivity - Best Practices
Time Management & Productivity -  Best PracticesTime Management & Productivity -  Best Practices
Time Management & Productivity - Best PracticesVit Horky
ย 
The six step guide to practical project management
The six step guide to practical project managementThe six step guide to practical project management
The six step guide to practical project managementMindGenius
ย 
Beginners Guide to TikTok for Search - Rachel Pearson - We are Tilt __ Bright...
Beginners Guide to TikTok for Search - Rachel Pearson - We are Tilt __ Bright...Beginners Guide to TikTok for Search - Rachel Pearson - We are Tilt __ Bright...
Beginners Guide to TikTok for Search - Rachel Pearson - We are Tilt __ Bright...RachelPearson36
ย 

Featured (20)

2024 State of Marketing Report โ€“ by Hubspot
2024 State of Marketing Report โ€“ by Hubspot2024 State of Marketing Report โ€“ by Hubspot
2024 State of Marketing Report โ€“ by Hubspot
ย 
Everything You Need To Know About ChatGPT
Everything You Need To Know About ChatGPTEverything You Need To Know About ChatGPT
Everything You Need To Know About ChatGPT
ย 
Product Design Trends in 2024 | Teenage Engineerings
Product Design Trends in 2024 | Teenage EngineeringsProduct Design Trends in 2024 | Teenage Engineerings
Product Design Trends in 2024 | Teenage Engineerings
ย 
How Race, Age and Gender Shape Attitudes Towards Mental Health
How Race, Age and Gender Shape Attitudes Towards Mental HealthHow Race, Age and Gender Shape Attitudes Towards Mental Health
How Race, Age and Gender Shape Attitudes Towards Mental Health
ย 
AI Trends in Creative Operations 2024 by Artwork Flow.pdf
AI Trends in Creative Operations 2024 by Artwork Flow.pdfAI Trends in Creative Operations 2024 by Artwork Flow.pdf
AI Trends in Creative Operations 2024 by Artwork Flow.pdf
ย 
Skeleton Culture Code
Skeleton Culture CodeSkeleton Culture Code
Skeleton Culture Code
ย 
PEPSICO Presentation to CAGNY Conference Feb 2024
PEPSICO Presentation to CAGNY Conference Feb 2024PEPSICO Presentation to CAGNY Conference Feb 2024
PEPSICO Presentation to CAGNY Conference Feb 2024
ย 
Content Methodology: A Best Practices Report (Webinar)
Content Methodology: A Best Practices Report (Webinar)Content Methodology: A Best Practices Report (Webinar)
Content Methodology: A Best Practices Report (Webinar)
ย 
How to Prepare For a Successful Job Search for 2024
How to Prepare For a Successful Job Search for 2024How to Prepare For a Successful Job Search for 2024
How to Prepare For a Successful Job Search for 2024
ย 
Social Media Marketing Trends 2024 // The Global Indie Insights
Social Media Marketing Trends 2024 // The Global Indie InsightsSocial Media Marketing Trends 2024 // The Global Indie Insights
Social Media Marketing Trends 2024 // The Global Indie Insights
ย 
Trends In Paid Search: Navigating The Digital Landscape In 2024
Trends In Paid Search: Navigating The Digital Landscape In 2024Trends In Paid Search: Navigating The Digital Landscape In 2024
Trends In Paid Search: Navigating The Digital Landscape In 2024
ย 
5 Public speaking tips from TED - Visualized summary
5 Public speaking tips from TED - Visualized summary5 Public speaking tips from TED - Visualized summary
5 Public speaking tips from TED - Visualized summary
ย 
ChatGPT and the Future of Work - Clark Boyd
ChatGPT and the Future of Work - Clark Boyd ChatGPT and the Future of Work - Clark Boyd
ChatGPT and the Future of Work - Clark Boyd
ย 
Getting into the tech field. what next
Getting into the tech field. what next Getting into the tech field. what next
Getting into the tech field. what next
ย 
Google's Just Not That Into You: Understanding Core Updates & Search Intent
Google's Just Not That Into You: Understanding Core Updates & Search IntentGoogle's Just Not That Into You: Understanding Core Updates & Search Intent
Google's Just Not That Into You: Understanding Core Updates & Search Intent
ย 
How to have difficult conversations
How to have difficult conversations How to have difficult conversations
How to have difficult conversations
ย 
Introduction to Data Science
Introduction to Data ScienceIntroduction to Data Science
Introduction to Data Science
ย 
Time Management & Productivity - Best Practices
Time Management & Productivity -  Best PracticesTime Management & Productivity -  Best Practices
Time Management & Productivity - Best Practices
ย 
The six step guide to practical project management
The six step guide to practical project managementThe six step guide to practical project management
The six step guide to practical project management
ย 
Beginners Guide to TikTok for Search - Rachel Pearson - We are Tilt __ Bright...
Beginners Guide to TikTok for Search - Rachel Pearson - We are Tilt __ Bright...Beginners Guide to TikTok for Search - Rachel Pearson - We are Tilt __ Bright...
Beginners Guide to TikTok for Search - Rachel Pearson - We are Tilt __ Bright...
ย 

Application of Differential Equations to Cooling, Decay and Circuits

  • 1. APPLICATION OF DIFFERENTIAL EQUATION OF First and SECOND ORDER 1
  • 2. CONTENTS: 1.NEWTONโ€™S LAW OF COOLING 2.RADIOACTIVE DECAY 3.L-R AND C-R CIRCUITS 4.FREE UNDAMPED AND DAMPED VIBRATIONS 5.FORCED OSCILLATIONS-RESONANCE PHENOMENON 6.SERIES LCR CIRCUIT 7.ANALOGY WITH MASS SPRING SYSTEM 8.LCR CIRCUIT WITH VOLTAGE SOURCE 9.COMPLEX IMPEDENCE 10. RESONANCE PHENOMENA 2
  • 3. 3 Radioactive Decay The D.E. ๐‘‘๐‘ข ๐‘‘๐‘ก = โˆ’๐‘˜๐‘ข, ๐‘˜>0 describes the decay phenomena where it is assumed that the material ๐‘ข(๐‘ก) at any time ๐‘ก decays at a rate which is proportional to the amount present. The solution is ๐‘ข(๐‘ก) = ๐‘๐‘’โˆ’๐‘˜๐‘ก If initially at , ๐‘ก =0 ๐‘ข0 is the amount present then ๐‘ = ๐‘ข0 ๐‘ข(๐‘ก) = ๐‘ข0๐‘’โˆ’๐‘˜๐‘ก
  • 4. ๐‘‘๐‘ข ๐‘ข = โˆ’ ๐‘˜๐‘‘๐‘ก (Separate the variables) เถฑ 1 ๐‘ข ๐‘‘๐‘ข = โˆ’ เถฑ๐‘˜๐‘‘๐‘ก (Integrate both sides) ln ๐‘ข = โˆ’๐‘˜๐‘ก + A (Apply integration formulas) ๐‘’ln |๐‘ข| = ๐‘’โˆ’๐‘˜๐‘ก+๐ด (Raise both sides to exponential function of base ๐‘’) ๐‘ข = ๐‘’โˆ’๐‘˜๐‘ก ๐‘’๐ด (Use inverse property ๐‘’ln ๐‘˜ = ๐‘˜ and law of exponents ๐‘๐‘ฅ+๐‘ฆ = ๐‘๐‘ฅ ๐‘๐‘ฆ ) ๐‘ข(๐‘ก) = ๐ถ๐‘’โˆ’๐‘˜๐‘ก (Use absolute value definition ยฑ ๐‘’๐ด ๐‘’๐‘˜๐‘ก and replace constant ยฑ ๐‘’๐ด with ๐ถ. ) 4
  • 5. Ex. A certain radioactive material is known to decay at rate proportional to the amount present. If initially 500 mg of the material is present and after 3 years 20% of the original mass was decayed,find the expression for the mass at any time. 5 Sol. Let ๐‘ข(๐‘ก) denote the amount of material present at any time t. Then according to the given condition ๐‘‘๐‘ข ๐‘‘๐‘ก = โˆ’๐‘˜๐‘ข or ๐‘‘๐‘ข ๐‘ข = โˆ’๐‘˜. ๐‘‘๐‘ก On integration log ๐‘ข = โˆ’๐‘˜๐‘ก + ๐‘. . . . . . . . . . . . . (1)
  • 6. Let ๐‘ข0 be the amount of the material at ๐‘ก = 0 so that when ๐‘ก = 0 ,๐‘ข = ๐‘ข0 ๐‘“๐‘Ÿ๐‘œ๐‘š (1) log ๐‘ข0 = ๐‘ so from (1) log ๐‘ข = โˆ’๐‘˜๐‘ก + log ๐‘ข0 log ๐‘ข ๐‘ข0 = โˆ’๐‘˜๐‘ก or ๐‘ข ๐‘ข0 = ๐‘’โˆ’๐‘˜๐‘ก or ๐‘ข = ๐‘ข0๐‘’โˆ’๐‘˜๐‘ก . . . . . . . . . . . . . . . (2) After 3 years 20 % of the original mass decayed Now mass ๐‘ข = ๐‘ข0 โˆ’ 20 100 ๐‘ข0 = 4 5 ๐‘ข0 ๐‘๐‘œ๐‘›๐‘ก๐‘–๐‘›๐‘ข๐‘’๐‘‘ 6
  • 7. ๐‘๐‘œ๐‘›๐‘ก๐‘–๐‘›๐‘ข๐‘’๐‘‘ Hence from (2) 4 5 ๐‘ข0 = ๐‘ข0๐‘’โˆ’3๐‘˜ (๐‘ก = 3) ๐‘œ๐‘Ÿ ๐‘’โˆ’3๐‘˜ = 0.8 ๐‘˜ = 0.07438 from (2) ๐‘ข = ๐‘ข0๐‘’โˆ’๐‘˜๐‘ก or ๐‘ข = 500 ๐‘’โˆ’0.07438๐‘ก๐‘š๐‘” ans. (๐‘ข0 = 500) 7
  • 8. Ex. Radium decomposes at a rate proportional to the amount of radium present. Suppose it is found that in 25 years approximately 1.1% of a certain quantity of Radium has decomposed. Determine approximately how long will it take for one half of the original amount of radium to decompose. Sol. Let ๐‘ข(๐‘ก) denote the amount of material present at any time t. Let ๐‘ข0 be the initial amount of radium at ๐‘ก = 0 By decay rule ๐‘‘๐‘ข ๐‘‘๐‘ก = โˆ’๐‘˜u or ๐‘‘๐‘ข ๐‘ข = โˆ’๐‘˜. ๐‘‘๐‘ก On integration log ๐‘ข = โˆ’๐‘˜๐‘ก + ๐‘ or ๐‘ข = ๐‘๐‘’โˆ’๐‘˜๐‘ก. . . . . . . . . . . . . . . . (1) 8
  • 9. ๐‘๐‘œ๐‘›๐‘ก๐‘–๐‘›๐‘ข๐‘’๐‘‘ using initial condition , at ๐‘ก = 0, ๐‘ข = ๐‘ข0 in (1) ๐‘ข0 = ๐‘ or ๐‘ข = ๐‘ข0๐‘’โˆ’๐‘˜๐‘ก...............(2) when ๐‘ก = 25 , ๐‘ข = ๐‘ข0 โˆ’ 1.1 100 ๐‘ข0 ๐น๐‘Ÿ๐‘œ๐‘š (2) 1 โˆ’ 1.1 100 ๐‘ข0 = ๐‘ข0๐‘’โˆ’25๐‘˜ ๐‘˜ = 0.000443 ๐‘ข = ๐‘ข0๐‘’โˆ’0.000443๐‘ก. . . . . . . (3) Now we have to find the time taken for half the radium to disintegrate u = ๐‘ข0 2 ๐‘ข0 2 = ๐‘ข0๐‘’โˆ’0.000443๐‘ก(๐‘“๐‘Ÿ๐‘œ๐‘š 3) ๐‘ก = 1565 years app. 9
  • 10. 1 10
  • 11. History โ€ขIn the 17th century, Isaac Newton studied the nature of cooling โ€ขIn his studies he found that if there is a less than 10 degree difference between two objects the rate of heat loss is proportional to the temperature difference โ€ขNewton applied this principle to estimate the temperature of a red-hot iron ball by observing the time which it took to cool from a red heat to a known temperature, and comparing this with the time taken to cool through a known range at ordinary temperatures. โ€ขAccording to this law, if the excess of the temperature of the body above its surroundings is observed at equal intervals of time, the observed values will form a geometrical progression with a common ratio โ€ขHowever, Newtonโ€™s law was inaccurate at high temperatures โ€ขPierre Dulong and Alexis Petit corrected Newtonโ€™s law by clarifying the effect of the temperature of the surroundings 11
  • 12. โ€ข Newton's Law of Cooling is used to model the temperature change of an object of some temperature placed in an environment of a different temperature. The law states that: = the temperature of the object at time t = the temperature of the surrounding environment (constant) k = the constant of proportionality โ€ข This law says that the rate of change of temperature is proportional to the difference between the temperature of the object and that of the surrounding environment. ๐‘‘๐‘‡ ๐‘‘๐‘ก = โˆ’๐‘˜(๐‘‡ โˆ’ ๐‘‡๐ด) ๐‘‡๐ด ๐‘‡ 12
  • 13. The Basic Concept TO solve the differential equation steps are given below. โ€ข Separate the variables. Get all the T 's on one side and the t on the other side. The constants can be on either side. โ€ข Integrate each side โ€ข Leave in the previous form or solve for T Find antiderivative of each side ๐‘‘๐‘‡ (๐‘‡ โˆ’ ๐‘‡๐ด) = โˆ’๐‘˜๐‘‘๐‘ก log( ๐‘‡ โˆ’ ๐‘‡๐ด) = โˆ’๐‘˜๐‘ก + ๐‘0 ๐‘‡ โˆ’ ๐‘‡๐ด = ๐‘’โˆ’๐‘˜๐‘ก+๐‘0 ๐‘‡ = ๐‘‡๐ด + ๐‘’โˆ’๐‘˜๐‘ก+๐‘0 = ๐‘‡๐ด + ๐‘’โˆ’๐‘˜๐‘ก ๐‘’๐‘0 T = ๐‘‡๐ด + ๐‘’โˆ’๐‘˜๐‘ก ๐‘ 13
  • 14. Ex. If a substance cools from 370k to 330k in 10minutes, when the temperature of the surrounding air is 290k, find the temperature of the substance after 40 minutes. Sol. Here ๐‘‡๐ด = 290 so that the solution is ๐‘‡ ๐‘ก = 290 + ๐‘๐‘’โˆ’๐‘˜๐‘ก (T = ๐‘‡๐ด + ๐‘’โˆ’๐‘˜๐‘ก ๐‘ ) using condition at t=0 , ๐‘‡ = 370 (to find ๐‘) 370 =290+c ๐‘’0 or ๐‘ = 80 Thus ๐‘‡ ๐‘ก = 290 + 80๐‘’โˆ’๐‘˜๐‘ก using condition ๐‘‡ 10 = 330 (to find ๐‘˜) Thus 330 =290+80 ๐‘’โˆ’๐‘˜ .10 so that ๐‘˜ = ๐‘™๐‘œ๐‘”2 10 = 0.069314718 The required solution is ๐‘‡ ๐‘ก = 290 + 80๐‘’โˆ’.06931๐‘ก Putting ๐‘ก = 40 ๐‘š๐‘–๐‘›๐‘  in the above solution ๐‘‡ 40 = 290 + 80๐‘’โˆ’.06931ร—40 โ‰ˆ 295 14
  • 15. Example 2: A body of temperature 80ยฐF is placed in a room of constant temperature 50ยฐF at time t = 0. At the end of 5 minutes the body has cooled to a temperature of 70ยฐF. (a) Find the temperature of the body at the end of 10 minutes. (b) When will the temperature of the body be 60ยฐF? โ€ข Sol. ๐ฟ๐‘’๐‘ก ๐‘‡ ๐‘๐‘’ ๐‘กโ„Ž๐‘’ ๐‘ก๐‘’๐‘š๐‘๐‘’๐‘Ÿ๐‘Ž๐‘ก๐‘ข๐‘Ÿ๐‘’ ๐‘œ๐‘“ ๐‘กโ„Ž๐‘’ ๐‘๐‘œ๐‘‘๐‘ฆ. ๐‘‡โ„Ž๐‘’๐‘› ๐‘‡ ๐‘ก = 50 + ๐‘ ๐‘’โˆ’๐‘˜๐‘ก ๐‘ ๐‘–๐‘›๐‘๐‘’ ๐‘‡๐ด = 50. ๐ด๐‘๐‘๐‘™๐‘ฆ ๐‘กโ„Ž๐‘’ ๐‘๐‘œ๐‘›๐‘‘๐‘–๐‘ก๐‘–๐‘œ๐‘› ๐‘‡ 0 = 80, (๐‘ก๐‘œ ๐‘“๐‘–๐‘›๐‘‘ ๐‘); 80 = 50 + ๐‘ ๐‘’0 ๐‘œ๐‘Ÿ ๐‘ = 30 ๐‘‡ ๐‘ก = 50+ 30 ๐‘’โˆ’๐‘˜๐‘ก o๐‘Ÿ ๐‘ข๐‘ ๐‘–๐‘›๐‘” ๐‘๐‘œ๐‘›๐‘‘๐‘–๐‘ก๐‘–๐‘œ๐‘› ๐‘‡ 5 = 70 (๐‘ก๐‘œ ๐‘‘๐‘’๐‘ก๐‘’๐‘Ÿ๐‘š๐‘–๐‘›๐‘’ ๐‘˜); 70 = 50+ 30 ๐‘’โˆ’๐‘˜5 ๐‘ ๐‘œ ๐‘กโ„Ž๐‘Ž๐‘ก ๐‘˜ = 1 5 log 3 2 ๐‘˜ = .08109 ๐‘‡โ„Ž๐‘ข๐‘  ๐‘กโ„Ž๐‘’ ๐‘Ÿ๐‘’๐‘ž๐‘ข๐‘–๐‘Ÿ๐‘’๐‘‘ ๐‘ ๐‘œ๐‘™๐‘ข๐‘ก๐‘–๐‘œ๐‘› ๐‘คโ„Ž๐‘–๐‘โ„Ž ๐‘”๐‘–๐‘ฃ๐‘’๐‘  ๐‘กโ„Ž๐‘’ ๐‘ก๐‘’๐‘š๐‘๐‘’๐‘Ÿ๐‘Ž๐‘ก๐‘ข๐‘Ÿ๐‘’ ๐‘œ๐‘“ ๐‘กโ„Ž๐‘’ ๐‘๐‘œ๐‘‘๐‘ฆ ๐‘Ž๐‘ก ๐‘Ž๐‘›๐‘ฆ ๐‘ก๐‘–๐‘š๐‘’ ๐‘ก ๐‘–๐‘  ๐‘‡ ๐‘ก = 50+ 30 ๐‘’โˆ’.08109 ๐‘ก (a). ๐‘‡ 10 = 50 + 30 ๐‘’โˆ’.08109(10) โ‰ˆ 63.330F (b). 60 = 50 + 30 ๐‘’โˆ’.08109๐‘ก ๐‘ ๐‘œ๐‘™๐‘ฃ๐‘–๐‘›๐‘” ๐‘ค๐‘’ ๐‘”๐‘’๐‘ก ๐‘ก โ‰ˆ13.55mts 15
  • 16. Ans. It takes about 8.88 more minutes For the object to cool to a temperature of 110ยฐ 110ยฐ For the object to cool to a temperature of 110ยฐ The Problem Spencer and Vikalp are cranking out math problems at Safeway. Shankar is at home making pizza. He calls Spencer and tells him that he is taking the pizza out from the oven right now. Spencer and Vikalp need to get back home in time so that they can enjoy the pizza at a warm temperature of 110ยฐF. The pizza, heated to a temperature of 450ยฐF, is taken out of an oven and placed in a 75ยฐF room at time t=0 minutes. If the pizza cools from 450ยฐ to 370ยฐ in 1 minute, how much longer will it take for its temperature to decrease to 110ยฐ? 16
  • 17. A copper ball is heated to a temperature 0f 100 0 C and it is placed in water which is maintained at a temperature of 400 C. If in 4 mins the temperature of the ball is reduced to 600 ,find the time at which the temperature of the ball is 500 C. ANS.6.5 mins 17
  • 18. Real Life Applications โ€ข To predict how long it takes for a hot cup of tea to cool down to a certain temperature โ€ข To find the temperature of a soda placed in a refrigerator by a certain amount of time. โ€ข In crime scenes, Newtonโ€™s law of cooling can indicate the time of death given the probable body temperature at time of death and the current body temperature โ€ข 18
  • 19. SIMPLE ELECTRIC CIRCUITS ๐ด๐‘› ๐‘’๐‘™๐‘’๐‘๐‘ก๐‘Ÿ๐‘–๐‘ ๐‘๐‘–๐‘Ÿ๐‘๐‘ข๐‘–๐‘ก ๐‘๐‘œ๐‘›๐‘ ๐‘–๐‘ ๐‘ก๐‘  ๐‘œ๐‘“ ๐‘Ž ๐‘ ๐‘œ๐‘ข๐‘Ÿ๐‘๐‘’ ๐‘œ๐‘“ ๐‘’๐‘™๐‘’๐‘๐‘ก๐‘Ÿ๐‘–๐‘ ๐‘’๐‘›๐‘’๐‘Ÿ๐‘”๐‘ฆ ๐‘’๐‘™๐‘’๐‘๐‘ก๐‘Ÿ๐‘œ๐‘š๐‘œ๐‘ก๐‘–๐‘ฃ๐‘’ ๐‘“๐‘œ๐‘Ÿ๐‘๐‘’ ๐‘Ž๐‘›๐‘‘ ๐‘’๐‘™๐‘’๐‘š๐‘’๐‘›๐‘ก๐‘  ๐‘ ๐‘ข๐‘โ„Ž ๐‘Ž๐‘  ๐‘Ÿ๐‘’๐‘ ๐‘–๐‘ ๐‘ก๐‘œ๐‘Ÿ๐‘  , ๐‘–๐‘›๐‘‘๐‘ข๐‘๐‘ก๐‘œ๐‘Ÿ๐‘  ๐‘œ๐‘Ÿ ๐‘ฃ๐‘œ๐‘™๐‘ก๐‘Ž๐‘”๐‘’ ๐‘Ž๐‘›๐‘‘ ๐‘๐‘Ž๐‘๐‘Ž๐‘๐‘–๐‘ก๐‘œ๐‘Ÿ๐‘ . ๐ด ๐‘š๐‘Ž๐‘กโ„Ž๐‘’๐‘š๐‘Ž๐‘ก๐‘–๐‘๐‘Ž๐‘™ ๐‘š๐‘œ๐‘‘๐‘’๐‘™ ๐‘œ๐‘“ ๐‘Ž๐‘› ๐‘’๐‘™๐‘’๐‘๐‘ก๐‘Ÿ๐‘–๐‘ ๐‘๐‘–๐‘Ÿ๐‘๐‘ข๐‘–๐‘ก ๐‘–๐‘  ๐‘Ÿ๐‘’๐‘๐‘Ÿ๐‘’๐‘ ๐‘’๐‘›๐‘ก๐‘’๐‘‘ ๐‘๐‘ฆ ๐‘™๐‘–๐‘›๐‘’๐‘Ž๐‘Ÿ ๐‘‘๐‘–๐‘“๐‘“๐‘’๐‘Ÿ๐‘’๐‘›๐‘ก๐‘–๐‘Ž๐‘™ ๐‘’๐‘ž๐‘ข๐‘Ž๐‘ก๐‘–๐‘œ๐‘›๐‘ . ๐‘‡๐‘œ ๐‘“๐‘œ๐‘Ÿ๐‘š ๐‘ ๐‘ข๐‘โ„Ž ๐‘Ž๐‘› ๐‘’๐‘ž๐‘ข๐‘Ž๐‘ก๐‘–๐‘œ๐‘› , ๐‘กโ„Ž๐‘’ ๐‘“๐‘œ๐‘™๐‘™๐‘œ๐‘ค๐‘–๐‘›๐‘” ๐‘Ÿ๐‘’๐‘™๐‘Ž๐‘ก๐‘–๐‘œ๐‘›๐‘ โ„Ž๐‘–๐‘๐‘  ๐‘Ž๐‘Ÿ๐‘’ ๐‘›๐‘’๐‘’๐‘‘๐‘’๐‘‘: ๐‘‡โ„Ž๐‘’ ๐‘ฃ๐‘œ๐‘™๐‘ก๐‘Ž๐‘”๐‘’ ๐‘‘๐‘Ÿ๐‘œ๐‘ ๐ธ๐‘… ๐‘Ž๐‘๐‘Ÿ๐‘œ๐‘ ๐‘  ๐‘Ž ๐‘Ÿ๐‘’๐‘ ๐‘–๐‘ ๐‘ก๐‘œ๐‘Ÿ ๐‘–๐‘  ๐‘๐‘Ÿ๐‘œ๐‘๐‘œ๐‘Ÿ๐‘ก๐‘–๐‘œ๐‘›๐‘Ž๐‘™ ๐‘ก๐‘œ ๐‘กโ„Ž๐‘’ ๐‘–๐‘›๐‘ ๐‘ก๐‘Ž๐‘›๐‘ก๐‘Ž๐‘›๐‘’๐‘œ๐‘ข๐‘  ๐‘๐‘ข๐‘Ÿ๐‘Ÿ๐‘’๐‘›๐‘ก ๐ผ(๐‘ก) ๐‘กโ„Ž๐‘Ÿ๐‘œ๐‘ข๐‘”โ„Ž ๐‘–๐‘ก: ๐‘ฌ๐‘น= ๐‘น๐‘ฐ ๐ป๐‘’๐‘Ÿ๐‘’ ๐‘กโ„Ž๐‘’ ๐‘๐‘œ๐‘›๐‘ ๐‘ก๐‘Ž๐‘›๐‘ก ๐‘œ๐‘“ ๐‘๐‘Ÿ๐‘œ๐‘๐‘œ๐‘Ÿ๐‘ก๐‘–๐‘œ๐‘›๐‘Ž๐‘™๐‘–๐‘ก๐‘ฆ ๐‘… ๐‘–๐‘  ๐‘˜๐‘›๐‘œ๐‘ค๐‘› ๐‘Ž๐‘  ๐‘กโ„Ž๐‘’ ๐‘Ÿ๐‘’๐‘ ๐‘–๐‘ ๐‘ก๐‘Ž๐‘›๐‘๐‘’ ๐‘œ๐‘“ ๐‘กโ„Ž๐‘’ ๐‘Ÿ๐‘’๐‘ ๐‘–๐‘ ๐‘ก๐‘œ๐‘Ÿ๐‘ . ๐‘‡โ„Ž๐‘’ ๐‘ฃ๐‘œ๐‘™๐‘ก๐‘Ž๐‘”๐‘’ ๐‘‘๐‘Ÿ๐‘œ๐‘ ๐ธ๐ฟ ๐‘Ž๐‘๐‘Ÿ๐‘œ๐‘ ๐‘  ๐‘Ž๐‘› ๐‘–๐‘›๐‘‘๐‘ข๐‘๐‘ก๐‘œ๐‘Ÿ ๐‘–๐‘  ๐‘๐‘Ÿ๐‘œ๐‘๐‘œ๐‘Ÿ๐‘ก๐‘–๐‘œ๐‘›๐‘Ž๐‘™ ๐‘ก๐‘œ ๐‘กโ„Ž๐‘’ ๐‘–๐‘›๐‘ ๐‘ก๐‘Ž๐‘›๐‘ก๐‘Ž๐‘›๐‘’๐‘œ๐‘ข๐‘  ๐‘ก๐‘–๐‘š๐‘’ ๐‘Ÿ๐‘Ž๐‘ก๐‘’ ๐‘œ๐‘“ ๐‘โ„Ž๐‘Ž๐‘›๐‘”๐‘’ ๐‘œ๐‘“ ๐‘๐‘ข๐‘Ÿ๐‘Ÿ๐‘’๐‘›๐‘ก: ๐‘ฌ๐‘ณ = ๐‘ณ ๐’…๐‘ฐ ๐’…๐‘ป ๐ป๐‘’๐‘Ÿ๐‘’ ๐‘กโ„Ž๐‘’ ๐‘๐‘œ๐‘›๐‘ ๐‘ก๐‘Ž๐‘›๐‘ก ๐‘œ๐‘“ ๐‘๐‘Ÿ๐‘œ๐‘๐‘œ๐‘Ÿ๐‘ก๐‘–๐‘œ๐‘›๐‘Ž๐‘™๐‘–๐‘ก๐‘ฆ ๐ฟ ๐‘–๐‘  ๐‘˜๐‘›๐‘œ๐‘ค๐‘› ๐‘Ž๐‘  ๐‘กโ„Ž๐‘’ ๐‘–๐‘›๐‘‘๐‘ข๐‘๐‘ก๐‘Ž๐‘›๐‘๐‘’ ๐‘œ๐‘“ ๐‘กโ„Ž๐‘’ ๐‘–๐‘›๐‘‘๐‘ข๐‘๐‘ก๐‘œ๐‘Ÿ๐‘ . ๐‘‡โ„Ž๐‘’ ๐‘ฃ๐‘œ๐‘™๐‘ก๐‘Ž๐‘”๐‘’ ๐‘‘๐‘Ÿ๐‘œ๐‘ ๐ธ๐‘ ๐‘Ž๐‘๐‘Ÿ๐‘œ๐‘ ๐‘  ๐‘Ž ๐‘๐‘Ž๐‘๐‘Ž๐‘๐‘–๐‘ก๐‘œ๐‘Ÿ ๐‘–๐‘  ๐‘๐‘Ÿ๐‘œ๐‘๐‘œ๐‘Ÿ๐‘ก๐‘–๐‘œ๐‘›๐‘Ž๐‘™ ๐‘ก๐‘œ ๐‘กโ„Ž๐‘’ ๐‘–๐‘›๐‘ ๐‘ก๐‘Ž๐‘›๐‘ก๐‘Ž๐‘›๐‘’๐‘œ๐‘ข๐‘  ๐‘’๐‘™๐‘’๐‘๐‘ก๐‘Ÿ๐‘–๐‘ ๐‘โ„Ž๐‘Ž๐‘Ÿ๐‘”๐‘’ ๐‘„ ๐‘œ๐‘› ๐‘กโ„Ž๐‘’ ๐‘๐‘Ž๐‘๐‘Ž๐‘๐‘–๐‘ก๐‘Ž๐‘›๐‘๐‘’: ๐‘ฌ๐‘ช = ๐Ÿ ๐‘ช ๐‘ธ ๐ป๐‘’๐‘Ÿ๐‘’ ๐ถ ๐‘–๐‘  ๐‘˜๐‘›๐‘œ๐‘ค๐‘› ๐‘Ž๐‘  ๐‘กโ„Ž๐‘’ ๐‘๐‘Ž๐‘๐‘Ž๐‘๐‘–๐‘ก๐‘Ž๐‘›๐‘๐‘’. 19
  • 20. LEIBNITZโ€™S FIRST ORDER DIFFERENTIAL EQUATION ๐‘‘๐‘ฆ ๐‘‘๐‘ฅ + ๐‘ƒ ๐‘ฅ ๐‘ฆ = ๐‘„(๐‘ฅ) ๐ผ๐‘ก๐‘  ๐‘ ๐‘œ๐‘™๐‘ข๐‘ก๐‘–๐‘œ๐‘› ๐‘–๐‘  ๐‘ฆ ร— ๐ผ. ๐น =สƒ ๐‘„ ร— ๐ผ. ๐น. ๐‘‘๐‘ฅ + ๐‘ ๐‘คโ„Ž๐‘’๐‘Ÿ๐‘’ ๐ผ. ๐น. = ๐‘’สƒ ๐‘ƒ ๐‘‘๐‘ฅ 20
  • 21. ๐พ๐ผ๐‘…๐ถ๐ป๐ป๐‘‚๐น๐นโ€ฒ๐‘† ๐ฟ๐ด๐‘Š ๐‘‡โ„Ž๐‘’ ๐‘Ž๐‘™๐‘”๐‘’๐‘๐‘Ÿ๐‘Ž๐‘–๐‘ ๐‘ ๐‘ข๐‘š ๐‘œ๐‘“ ๐‘Ž๐‘™๐‘™ ๐‘กโ„Ž๐‘’ ๐‘–๐‘›๐‘ ๐‘ก๐‘Ž๐‘›๐‘ก๐‘Ž๐‘›๐‘’๐‘œ๐‘ข๐‘  ๐‘ฃ๐‘œ๐‘™๐‘ก๐‘Ž๐‘”๐‘’ ๐‘‘๐‘Ÿ๐‘œ๐‘๐‘  ๐‘Ž๐‘Ÿ๐‘œ๐‘ข๐‘›๐‘‘ ๐‘Ž๐‘›๐‘ฆ ๐‘๐‘™๐‘œ๐‘ ๐‘’๐‘‘ ๐‘™๐‘œ๐‘œ๐‘ ๐‘–๐‘  ๐‘ง๐‘’๐‘Ÿ๐‘œ ๐‘œ๐‘Ÿ ๐‘กโ„Ž๐‘’ ๐‘ฃ๐‘œ๐‘™๐‘ก๐‘Ž๐‘”๐‘’ ๐‘–๐‘š๐‘๐‘Ÿ๐‘’๐‘ ๐‘ ๐‘’๐‘‘ ๐‘œ๐‘› ๐‘Ž ๐‘๐‘™๐‘œ๐‘ ๐‘’๐‘‘ ๐‘™๐‘œ๐‘œ๐‘ ๐‘–๐‘  ๐‘’๐‘ž๐‘ข๐‘Ž๐‘™ ๐‘ก๐‘œ ๐‘กโ„Ž๐‘’ ๐‘ ๐‘ข๐‘š ๐‘œ๐‘“ ๐‘กโ„Ž๐‘’ ๐‘ฃ๐‘œ๐‘™๐‘ก๐‘Ž๐‘”๐‘’ ๐‘‘๐‘Ÿ๐‘œ๐‘๐‘  ๐‘–๐‘› ๐‘กโ„Ž๐‘’ ๐‘Ÿ๐‘’๐‘ ๐‘ก ๐‘œ๐‘“ ๐‘กโ„Ž๐‘’ ๐‘™๐‘œ๐‘œ๐‘. ๐ถ๐‘œ๐‘›๐‘ ๐‘–๐‘‘๐‘’๐‘Ÿ ๐‘ก๐‘ค๐‘œ ๐‘ ๐‘–๐‘š๐‘๐‘™๐‘’ ๐‘๐‘Ž๐‘ ๐‘’๐‘  of electric circuits. ๐‘…๐ฟ ๐ถ๐‘–๐‘Ÿ๐‘๐‘ข๐‘–๐‘ก:๐‘‡โ„Ž๐‘’ ๐‘ฃ๐‘œ๐‘™๐‘ก๐‘Ž๐‘”๐‘’ ๐‘‘๐‘Ÿ๐‘œ๐‘ ๐‘Ž๐‘๐‘Ÿ๐‘œ๐‘ ๐‘  ๐‘กโ„Ž๐‘’ ๐‘Ÿ๐‘’๐‘ ๐‘–๐‘ ๐‘ก๐‘œ๐‘Ÿ ๐‘–๐‘  ๐‘…๐ผ ๐‘Ž๐‘›๐‘‘ ๐‘Ž๐‘๐‘Ÿ๐‘œ๐‘ ๐‘  ๐‘กโ„Ž๐‘’ ๐‘–๐‘›๐‘‘๐‘ข๐‘๐‘ก๐‘œ๐‘Ÿ ๐‘–๐‘  L ๐‘‘๐ผ ๐‘‘๐‘ก Using kirchhoffโ€ฒs law ๐ผ๐‘› ๐‘…๐ฟ โˆ’ ๐ถ๐‘–๐‘Ÿ๐‘๐‘ข๐‘–๐‘ก ๐‘กโ„Ž๐‘’ ๐‘‘๐‘–๐‘“๐‘“๐‘’๐‘Ÿ๐‘’๐‘›๐‘ก๐‘–๐‘Ž๐‘™ ๐‘’๐‘ž๐‘ข๐‘Ž๐‘ก๐‘–๐‘œ๐‘› ๐‘–๐‘  ๐‘”๐‘–๐‘ฃ๐‘’๐‘› ๐‘๐‘ฆ L ๐‘‘๐ผ ๐‘‘๐‘ก + ๐‘…๐ผ = ๐ธ ๐‘ก ๐‘œ๐‘Ÿ ๐‘‘๐ผ ๐‘‘๐‘ก + ๐‘… ๐ฟ ๐ผ = ๐ธ ๐‘ก ๐ฟ ๐‘คโ„Ž๐‘–๐‘โ„Ž โ„Ž๐‘Ž๐‘  ๐‘Ž๐‘› ๐‘–๐‘›๐‘ก๐‘’๐‘”๐‘Ÿ๐‘Ž๐‘ก๐‘–๐‘›๐‘” ๐‘“๐‘Ž๐‘๐‘ก๐‘œ๐‘Ÿ ๐‘’โ€ซืฌโ€ฌ ๐‘… ๐ฟ ๐‘‘๐‘ก = ๐‘’ ๐‘… ๐ฟ ๐‘ก = ๐‘’๐›ผ๐‘ก ๐‘‡โ„Ž๐‘’ ๐‘”๐‘’๐‘›๐‘’๐‘Ÿ๐‘Ž๐‘™ ๐‘ ๐‘œ๐‘™๐‘ข๐‘ก๐‘–๐‘œ๐‘› ๐‘–๐‘  ๐ผ ๐‘ก . ๐‘’๐›ผ๐‘ก = เถฑ ๐ธ ๐‘ก ๐ฟ . ๐‘’๐›ผ๐‘ก ๐‘‘๐‘ก + ๐ถ 21
  • 22. ๐‘…๐ถ ๐ถ๐‘–๐‘Ÿ๐‘๐‘ข๐‘–๐‘ก: Tโ„Ž๐‘’ ๐‘ฃ๐‘œ๐‘™๐‘ก๐‘Ž๐‘”๐‘’ ๐‘‘๐‘Ÿ๐‘œ๐‘ ๐ธ๐‘ ๐‘Ž๐‘๐‘Ÿ๐‘œ๐‘ ๐‘  ๐‘Ž ๐‘๐‘Ž๐‘๐‘Ž๐‘๐‘–๐‘ก๐‘œ๐‘Ÿ ๐‘–๐‘  ๐‘๐‘Ÿ๐‘œ๐‘๐‘œ๐‘Ÿ๐‘ก๐‘–๐‘œ๐‘›๐‘Ž๐‘™ ๐‘ก๐‘œ ๐‘กโ„Ž๐‘’ ๐‘–๐‘›๐‘ ๐‘ก๐‘Ž๐‘›๐‘ก๐‘Ž๐‘›๐‘’๐‘œ๐‘ข๐‘  ๐‘’๐‘™๐‘’๐‘๐‘ก๐‘Ÿ๐‘–๐‘ ๐‘โ„Ž๐‘Ž๐‘Ÿ๐‘”๐‘’ ๐‘„ ๐‘œ๐‘› ๐‘กโ„Ž๐‘’ ๐‘๐‘Ž๐‘๐‘Ž๐‘๐‘–๐‘ก๐‘Ž๐‘›๐‘๐‘’: ๐ธ๐ถ = 1 ๐ถ ๐‘„ โ€ฆ โ€ฆ โ€ฆ โ€ฆ โ€ฆ (1) ๐ป๐‘’๐‘Ÿ๐‘’ ๐ถ ๐‘–๐‘  ๐‘˜๐‘›๐‘œ๐‘ค๐‘› ๐‘Ž๐‘  ๐‘กโ„Ž๐‘’ ๐‘๐‘Ž๐‘๐‘Ž๐‘๐‘–๐‘ก๐‘Ž๐‘›๐‘๐‘’. ๐‘†๐‘–๐‘›๐‘๐‘’ ๐‘๐‘ข๐‘Ÿ๐‘Ÿ๐‘’๐‘›๐‘ก ๐‘–๐‘  ๐‘กโ„Ž๐‘’ ๐‘ก๐‘–๐‘š๐‘’ ๐‘Ÿ๐‘Ž๐‘ก๐‘’ ๐‘œ๐‘“ ๐‘โ„Ž๐‘Ž๐‘›๐‘”๐‘’ ๐‘œ๐‘“ ๐‘โ„Ž๐‘Ž๐‘Ÿ๐‘”๐‘’ , ๐ผ ๐‘ก = ๐‘‘๐‘„ ๐‘‘๐‘ก ๐‘œ๐‘Ÿ ๐‘ข๐‘ ๐‘–๐‘›๐‘” ๐‘–๐‘ก (1) ๐‘๐‘Ž๐‘› ๐‘๐‘’ ๐‘ค๐‘Ÿ๐‘–๐‘ก๐‘ก๐‘’๐‘› ๐‘Ž๐‘  ๐ธ๐ถ = 1 ๐ถ เถฑ ๐‘ก0 ๐‘ก ๐ผ ๐‘ก ๐‘‘๐‘ก ๐ผ๐‘› ๐‘กโ„Ž๐‘–๐‘  ๐‘๐‘Ž๐‘ ๐‘’ ๐‘‘๐‘–๐‘“๐‘“๐‘’๐‘Ÿ๐‘’๐‘›๐‘ก๐‘–๐‘Ž๐‘™ ๐‘’๐‘ž๐‘ข๐‘Ž๐‘ก๐‘–๐‘œ๐‘› ๐‘–๐‘  ๐‘”๐‘–๐‘ฃ๐‘’๐‘› ๐‘๐‘ฆ ๐‘…๐ผ + 1 ๐ถ เถฑ ๐‘ก0 ๐‘ก ๐ผ ๐‘ก ๐‘‘๐‘ก = E t ๐‘คโ„Ž๐‘–๐‘โ„Ž ๐‘œ๐‘› ๐‘‘๐‘–๐‘“๐‘“๐‘’๐‘Ÿ๐‘’๐‘›๐‘ก๐‘–๐‘Ž๐‘ก๐‘–๐‘œ๐‘› ๐‘Ÿ๐‘’๐‘‘๐‘ข๐‘๐‘’๐‘  ๐‘ก๐‘œ ๐‘… ๐‘‘๐ผ ๐‘‘๐‘ก + 1 ๐ถ ๐ผ = ๐‘‘๐ธ ๐‘‘๐‘ก ๐‘œ๐‘Ÿ ๐‘‘๐ผ ๐‘‘๐‘ก + 1 ๐‘…๐ถ ๐ผ = 1 ๐‘… ๐‘‘๐ธ ๐‘‘๐‘ก (first order linear D .E.) ๐‘คโ„Ž๐‘–๐‘โ„Ž โ„Ž๐‘Ž๐‘  ๐‘Ž๐‘› ๐‘–๐‘›๐‘ก๐‘’๐‘”๐‘Ÿ๐‘Ž๐‘ก๐‘–๐‘›๐‘” ๐‘“๐‘Ž๐‘๐‘ก๐‘œ๐‘Ÿ ๐‘’โ€ซืฌโ€ฌ 1 ๐ถ๐‘… ๐‘‘๐‘ก = ๐‘’ ๐‘ก ๐ถ๐‘… ๐‘‡โ„Ž๐‘’ ๐‘”๐‘’๐‘›๐‘’๐‘Ÿ๐‘Ž๐‘™ ๐‘ ๐‘œ๐‘™๐‘ข๐‘ก๐‘–๐‘œ๐‘› ๐‘–๐‘  ๐ผ ๐‘ก . ๐‘’ ๐‘ก ๐ถ๐‘… = เถฑ 1 ๐‘… ๐‘‘๐ธ ๐‘‘๐‘ก . ๐‘’ ๐‘ก ๐ถ๐‘…๐‘‘๐‘ก + ๐‘ 22
  • 23. Example.Find the current at any time ๐‘ก > 0 in a circuit having in series a constant e.m.f. 40v, a resistor 10๐‘œโ„Ž๐‘š , an inductor 0.2H given that initial current is zero. โ€ข ๐‘†๐‘‚๐ฟ. ๐ธ๐‘ž๐‘ข๐‘Ž๐‘ก๐‘–๐‘œ๐‘› ๐‘“๐‘œ๐‘Ÿ ๐‘…๐ฟ ๐‘๐‘–๐‘Ÿ๐‘๐‘ข๐‘–๐‘ก ๐‘–๐‘  L ๐‘‘๐ผ ๐‘‘๐‘ก + ๐‘…๐ผ = ๐ธ ๐‘ก ๐ป๐‘’๐‘Ÿ๐‘’ ๐ฟ = 0.2 , ๐‘… = 10, ๐ธ = 40 .2 ๐‘‘๐ผ ๐‘‘๐‘ก + 10๐ผ = 40 ๐‘œ๐‘Ÿ ๐‘‘๐ผ ๐‘‘๐‘ก + 50๐ผ = 200((first order linear D .E.)) ๐ผ๐‘ก๐‘  ๐‘”๐‘’๐‘›๐‘’๐‘Ÿ๐‘Ž๐‘™ ๐‘ ๐‘œ๐‘™๐‘ข๐‘ก๐‘–๐‘œ๐‘› ๐‘–๐‘  ๐ผ ๐‘ก . ๐‘’50๐‘ก = โ€ซืฌโ€ฌ(200. ๐‘’50๐‘ก ๐‘‘๐‘ก + ๐‘) ๐‘ข๐‘ ๐‘–๐‘›๐‘” ๐‘–๐‘›๐‘–๐‘ก๐‘–๐‘Ž๐‘™ ๐‘๐‘œ๐‘›๐‘‘๐‘–๐‘ก๐‘–๐‘œ๐‘› ๐‘ค๐‘’ ๐‘”๐‘’๐‘ก ๐‘ = โˆ’4 ๐ผ ๐‘ก = 4(1 โˆ’ ๐‘’โˆ’50๐‘ก) ans. 23
  • 24. Example.2 A capacitor ๐ถ = 0.01๐น ๐‘–๐‘› ๐‘ ๐‘’๐‘Ÿ๐‘–๐‘’๐‘  ๐‘ค๐‘–๐‘กโ„Ž ๐‘Ž ๐‘Ÿ๐‘’๐‘ ๐‘–๐‘ ๐‘ก๐‘œ๐‘Ÿ ๐‘… = 20 ๐‘œโ„Ž๐‘š๐‘  ๐‘–๐‘  ๐‘โ„Ž๐‘Ž๐‘Ÿ๐‘”๐‘’๐‘‘ ๐‘“๐‘Ÿ๐‘œ๐‘š ๐‘Ž ๐‘๐‘Ž๐‘ก๐‘ก๐‘’๐‘Ÿ๐‘ฆ ๐ธ0 = 10 ๐‘‰ . ๐ด๐‘ ๐‘ ๐‘ข๐‘š๐‘–๐‘›๐‘” ๐‘กโ„Ž๐‘Ž๐‘ก ๐‘–๐‘›๐‘–๐‘ก๐‘–๐‘Ž๐‘™๐‘™๐‘ฆ ๐‘กโ„Ž๐‘’ capacitor ๐‘–๐‘  ๐‘๐‘œ๐‘š๐‘๐‘™๐‘’๐‘ก๐‘’๐‘™๐‘ฆ ๐‘ข๐‘›๐‘โ„Ž๐‘Ž๐‘Ÿ๐‘”๐‘’๐‘‘ , ๐‘‘๐‘’๐‘ก๐‘’๐‘Ÿ๐‘š๐‘–๐‘›๐‘’ ๐‘กโ„Ž๐‘’ ๐‘โ„Ž๐‘Ž๐‘Ÿ๐‘”๐‘’ ๐‘„ ๐‘ก , ๐‘ฃ๐‘œ๐‘™๐‘ก๐‘Ž๐‘”๐‘’ ๐‘ฃ ๐‘ก ๐‘œ๐‘› ๐‘กโ„Ž๐‘’ ๐‘๐‘Ž๐‘๐‘Ž๐‘๐‘–๐‘ก๐‘œ๐‘Ÿ ๐‘Ž๐‘›๐‘‘ ๐‘กโ„Ž๐‘’ ๐‘๐‘ข๐‘Ÿ๐‘Ÿ๐‘’๐‘›๐‘ก. ๐‘†๐‘‚๐ฟ. ๐ธ๐‘ž๐‘ข๐‘Ž๐‘ก๐‘–๐‘œ๐‘› ๐‘–๐‘  ๐‘…๐ผ + ๐‘„ ๐ถ = ๐ธ 20๐ผ + ๐‘„ 0.01 = 10 ๐‘œ๐‘Ÿ ๐‘‘๐‘„ ๐‘‘๐‘ก + 5๐‘„ = 0.5 ๐‘‡โ„Ž๐‘’ ๐‘”๐‘’๐‘›๐‘’๐‘Ÿ๐‘Ž๐‘™ ๐‘ ๐‘œ๐‘™๐‘ข๐‘ก๐‘–๐‘œ๐‘› ๐‘–๐‘  ๐‘„ = 0.1 + ๐‘๐‘’โˆ’5๐‘ก ๐‘ข๐‘ ๐‘–๐‘›๐‘” ๐‘–๐‘›๐‘–๐‘ก๐‘–๐‘Ž๐‘™ ๐‘๐‘œ๐‘›๐‘‘๐‘–๐‘ก๐‘–๐‘œ๐‘› ๐‘ค๐‘’ ๐‘”๐‘’๐‘ก ๐‘ = โˆ’0.1 ๐‘‡โ„Ž๐‘ข๐‘  ๐‘กโ„Ž๐‘’ ๐‘โ„Ž๐‘Ž๐‘Ÿ๐‘”๐‘’ ๐‘„ ๐‘ก = 0.1(1 โˆ’ ๐‘’โˆ’5๐‘ก) ๐‘‰๐‘œ๐‘™๐‘ก๐‘Ž๐‘”๐‘’ ๐‘ฃ ๐‘ก = ๐‘„ ๐‘ก ๐ถ = 10(1 โˆ’ ๐‘’โˆ’5๐‘ก) ๐ถ๐‘ข๐‘Ÿ๐‘Ÿ๐‘’๐‘›๐‘ก ๐ผ ๐‘ก = ๐‘‘๐‘„ ๐‘‘๐‘ก = 0.5๐‘’โˆ’5๐‘ก . 24
  • 25. MASS โ€“SPRING MECHANICAL SYSTEM Airplanes, bridges, ships, machines, cars etc. are vibrating mechanical systems. The simplest mechanical system is the mass-spring system which consists of a coil spring of natural length L, suspended vertically from a fixed point support(such a ceiling or beam).A constant mass โ€˜mโ€™ attached to the lower end of the spring to a length(๐ฟ + ๐‘’) and comes to rest which is known as the static equilibrium position. Here ๐‘’ > 0 is the static deflection due to hanging the mass on the spring. Now the mass is set in motion either by pushing or pulling the mass from equilibrium position. Since the motion takes place in the vertical direction, we consider the downward direction as positive. 25
  • 26. In order to determine the displacement ๐‘ฅ(t) of the mass from the static equilibrium position, we use Newtonโ€™s second law and Hookeโ€™s law. The mass ๐‘š is subjected to the following forces ; 1. A gravitational force ๐‘š๐‘” acting downwards. 2. A spring restoring force โˆ’k(๐‘ฅ ๐‘ก + ๐‘’) due to displacement of the spring from rest position . 3. a frictional force of the medium , opposing the motion and of magnitude โˆ’ ๐‘ แˆถ ๐‘ฅ(๐‘ก). 4. an external force F(๐‘ก) The differential equation describing the motion of the mass is obtained by Newtonโ€™s second law as 26
  • 27. ๐‘š แˆท ๐‘ฅ(๐‘ก)=๐‘š๐‘” โˆ’ k(๐‘ฅ ๐‘ก + ๐‘’) โˆ’ ๐‘ แˆถ ๐‘ฅ(๐‘ก)+๐น(๐‘ก) Here k> 0 is known as spring constant , ๐‘ โ‰ฅ 0 damping constant , g is the gravitational constant. Since the force on the mass exerted by the spring must be equal and opposite to the gravitational force on the mass, we have k๐‘’ = ๐‘š๐‘”.Thus the D.E. modelling the motion of mass is ๐‘š แˆท ๐‘ฅ(๐‘ก)+๐‘ แˆถ ๐‘ฅ(๐‘ก)+ k ๐‘ฅ ๐‘ก = ๐น(๐‘ก)โ€ฆโ€ฆโ€ฆ..(1) which is a second order linear non-homogeneous equation with constant coefficients. The displacement of the mass at any time ๐‘ก is ๐‘ฅ(๐‘ก) which is the solution of the differential equation (1) .The three important cases of D.E. (1) are referred to as free motion ,damped motion, and forced motion. 27
  • 28. Free, Undamped Oscillations of a spring In the absence of the external force ( ๐น ๐‘ก = 0) and neglecting the damping force(๐‘ = 0) D.E. (1) reduce to ๐‘š แˆท ๐‘ฅ(๐‘ก)+ k๐‘ฅ=0โ€ฆโ€ฆโ€ฆ..(2) which is harmonic oscillator equation. Putting ๐œ”2 = ๐‘˜ ๐‘š , the equation (2) takes the form แˆท ๐‘ฅ+ ๐œ”2๐‘ฅ=0 whose general solution is given by ๐‘ฅ ๐‘ก = ๐‘1๐‘๐‘œ๐‘  ๐œ”t+ ๐‘2๐‘ ๐‘–๐‘› ๐œ”t โ€ฆโ€ฆโ€ฆ(3) Introducing ๐‘1=A๐‘๐‘œ๐‘ ๐œ™, ๐‘2=โˆ’A๐‘ ๐‘–๐‘›๐œ™ equation (3) can be written as ๐‘ฅ ๐‘ก = A ๐‘๐‘œ๐‘ ๐œ™ ๐‘๐‘œ๐‘  ๐œ”t - A ๐‘ ๐‘–๐‘›๐œ™ ๐‘ ๐‘–๐‘› ๐œ”t , i.e. ๐‘ฅ ๐‘ก =๐ด ๐‘๐‘œ๐‘ (๐œ”t+๐œ™)โ€ฆโ€ฆโ€ฆโ€ฆโ€ฆ(4) where ๐ด = ๐‘1 2 + ๐‘2 2 , tan๐œ™=โˆ’ ๐‘2 ๐‘1 . The constant A is called the amplitude of the motion and gives the maximum displacement of the mass from its equilibrium position. Thus the free , undamped motion of the mass is a simple harmonic motion , which is periodic. 28
  • 29. The period of the motion is the time interval between two successive maxima and is given by ๐‘‡ = 2๐œ‹ ๐œ” = 2๐œ‹ ๐‘š ๐‘˜ the natural frequency of the motion is the reciprocal of the period , which gives the number of oscillations per second. Thus the natural frequency is the undamped Frequency (i.e. frequency of the system without damping) 29
  • 30. Free, Damped Motion of a Mass Every system has some damping , otherwise the system continues to move forever. Damping force opposes oscillations. Damping not only decreases the amplitude but also alters the natural frequency of the system. With external force absent (๐น ๐‘ก = 0) and damping present (๐‘ โ‰  0), the D.E.(1) takes the form ๐‘š แˆท ๐‘ฅ+๐‘ แˆถ ๐‘ฅ+ k๐‘ฅ=0 or แˆท ๐‘ฅ + ๐‘ ๐‘š แˆถ ๐‘ฅ + ๐‘˜ ๐‘š ๐‘ฅ=0 Let 2๐‘ = ๐‘ ๐‘š ๐‘Ž๐‘›๐‘‘ ๐œ”2 = ๐‘˜ ๐‘š or แˆท ๐‘ฅ +2๐‘ แˆถ ๐‘ฅ +๐œ”2 ๐‘ฅ=0 โ€ฆโ€ฆโ€ฆ..(5) whose auxiliary equation is ๐‘Ÿ2+2๐‘๐‘Ÿ + ๐œ”2 = 0โ€ฆโ€ฆโ€ฆโ€ฆโ€ฆ..(6) The roots of eq(6) are ๐‘Ÿ = โˆ’2๐‘ยฑ 4๐‘2โˆ’4๐œ”2 2 = โˆ’๐‘ ยฑ ๐‘2 โˆ’ ๐œ”2 โ€ฆโ€ฆโ€ฆ(7) 30
  • 31. The motion of mass depends on the damping through the nature of the discriminant ๐‘2 โˆ’ ๐œ”2 Case 1; ๐‘2 โˆ’ ๐œ”2 >0 i.e. ๐‘2 > 4๐‘š๐‘˜ since ๐‘> ๐œ”, the roots ๐‘Ÿ1 = โˆ’๐‘ + ๐‘2 โˆ’ ๐œ”2 ๐‘Ž๐‘›๐‘‘ ๐‘Ÿ2 = โˆ’๐‘ โˆ’ ๐‘2 โˆ’ ๐œ”2 are distinct ,real negative numbers. The general solution is ๐‘ฅ ๐‘ก = ๐‘1๐‘’๐‘Ÿ1๐‘ก + ๐‘2๐‘’๐‘Ÿ2๐‘ก โ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆ.(8) which tends to zero as ๐‘ก โ†’ โˆž.Thus the damping is so great that no oscillations can occur. The motion is said to be over critically damped (over damped). Case 2; ๐‘2 โˆ’ ๐œ”2=0 Here both the roots are equal , real negative number ๐‘. The general solution is ๐‘ฅ ๐‘ก = (๐‘1+ ๐‘2๐‘ก)๐‘’โˆ’๐‘๐‘ก โ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆ.(9) This situation of motion is called critical damping and is not oscillatory . 31
  • 32. Case 3; When ๐‘ < ๐œ” then ๐‘2 โˆ’ ๐œ”2<0 so the roots of the auxiliary equation (7) are complex and given by โˆ’๐‘ ยฑ ๐œ”2 โˆ’ ๐‘2๐‘–. The general solution is ๐‘ฅ(๐‘ก) = ๐‘’โˆ’๐‘๐‘ก ๐‘1cos( ๐œ”2 โˆ’ ๐‘2)๐‘ก + ๐‘2sin( ๐œ”2 โˆ’ ๐‘2)๐‘ก โ€ฆโ€ฆโ€ฆโ€ฆ.(10) which can be written in the alternative form(as in eq 4) ๐‘ฅ(๐‘ก) = ๐ด๐‘’โˆ’๐‘๐‘ก cos( ๐œ”2 โˆ’ ๐‘2)๐‘ก + ๐œ™ โ€ฆโ€ฆโ€ฆโ€ฆโ€ฆ(11) Here ๐ด= ๐‘1 2 + ๐‘2 2 and ๐œ™ = ๐‘ก๐‘Ž๐‘›โˆ’1 (โˆ’ ๐‘1 ๐‘2 ). In this case the motion is said to be underdamped. 32
  • 33. Forced Oscillation: Damped In the presence of an external force F(t), also known as input or driving force, the solutions of D.E. (1) are known as output or response of the system to the external force. In this case, the oscillations are said to be forced oscillations, which are of two types damped forced oscillations and undamped forced oscillations. Case 1.The D.E in this case is ๐‘š แˆท ๐‘ฅ+c แˆถ ๐‘ฅ + ๐‘˜๐‘ฅ = ๐น(๐‘ก) Suppose the external force ๐น(๐‘ก)=๐น1๐‘๐‘œ๐‘ ๐›ฝ๐‘ก, (๐น1 > 0; ๐›ฝ > 0) Then D.E. takes the form ๐‘š แˆท ๐‘ฅ+c แˆถ ๐‘ฅ + ๐‘˜๐‘ฅ = ๐น1๐‘๐‘œ๐‘ ๐›ฝ๐‘ก Or แˆท ๐‘ฅ+2b แˆถ ๐‘ฅ+ ๐œ”2๐‘ฅ= ๐ธ1๐‘๐‘œ๐‘ ๐›ฝ๐‘กโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆ.(12) where 2b= ๐‘ ๐‘š ๐‘Ž๐‘›๐‘‘ ๐œ”2 = ๐‘˜ ๐‘š , ๐ธ1= ๐น1 ๐‘š 33
  • 34. Assuming b < ๐œ” the complimentary function of (12) is ๐‘ฅ๐‘ = ๐ด๐‘’โˆ’๐‘๐‘ก cos( ๐œ”2 โˆ’ ๐‘2)๐‘ก + ๐œ™ โ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆ(13) (as in eq 4) which approaches to zero as ๐‘ก โ†’ โˆž. The particular integral of (12) is ๐‘ฅ๐‘ = 1 ๐ท2+2๐‘๐ท+๐œ”2 ๐ธ1๐‘๐‘œ๐‘ ๐›ฝ๐‘ก or ๐‘ฅ๐‘= ๐ธ1 ๐œ”2โˆ’๐›ฝ2 2+4๐‘2๐›ฝ2 ๐œ”2 โˆ’ ๐›ฝ2 ๐‘๐‘œ๐‘ ๐›ฝ๐‘ก + 2๐‘๐›ฝ๐‘ ๐‘–๐‘›๐›ฝ๐‘ก โ€ฆโ€ฆ..(14) The general solution is ๐‘ฅ ๐‘ก = ๐‘ฅ๐‘+ ๐‘ฅ๐‘ 34
  • 35. Case 2. Undamped forced Oscillation: Resonance In the undamped case ๐‘ = 0 and D.E. (1) takes the form ๐‘š แˆท ๐‘ฅ+๐‘˜๐‘ฅ = ๐น ๐‘ก = ๐น1๐‘๐‘œ๐‘ ๐›ฝ๐‘ก or แˆท ๐‘ฅ+ ๐œ”2๐‘ฅ= ๐ธ1๐‘๐‘œ๐‘ ๐›ฝ๐‘กโ€ฆโ€ฆโ€ฆ(16) where ๐œ”2= ๐‘˜ ๐‘š ,and ๐ธ1= ๐น1 ๐‘š and ๐œ” , ๐ธ1, ๐›ฝ are positive constant. The complimentary function of (16) is ๐‘ฅ๐‘ = ๐‘1๐‘๐‘œ๐‘ ๐œ”๐‘ก+ ๐‘2๐‘ ๐‘–๐‘›๐œ”๐‘ก โ€ฆ โ€ฆ โ€ฆ โ€ฆ โ€ฆ โ€ฆ โ€ฆ (17) Now we study the nature of solution of D.E. (16). When ๐œ” = ๐›ฝ: In this case the particular integral of D.E. (16), which is the forced solution, is ๐‘ฅ๐‘ = 1 ๐ท2+๐œ”2 ๐ธ1๐‘๐‘œ๐‘ ๐›ฝ๐‘ก= ๐ธ1 2๐œ” ๐‘ก ๐‘ ๐‘–๐‘›๐›ฝ๐‘กโ€ฆโ€ฆโ€ฆโ€ฆ(18) 35
  • 36. General solution : The general solution in this case is ๐‘ฅ = ๐‘ฅ๐‘ + ๐‘ฅ๐‘ ๐‘œ๐‘Ÿ ๐‘ฅ = ๐‘1๐‘๐‘œ๐‘ ๐œ”๐‘ก+ ๐‘2๐‘ ๐‘–๐‘›๐œ”๐‘ก+ ๐ธ1 2๐œ” ๐‘ก ๐‘ ๐‘–๐‘›๐›ฝ๐‘กโ€ฆโ€ฆโ€ฆโ€ฆ.(19) The forced solution (the particular integral (18)) grows with time and becomes larger and larger (because of the presence of โ€˜๐‘กโ€™). Thus, in an undamped system if ๐œ” = ๐›ฝ i.e., the frequency ๐›ฝ of external force matches (equals) with the natural frequency ๐œ”. The phenomenon of unbounded oscillations occurs, which is known as resonance. In resonance, for a bounded input the system responds with an unbounded output. Thus resonance, the phenomenon of excitation of large oscillation, is undesirable because the system may get destroyed due to these unwanted large vibrations. 36
  • 37. Example 1: An 8 lb weight is placed at one end of a spring suspended from the ceiling. The weight is raised to 5 inches above the equilibrium position and left free. Assuming the spring constant 12 lb/ft, find the equation of motion, displacement function ๐’™(๐’•), amplitude, period, frequency and maximum velocity. 37
  • 38. 38 ๐‘†๐‘‚๐ฟ. ๐ป๐‘’๐‘Ÿ๐‘’ ๐‘š แˆท ๐‘ฅ = โˆ’๐‘˜๐‘ฅ ๐‘Š ๐‘” แˆท ๐‘ฅ = โˆ’๐‘˜๐‘ฅ (๐‘Š = ๐‘š๐‘”). ๐ป๐‘’๐‘Ÿ๐‘’ ๐‘Š = 8, ๐‘” = 32, ๐‘˜ = 12. ๐‘‡โ„Ž๐‘’ ๐‘’๐‘ž๐‘ข๐‘Ž๐‘ก๐‘–๐‘œ๐‘› ๐‘œ๐‘“ ๐‘š๐‘œ๐‘ก๐‘–๐‘œ๐‘› ๐‘–๐‘  แˆท ๐‘ฅ + 48๐‘ฅ = 0 ๐‘‡โ„Ž๐‘’ ๐‘Ž๐‘ข๐‘ฅ๐‘–๐‘™๐‘™๐‘–๐‘Ž๐‘Ÿ๐‘ฆ ๐‘’๐‘ž๐‘ข๐‘Ž๐‘ก๐‘–๐‘œ๐‘› ๐‘Ÿ2 + 48 = 0 โ„Ž๐‘Ž๐‘  ๐‘ก๐‘ค๐‘œ ๐‘๐‘œ๐‘š๐‘๐‘™๐‘’๐‘ฅ ๐‘๐‘œ๐‘›๐‘—๐‘ข๐‘”๐‘Ž๐‘ก๐‘’ ๐‘Ÿ๐‘œ๐‘œ๐‘ก๐‘  ๐‘”๐‘–๐‘ฃ๐‘’๐‘› ๐‘๐‘ฆ ๐‘Ÿ = ยฑ4 3๐‘–. ๐‘‡โ„Ž๐‘’ ๐‘‘๐‘–๐‘ ๐‘๐‘™๐‘Ž๐‘๐‘’๐‘š๐‘’๐‘›๐‘ก ๐‘œ๐‘“ ๐‘กโ„Ž๐‘’ ๐‘“๐‘ข๐‘›๐‘๐‘ก๐‘–๐‘œ๐‘› ๐‘ฅ ๐‘ก ๐‘–๐‘  ๐‘ฅ ๐‘ก =๐ถ1cos๐œ”t + ๐ถ2sin๐œ”tโ€ฆโ€ฆโ€ฆ..(1) where ๐œ” = 4 3 ๐‘‡โ„Ž๐‘’ ๐‘”๐‘–๐‘ฃ๐‘’๐‘› ๐‘๐‘œ๐‘›๐‘‘๐‘–๐‘ก๐‘–๐‘œ๐‘›๐‘  ๐‘Ž๐‘Ÿ๐‘’ ๐‘ฅ = โˆ’5 ๐‘–๐‘›๐‘โ„Ž๐‘’๐‘  = โˆ’ 5 12 ๐‘“๐‘ก and แˆถ ๐‘ฅ = 0 ๐‘Ž๐‘ก ๐‘ก = 0. ๐‘ˆ๐‘ ๐‘–๐‘›๐‘” ๐‘ฅ = โˆ’ 5 12 ๐‘Ž๐‘ก ๐‘ก = 0, ๐‘ค๐‘’ ๐‘”๐‘’๐‘ก ๐ถ1 = โˆ’ 5 12 Differentiating ๐‘ฅ ๐‘ก ๐‘ค๐‘–๐‘กโ„Ž ๐‘Ÿ๐‘’๐‘ ๐‘๐‘’๐‘๐‘ก ๐‘ก๐‘œ โ€ฒ๐‘กโ€ฒ ๐‘ค๐‘’ ๐‘”๐‘’๐‘ก แˆถ ๐‘ฅ = โˆ’๐ถ1๐œ”๐‘ ๐‘–๐‘›๐œ”t + ๐ถ2๐œ”๐‘๐‘œ๐‘ ๐œ”t U๐‘ ๐‘–๐‘›๐‘” แˆถ ๐‘ฅ = 0 ๐‘Ž๐‘ก ๐‘ก = 0, ๐‘ค๐‘’ ๐‘”๐‘’๐‘ก ๐ถ2 = 0 ๐ท๐‘–๐‘ ๐‘๐‘™๐‘Ž๐‘๐‘’๐‘š๐‘’๐‘›๐‘ก ๐‘“๐‘ข๐‘›๐‘๐‘ก๐‘–๐‘œ๐‘› ๐‘ฅ ๐‘ก =โˆ’ 5 12 cos4 3t = 5 12 sin(4 3t โˆ’ ๐œ‹ 2 )โ€ฆโ€ฆโ€ฆโ€ฆโ€ฆ(from 1)(amplitude phase form) Amplitude is 5 12 Period T= 2๐œ‹ ๐œ” = ๐œ‹โˆš3 6 sec Maximum Velocity= ๐œ”. ๐ด๐‘š๐‘๐‘™๐‘–๐‘ก๐‘ข๐‘‘๐‘’ = 4 3 . 5 12 = 5 3 ๐‘“๐‘ก/๐‘ ๐‘’๐‘2
  • 39. Free ,Damped Problem โ€ข Example 2: A 2 lb weight suspended from one end of a spring stretches it to 6 inches. A velocity of 5 ft/sec2 upwards is imparted to the weight at its equilibrium position. Suppose a damping force ๐œท๐Š acts on the weight. Here 0<๐œท < ๐Ÿ and ๐Š = แˆถ ๐’™ =velocity. Assuming the spring constant 4 lb/ft, (a) Determine the position and velocity of the weight at any time (b) Express the displacement function ๐’™(๐’•) in the amplitude-phase form. (c) Find the amplitude, period, frequency, maximum velocity. 39
  • 40. SOL.๐‘‡โ„Ž๐‘’ ๐‘’๐‘ž๐‘ข๐‘Ž๐‘ก๐‘–๐‘œ๐‘› ๐‘œ๐‘“ ๐‘š๐‘œ๐‘ก๐‘–๐‘œ๐‘› ๐‘–๐‘  ๐‘š แˆท ๐‘ฅ + ๐›ฝ แˆถ ๐‘ฅ + ๐‘˜๐‘ฅ = 0 ๐‘œ๐‘Ÿ 2 32 แˆท ๐‘ฅ + ๐›ฝ แˆถ ๐‘ฅ + 4๐‘ฅ = 0 (๐‘Š = ๐‘š๐‘”) or แˆท ๐‘ฅ + 16๐›ฝ แˆถ ๐‘ฅ + 64๐‘ฅ = 0 ๐ผ๐‘ก๐‘  ๐‘Ž๐‘ข๐‘ฅ๐‘–๐‘™๐‘–๐‘Ž๐‘Ÿ๐‘ฆ ๐‘’๐‘ž๐‘ข๐‘Ž๐‘ก๐‘–๐‘œ๐‘› ๐‘–๐‘  ๐‘Ÿ2 + 16 ๐›ฝ ๐‘Ÿ + 64 = 0 ๐‘ค๐‘–๐‘กโ„Ž ๐‘Ÿ๐‘œ๐‘œ๐‘ก๐‘  ๐‘Ÿ = 8 โˆ’๐›ฝ ยฑ (๐›ฝ2 โˆ’ 1) = 8 โˆ’๐›ฝ ยฑ 1 โˆ’ ๐›ฝ2 ๐‘– = 8 โˆ’๐›ฝ ยฑ ๐›ผ๐‘– ๐‘คโ„Ž๐‘’๐‘Ÿ๐‘’ ๐›ผ = 1 โˆ’ ๐›ฝ2 ๐‘‡โ„Ž๐‘’ ๐‘”๐‘’๐‘›๐‘’๐‘Ÿ๐‘Ž๐‘™ ๐‘ ๐‘œ๐‘™๐‘ข๐‘ก๐‘–๐‘œ๐‘› ๐‘–๐‘  ๐‘ฅ ๐‘ก =๐‘’โˆ’8๐›ฝ๐‘ก(๐ถ1cos8๐›ผt + ๐ถ2sin8๐›ผt) ๐‘ˆ๐‘ ๐‘–๐‘›๐‘” ๐‘–๐‘›๐‘–๐‘ก๐‘–๐‘Ž๐‘™ ๐‘๐‘œ๐‘›๐‘‘๐‘–๐‘ก๐‘–๐‘œ๐‘› ๐‘ฅ = 0 ๐‘Ž๐‘ก ๐‘ก = 0, ๐‘ค๐‘’ ๐‘”๐‘’๐‘ก ๐ถ1=0 โˆด ๐‘ฅ ๐‘ก =๐‘’โˆ’8๐›ฝ๐‘ก ๐ถ2sin8๐›ผt ๐ท๐‘–๐‘“๐‘“๐‘’๐‘Ÿ๐‘’๐‘›๐‘ก๐‘–๐‘Ž๐‘ก๐‘–๐‘›๐‘” ๐‘ฅ ๐‘ก ๐‘ค. ๐‘Ÿ. ๐‘ก. โ€ฒ ๐‘กโ€ฒ ๐‘Ž๐‘›๐‘‘ ๐‘ข๐‘ ๐‘–๐‘›๐‘” ๐‘กโ„Ž๐‘’ ๐‘๐‘œ๐‘›๐‘‘๐‘–๐‘ก๐‘–๐‘œ๐‘› แˆถ ๐‘ฅ = โˆ’5 ๐‘›๐‘’๐‘”๐‘Ž๐‘ก๐‘–๐‘ฃ๐‘’ ๐‘Ž๐‘๐‘ก๐‘–๐‘›๐‘” ๐‘ข๐‘๐‘ค๐‘Ž๐‘Ÿ๐‘‘๐‘  ๐‘Ž๐‘ก ๐‘ก = 0 ๐‘ค๐‘’ ๐‘”๐‘’๐‘ก ๐ถ2 = โˆ’5 8๐›ผ (a) ๐‘‡โ„Ž๐‘ข๐‘  ๐‘กโ„Ž๐‘’ ๐‘‘๐‘–๐‘ ๐‘๐‘™๐‘Ž๐‘๐‘’๐‘š๐‘’๐‘›๐‘ก ๐‘“๐‘ข๐‘›๐‘๐‘ก๐‘–๐‘œ๐‘› ๐‘–๐‘  ๐‘ฅ ๐‘ก = ๐‘’โˆ’8๐›ฝ๐‘ก ( โˆ’5 8๐›ผ ) sin8๐›ผt 40
  • 41. ๐‘‰๐‘’๐‘™๐‘œ๐‘๐‘–๐‘ก๐‘ฆ ๐‘‘๐‘œ๐‘ค๐‘›๐‘ค๐‘Ž๐‘Ÿ๐‘‘ ๐‘๐‘œ๐‘ ๐‘–๐‘ก๐‘–๐‘ฃ๐‘’ ๐‘–๐‘  ๐œ = แˆถ ๐‘ฅ = (5/๐›ผ)๐‘’โˆ’๐›ฝ๐‘ก (โˆ’๐›ผ cos8๐›ผt + ๐›ฝsin8๐›ผt) (b).๐ด๐‘š๐‘๐‘™๐‘–๐‘ก๐‘ข๐‘‘๐‘’ ๐‘ƒโ„Ž๐‘Ž๐‘ ๐‘’ ๐‘“๐‘œ๐‘Ÿ๐‘š ๐‘ฅ ๐‘ก = 5 8๐›ผ ๐‘’โˆ’8๐›ฝ๐‘ก sin(8๐›ผt + ฯ€) (c). Amplitude is 5 8๐›ผ ๐‘’โˆ’8๐›ฝ๐‘ก Period T= 2๐œ‹ ๐œ” = ๐œ‹ 4๐›ผ (๐œ” = 8๐›ผ) Maximum Velocity= ๐œ”. ๐ด๐‘š๐‘๐‘™๐‘–๐‘ก๐‘ข๐‘‘๐‘’ = 5 ๐‘’โˆ’8๐›ฝ๐‘ก 41
  • 42. 42
  • 43. 43
  • 44. RLC Circuit An RLC-series circuit consists of a resistor, a conductor, a capacitor and an emf as shown in the figure . Using the Kirchhoffโ€™s law, the sum of the voltage drops across the three elements inductor, resistor and Capacitance equal to the external source ๐ธ. Thus, the RLC-circuit is modeled by ๐ฟ ๐‘‘๐ผ ๐‘‘๐‘ก + ๐‘…๐ผ + 1 ๐ถ ๐‘„=๐ธ(๐‘ก)โ€ฆโ€ฆโ€ฆ. (1) which contains two dependent variables ๐‘„ and ๐ผ. 44
  • 45. Since I = ๐‘‘Q ๐‘‘๐‘ก . the above equation can be written as ๐ฟ ๐‘‘2Q ๐‘‘๐‘ก2 + ๐‘… ๐‘‘๐‘„ ๐‘‘๐‘ก + 1 ๐ถ ๐‘„ = ๐ธ(๐‘ก)โ€ฆโ€ฆโ€ฆโ€ฆโ€ฆ (2) which contains only one dependent variable ๐‘„. Differentiating (1) w.r.t. โ€˜tโ€™, we obtain ๐ฟ ๐‘‘2I ๐‘‘๐‘ก2 + ๐‘… ๐‘‘๐ผ ๐‘‘๐‘ก + 1 ๐ถ ๐ผ = ๐‘‘๐ธ ๐‘‘๐‘ก โ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆ (3) which contains only one dependent variable ๐ผ. Thus, the charge ๐‘„ and current ๐ผ at any time in the RLC circuit are obtained as solutions of (2) and (3) which are both linear 2nd order non homogeneous ordinary differential equations. The equation (3) is used more often, since current I(๐‘ก) is more important than charge Q(๐‘ก), in most of the practical problems. The RLC circuit reduces to an RL-circuit in absence of capacitor and to RC-circuit when no inductor is present. To find the solution we find the complimentary function and particular integral. 45
  • 46. ๐ถ๐‘‚๐‘€๐‘ƒ๐ฟ๐ธ๐‘‹ ๐ผ๐‘€๐‘ƒ๐ธ๐ท๐ธ๐‘๐ถ๐ธ ๐ธ๐‘‹. 1 ๐ท๐‘’๐‘ก๐‘’๐‘Ÿ๐‘š๐‘–๐‘›๐‘’ ๐‘กโ„Ž๐‘’ ๐‘ ๐‘œ๐‘™๐‘ข๐‘ก๐‘–๐‘œ๐‘› ๐‘œ๐‘“ ๐‘‘๐‘–๐‘“๐‘“๐‘’๐‘Ÿ๐‘’๐‘›๐‘ก๐‘–๐‘Ž๐‘™ ๐‘’๐‘ž๐‘ข๐‘Ž๐‘ก๐‘–๐‘œ๐‘› ๐‘Ÿ๐‘’๐‘๐‘Ÿ๐‘’๐‘ ๐‘’๐‘›๐‘ก๐‘–๐‘›๐‘” ๐‘กโ„Ž๐‘’ ๐‘…๐ฟ๐ถ โˆ’ ๐‘๐‘–๐‘Ÿ๐‘๐‘ข๐‘–๐‘ก ๐‘ค๐‘–๐‘กโ„Ž ๐‘Ž emf ๐ธ(๐‘ก) = ๐ธ0๐‘๐‘œ๐‘ ๐œ”๐‘ก (๐‘) emf ๐ธ(๐‘ก) = ๐ธ0๐‘ ๐‘–๐‘›๐œ”๐‘ก. ๐‘†๐‘œ๐‘™. ๐‘‡โ„Ž๐‘’ ๐‘‘๐‘–๐‘“๐‘“๐‘’๐‘Ÿ๐‘’๐‘›๐‘ก๐‘–๐‘Ž๐‘™ ๐‘’๐‘ž๐‘ข๐‘Ž๐‘ก๐‘–๐‘œ๐‘› ๐‘Ÿ๐‘’๐‘๐‘Ÿ๐‘’๐‘ ๐‘’๐‘›๐‘ก๐‘–๐‘›๐‘” ๐‘กโ„Ž๐‘’ ๐‘…๐ฟ๐ถ โˆ’ ๐‘๐‘–๐‘Ÿ๐‘๐‘ข๐‘–๐‘ก ๐‘ค๐‘–๐‘กโ„Ž ๐ผ ๐‘Ž๐‘  ๐‘กโ„Ž๐‘’ ๐‘‘๐‘’๐‘๐‘’๐‘›๐‘‘๐‘’๐‘›๐‘ก variable is given by ๐ฟ ๐‘‘2I ๐‘‘๐‘ก2 + ๐‘… ๐‘‘๐ผ ๐‘‘๐‘ก + 1 ๐ถ ๐ผ = ๐‘‘๐ธ ๐‘‘๐‘ก โ€ฆโ€ฆโ€ฆโ€ฆโ€ฆ.(4) ๐‘ ๐‘–๐‘›๐‘๐‘’ ๐‘’๐‘–๐œƒ = ๐‘๐‘œ๐‘ ๐œƒ + ๐‘–๐‘ ๐‘–๐‘›๐œƒ , ๐‘๐‘œ๐‘›๐‘ ๐‘–๐‘‘๐‘’๐‘Ÿ ๐ธ ๐‘ก = ๐ธ0 ๐‘’๐‘–๐œ”๐‘ก = ๐ธ0 (๐‘๐‘œ๐‘ ๐œ”๐‘ก + ๐‘–๐‘ ๐‘–๐‘›๐œ”๐‘ก) ๐‘ ๐‘œ ๐‘๐‘œ๐‘กโ„Ž ๐‘กโ„Ž๐‘’ ๐‘๐‘Ÿ๐‘œ๐‘๐‘™๐‘’๐‘š๐‘  ๐‘Ž ๐‘Ž๐‘›๐‘‘ ๐‘ ๐‘๐‘Ž๐‘› ๐‘๐‘’ ๐‘ ๐‘œ๐‘™๐‘ฃ๐‘’๐‘‘ ๐‘ ๐‘–๐‘š๐‘ข๐‘™๐‘ก๐‘Ž๐‘›๐‘’๐‘œ๐‘ข๐‘ ๐‘™๐‘ฆ ๐‘๐‘ฆ ๐‘ข๐‘ ๐‘–๐‘›๐‘” ๐‘กโ„Ž๐‘’ ๐‘๐‘œ๐‘š๐‘๐‘™๐‘’๐‘ฅ ๐‘“๐‘œ๐‘Ÿ๐‘š ๐‘“๐‘œ๐‘Ÿ ๐‘’๐‘š๐‘“ ๐ธ ๐‘ก . ๐‘‡โ„Ž๐‘ข๐‘  ๐ฟ ๐‘‘2I ๐‘‘๐‘ก2 + ๐‘… ๐‘‘๐ผ ๐‘‘๐‘ก + 1 ๐ถ ๐ผ = ๐ธ0 . ๐‘–๐œ”. ๐‘’๐‘–๐œ”๐‘กโ€ฆโ€ฆโ€ฆโ€ฆ.(5) 46
  • 47. ๐‘‡โ„Ž๐‘’ ๐‘”๐‘’๐‘›๐‘’๐‘Ÿ๐‘Ž๐‘™ ๐‘ ๐‘œ๐‘™๐‘ข๐‘ก๐‘–๐‘œ๐‘› ๐‘œ๐‘“ ๐‘’๐‘ž 5 ๐‘–๐‘  ๐‘๐‘œ๐‘š๐‘๐‘™๐‘–๐‘š๐‘’๐‘›๐‘ก๐‘Ž๐‘Ÿ๐‘ฆ ๐‘“๐‘ข๐‘›๐‘๐‘ก๐‘–๐‘œ๐‘› ๐‘Ž๐‘›๐‘‘ ๐‘๐‘Ž๐‘Ÿ๐‘ก๐‘–๐‘๐‘ข๐‘™๐‘Ž๐‘Ÿ ๐‘–๐‘›๐‘ก๐‘’๐‘”๐‘Ÿ๐‘Ž๐‘™. ๐ถ๐‘œ๐‘š๐‘๐‘™๐‘–๐‘š๐‘’๐‘›๐‘ก๐‘Ž๐‘Ÿ๐‘ฆ ๐‘“๐‘ข๐‘›๐‘๐‘ก๐‘–๐‘œ๐‘› ๐ฟ๐‘š2 + ๐‘…๐‘š + 1 ๐ถ = 0 ๐‘œ๐‘Ÿ ๐‘š2+ ๐‘… ๐ฟ ๐‘š + 1 ๐ฟ๐ถ = 0 ๐‘ค๐‘–๐‘กโ„Ž ๐‘ก๐‘ค๐‘œ ๐‘‘๐‘–๐‘ ๐‘ก๐‘–๐‘›๐‘๐‘ก ๐‘Ÿ๐‘œ๐‘œ๐‘ก๐‘  ๐‘š1,2 = โˆ’ ๐‘… ๐ฟ ยฑ ๐‘… ๐ฟ 2 โˆ’ 4. 1 ๐ฟ๐ถ 2 ๐‘š1,2 = โˆ’ ๐‘… 2๐ฟ ยฑ 1 2๐ฟ ๐‘… 2 โˆ’ 4๐ฟ ๐ถ โ€ฆโ€ฆโ€ฆโ€ฆโ€ฆ(6) ๐‘š1 = โˆ’๐‘Ž + ๐‘ ๐‘Ž๐‘›๐‘‘ ๐‘š2 = โˆ’๐‘Ž โˆ’ ๐‘ ๐‘คโ„Ž๐‘’๐‘Ÿ๐‘’ ๐‘ = 1 2๐ฟ ๐‘… 2 โˆ’ 4๐ฟ ๐ถ , ๐‘Ž = ๐‘… 2๐ฟ ๐‘‡โ„Ž๐‘’ ๐‘๐‘œ๐‘š๐‘๐‘™๐‘–๐‘š๐‘’๐‘›๐‘ก๐‘Ž๐‘Ÿ๐‘ฆ ๐‘“๐‘ข๐‘›๐‘๐‘ก๐‘–๐‘œ๐‘› ๐ผ๐‘ = ๐‘1๐‘’๐‘š1๐‘ก + ๐‘2๐‘’๐‘š2๐‘ก โ€ฆ โ€ฆ โ€ฆ โ€ฆ โ€ฆ โ€ฆ โ€ฆ โ€ฆ โ€ฆ โ€ฆ โ€ฆ โ€ฆ โ€ฆ โ€ฆ โ€ฆ โ€ฆ (7) 47
  • 48. ๐‘ƒ๐‘Ž๐‘Ÿ๐‘ก๐‘–๐‘๐‘ข๐‘™๐‘Ž๐‘Ÿ ๐ผ๐‘›๐‘ก๐‘’๐‘”๐‘Ÿ๐‘Ž๐‘™; ๐ผ๐‘= ๐ธ0 ๐‘…+๐‘–๐‘† ๐‘’๐‘–๐œ”๐‘ก where ๐‘† = ฯ‰๐ฟ โˆ’ 1 ๐œ”๐ถ ๐ป๐‘’๐‘Ÿ๐‘’ ๐‘† ๐‘–๐‘  ๐‘˜๐‘›๐‘œ๐‘ค๐‘› ๐‘Ž๐‘  ๐‘Ÿ๐‘’๐‘Ž๐‘๐‘ก๐‘Ž๐‘›๐‘๐‘’ ๐‘œ๐‘“ ๐‘กโ„Ž๐‘’ ๐‘๐‘–๐‘Ÿ๐‘๐‘ข๐‘–๐‘ก. ๐‘Šโ„Ž๐‘’๐‘› ๐‘† = 0, ๐‘กโ„Ž๐‘’ ๐‘Ž๐‘š๐‘๐‘™๐‘–๐‘ก๐‘ข๐‘‘๐‘’ ๐‘œ๐‘“ ๐ผ ๐‘–๐‘  ๐‘”๐‘Ÿ๐‘’๐‘Ž๐‘ก๐‘’๐‘ ๐‘ก ๐‘Ž๐‘›๐‘‘ ๐‘กโ„Ž๐‘’ ๐‘๐‘–๐‘Ÿ๐‘๐‘ข๐‘–๐‘ก ๐‘–๐‘  ๐‘–๐‘› ๐‘Ÿ๐‘’๐‘ ๐‘œ๐‘›๐‘Ž๐‘›๐‘๐‘’. ๐‘ˆ๐‘ ๐‘–๐‘›๐‘” ๐‘กโ„Ž๐‘’ ๐‘๐‘œ๐‘™๐‘Ž๐‘Ÿ ๐‘“๐‘œ๐‘Ÿ๐‘š ๐‘œ๐‘“ ๐‘Ž ๐‘๐‘œ๐‘š๐‘๐‘™๐‘’๐‘ฅ ๐‘›๐‘ข๐‘š๐‘๐‘’๐‘Ÿ ๐‘Ž + ๐‘–๐‘ = ๐‘Ÿ๐‘’๐‘–๐œƒ ๐‘คโ„Ž๐‘’๐‘Ÿ๐‘’ ๐‘Ÿ = ๐‘Ž2 + ๐‘2 , ๐œƒ = ๐‘ก๐‘Ž๐‘›โˆ’1 ๐‘ ๐‘Ž , similarly ๐‘ค๐‘’ ๐‘๐‘Ž๐‘› ๐‘ค๐‘Ÿ๐‘–๐‘ก๐‘’ ๐‘… + ๐‘–๐‘†= ๐‘…2 + ๐‘ 2 . ๐‘’๐‘–๐›ฟ ๐ผ๐‘ = ๐ธ0 ๐‘…+๐‘–๐‘† ๐‘’๐‘–๐œ”๐‘ก = ๐ธ0 ๐‘…2+๐‘ 2 .๐‘’๐‘–๐›ฟ ๐‘’๐‘–๐œ”๐‘ก = ๐ธ0 ๐‘…2+๐‘ 2 ๐‘’๐‘–(๐œ”๐‘กโˆ’๐›ฟ) = ๐ธ0[๐‘๐‘œ๐‘  ๐œ”๐‘กโˆ’๐›ฟ +๐‘–๐‘ ๐‘–๐‘› ๐œ”๐‘กโˆ’๐›ฟ ] ๐‘…2+๐‘ 2 โ€ฆ โ€ฆ โ€ฆ . . (8) ๐‘‡โ„Ž๐‘’ ๐‘ž๐‘ข๐‘Ž๐‘›๐‘ก๐‘–๐‘ก๐‘ฆ ๐‘…2 + ๐‘ 2 ๐‘–๐‘  ๐‘˜๐‘›๐‘œ๐‘ค๐‘› ๐‘Ž๐‘  ๐‘–๐‘š๐‘๐‘’๐‘‘๐‘’๐‘›๐‘๐‘’ ๐‘œ๐‘“ ๐‘กโ„Ž๐‘’ ๐‘๐‘–๐‘Ÿ๐‘๐‘ข๐‘–๐‘ก. ๐‘Šโ„Ž๐‘’๐‘› ๐ธ = ๐ธ0๐‘๐‘œ๐‘ ๐œ”๐‘ก , ๐‘กโ„Ž๐‘’ ๐‘ ๐‘ก๐‘’๐‘Ž๐‘‘๐‘ฆ โˆ’ ๐‘ ๐‘ก๐‘Ž๐‘ก๐‘’ ๐‘ ๐‘œ๐‘™๐‘ข๐‘ก๐‘–๐‘œ๐‘› ๐‘–๐‘  ๐‘กโ„Ž๐‘’ ๐‘Ÿ๐‘’๐‘Ž๐‘™ ๐‘๐‘Ž๐‘Ÿ๐‘ก ๐‘œ๐‘“ ๐ผ๐‘ ๐‘–. ๐‘’ ๐ธ0[๐‘๐‘œ๐‘  ๐œ”๐‘ก โˆ’ ๐›ฟ ๐‘…2 + ๐‘ 2 โ€ฆ โ€ฆ โ€ฆ โ€ฆ 9 48
  • 49. ๐‘†๐‘–๐‘š๐‘–๐‘™๐‘Ž๐‘Ÿ๐‘™๐‘ฆ when ๐ธ = ๐ธ0๐‘ ๐‘–๐‘›๐œ”๐‘ก , ๐ถ๐‘œ๐‘š๐‘๐‘™๐‘’๐‘ฅ ๐‘›๐‘ข๐‘š๐‘๐‘’๐‘Ÿ ๐‘ง = ๐‘… + ๐‘–๐‘† ๐‘–๐‘  ๐‘˜๐‘›๐‘œ๐‘ค๐‘› ๐‘Ž๐‘  ๐‘กโ„Ž๐‘’ ๐‘๐‘œ๐‘š๐‘๐‘™๐‘’๐‘ฅ ๐‘–๐‘š๐‘๐‘’๐‘‘๐‘Ž๐‘›๐‘๐‘’. ๐ผ๐‘ก๐‘  ๐‘š๐‘Ž๐‘”๐‘›๐‘–๐‘ก๐‘ข๐‘‘๐‘’ ๐‘…2 + ๐‘ 2 ๐‘–๐‘  ๐‘˜๐‘›๐‘œ๐‘ค๐‘› ๐‘ ๐‘–๐‘š๐‘๐‘™๐‘ฆ ๐‘–๐‘š๐‘๐‘’๐‘‘๐‘Ž๐‘›๐‘๐‘’. 49
  • 50. ๐ธ๐‘ฅ. 2 ๐‘‡โ„Ž๐‘’ ๐ท. ๐ธ. ๐‘“๐‘œ๐‘Ÿ ๐‘Ž ๐‘๐‘–๐‘Ÿ๐‘๐‘ข๐‘–๐‘ก ๐‘–๐‘› ๐‘คโ„Ž๐‘–๐‘โ„Ž ๐‘ ๐‘’๐‘™๐‘“ ๐‘–๐‘›๐‘‘๐‘ข๐‘๐‘ก๐‘Ž๐‘›๐‘๐‘’ ๐‘Ž๐‘›๐‘‘ ๐‘๐‘Ž๐‘๐‘Ž๐‘๐‘–๐‘ก๐‘Ž๐‘›๐‘๐‘’ ๐‘›๐‘’๐‘ข๐‘ก๐‘Ÿ๐‘Ž๐‘™๐‘–๐‘ง๐‘’ ๐‘’๐‘Ž๐‘โ„Ž ๐‘œ๐‘กโ„Ž๐‘’๐‘Ÿ ๐‘–๐‘  ๐ฟ ๐‘‘2๐ผ ๐‘‘๐‘ก2 + ๐ผ ๐ถ = 0. ๐น๐‘–๐‘›๐‘‘ ๐‘กโ„Ž๐‘’ ๐‘๐‘ข๐‘Ÿ๐‘Ÿ๐‘’๐‘›๐‘ก ๐ผ ๐‘Ž๐‘  ๐‘Ž ๐‘“๐‘ข๐‘›๐‘๐‘ก๐‘–๐‘œ๐‘› ๐‘œ๐‘“ ๐‘ก ๐‘”๐‘–๐‘ฃ๐‘’๐‘› ๐‘กโ„Ž๐‘Ž๐‘ก ๐ผ๐‘š ๐‘–๐‘  ๐‘š๐‘Ž๐‘ฅ๐‘–๐‘š๐‘ข๐‘š ๐‘๐‘ข๐‘Ÿ๐‘Ÿ๐‘’๐‘›๐‘ก , ๐‘Ž๐‘›๐‘‘ ๐ผ = 0 ๐‘Ž๐‘ก ๐‘ก = 0. ๐‘†๐‘œ๐‘™. ๐ท. ๐ธ. ๐‘–๐‘  ๐ฟ ๐‘‘2๐ผ ๐‘‘๐‘ก2 + ๐ผ ๐ถ = 0 ๐‘œ๐‘Ÿ ๐‘‘2๐ผ ๐‘‘๐‘ก2 + ๐ผ ๐ฟ๐ถ = 0 ๐ผ๐‘ก๐‘  ๐‘๐‘œ๐‘š๐‘๐‘™๐‘’๐‘ก๐‘’ ๐‘ ๐‘œ๐‘™๐‘ข๐‘ก๐‘–๐‘œ๐‘› ๐‘–๐‘  ๐ผ = ๐ด ๐‘๐‘œ๐‘  1 ๐ฟ๐ถ ๐‘ก + ๐ต ๐‘ ๐‘–๐‘› 1 ๐ฟ๐ถ ๐‘ก ๐‘ข๐‘ ๐‘–๐‘›๐‘” ๐‘–๐‘›๐‘–๐‘ก๐‘–๐‘Ž๐‘™ ๐‘๐‘œ๐‘›๐‘‘๐‘–๐‘ก๐‘–๐‘œ๐‘› ๐‘ค๐‘’ ๐‘”๐‘’๐‘ก ๐ด = 0 โˆด ๐ผ = ๐ต ๐‘ ๐‘–๐‘› 1 ๐ฟ๐ถ ๐‘ก ๐‘๐‘œ๐‘ค ๐‘ฃ๐‘Ž๐‘™๐‘ข๐‘’ ๐‘œ๐‘“ ๐‘๐‘ข๐‘Ÿ๐‘Ÿ๐‘’๐‘›๐‘ก ๐ผ ๐‘ก ๐‘ค๐‘–๐‘™๐‘™ ๐‘๐‘’ ๐‘š๐‘Ž๐‘ฅ๐‘–๐‘š๐‘ข๐‘š ๐‘คโ„Ž๐‘’๐‘› ๐‘ ๐‘–๐‘› 1 ๐ฟ๐ถ ๐‘ก = 1 ๐‘กโ„Ž๐‘’๐‘Ÿ๐‘’๐‘๐‘ฆ ๐‘–๐‘š๐‘๐‘™๐‘ฆ ๐ต = ๐ผ๐‘š โˆด ๐ผ ๐‘ก = ๐ผ๐‘š ๐‘ ๐‘–๐‘› 1 ๐ฟ๐ถ ๐‘ก required solution. 50
  • 51. 51 ANALOGY WITH MASS SPRING SYSTEM ๐ธ๐‘›๐‘ก๐‘–๐‘Ÿ๐‘’๐‘™๐‘ฆ ๐‘‘๐‘–๐‘“๐‘“๐‘’๐‘Ÿ๐‘’๐‘›๐‘ก ๐‘โ„Ž๐‘ฆ๐‘ ๐‘–๐‘๐‘Ž๐‘™ ๐‘œ๐‘Ÿ ๐‘œ๐‘กโ„Ž๐‘’๐‘Ÿ ๐‘ ๐‘ฆ๐‘ ๐‘ก๐‘’๐‘š๐‘  ๐‘š๐‘Ž๐‘ฆ โ„Ž๐‘Ž๐‘ฃ๐‘’ ๐‘กโ„Ž๐‘’ ๐‘ ๐‘Ž๐‘š๐‘’ ๐‘š๐‘Ž๐‘กโ„Ž๐‘’๐‘š๐‘Ž๐‘ก๐‘–๐‘๐‘Ž๐‘™ ๐‘š๐‘œ๐‘‘๐‘’๐‘™. ๐‘‚. ๐ท. ๐ธ ๐‘“๐‘œ๐‘Ÿ ๐‘Ž๐‘› ๐‘’๐‘™๐‘’๐‘๐‘ก๐‘Ÿ๐‘–๐‘ ๐‘…๐ฟ๐ถ โˆ’ ๐‘๐‘–๐‘Ÿ๐‘๐‘ข๐‘–๐‘ก ๐‘Ž๐‘›๐‘‘ ๐‘กโ„Ž๐‘’ ๐‘‚. ๐ท. ๐ธ ๐‘“๐‘œ๐‘Ÿ ๐‘Ž ๐‘š๐‘Ž๐‘ ๐‘  ๐‘ ๐‘๐‘Ÿ๐‘–๐‘›๐‘” ๐‘ ๐‘ฆ๐‘ ๐‘ก๐‘’๐‘š ๐‘Ž๐‘Ÿ๐‘’ ๐‘œ๐‘“ ๐‘กโ„Ž๐‘’ ๐‘ ๐‘Ž๐‘š๐‘’ ๐‘“๐‘œ๐‘Ÿ๐‘š . ๐ฟ ๐‘‘2I ๐‘‘๐‘ก2 + ๐‘… ๐‘‘๐ผ ๐‘‘๐‘ก + 1 ๐ถ ๐ผ = ๐‘‘๐ธ ๐‘‘๐‘ก or ๐ฟ ๐‘‘2I ๐‘‘๐‘ก2 + ๐‘… ๐‘‘๐ผ ๐‘‘๐‘ก + 1 ๐ถ ๐ผ = ๐ธ0๐œ”๐‘๐‘œ๐‘ ๐œ”๐‘ก (๐ธ = ๐ธ0๐‘ ๐‘–๐‘›๐œ”๐‘ก) and ๐‘š แˆท ๐‘ฅ+c แˆถ ๐‘ฅ + ๐‘˜๐‘ฅ = ๐น1๐‘๐‘œ๐‘ ๐›ฝ๐‘ก ๐‘‡โ„Ž๐‘’ ๐‘”๐‘–๐‘ฃ๐‘’๐‘› ๐‘ก๐‘Ž๐‘๐‘™๐‘’ ๐‘ โ„Ž๐‘œ๐‘ค๐‘  ๐‘กโ„Ž๐‘’ ๐‘Ž๐‘›๐‘Ž๐‘™๐‘œ๐‘”๐‘ฆ ๐‘๐‘’๐‘ก๐‘ค๐‘’๐‘’๐‘› ๐‘กโ„Ž๐‘’ ๐‘ฃ๐‘Ž๐‘Ÿ๐‘–๐‘œ๐‘ข๐‘  ๐‘ž๐‘ข๐‘Ž๐‘›๐‘ก๐‘–๐‘ก๐‘–๐‘’๐‘  ๐‘–๐‘›๐‘ฃ๐‘œ๐‘™๐‘ฃ๐‘’๐‘‘.
  • 52. ๐‘จ๐‘ต๐‘จ๐‘ณ๐‘ถ๐‘ฎ๐’€ ๐‘ถ๐‘ญ ๐‘ฌ๐‘ณ๐‘ฌ๐‘ช๐‘ป๐‘น๐‘ฐ๐‘ช๐‘จ๐‘ณ ๐‘จ๐‘ต๐‘ซ ๐‘ด๐‘ฌ๐‘ช๐‘ฏ๐‘จ๐‘ต๐‘ฐ๐‘ช๐‘จ๐‘ณ ๐‘ธ๐‘ผ๐‘จ๐‘ต๐‘ป๐‘ฐ๐‘ป๐‘ฐ๐‘ฌ๐‘บ 52 ๐‘ฌ๐’๐’†๐’„๐’•๐’“๐’Š๐’„๐’‚๐’ ๐‘บ๐’š๐’”๐’•๐’†๐’Ž ๐‘ฐ๐’๐’…๐’–๐’„๐’•๐’‚๐’๐’„๐’† ๐‘ณ ๐‘น๐’†๐’”๐’Š๐’”๐’•๐’‚๐’๐’„๐’† ๐‘น ๐‘น๐’†๐’„๐’Š๐’‘๐’“๐’๐’„๐’‚๐’ ๐Ÿ/๐‘ช ๐’๐’‡ ๐’„๐’‚๐’‘๐’‚๐’„๐’Š๐’•๐’‚๐’๐’„๐’† ๐‘ช๐’–๐’“๐’“๐’†๐’๐’• ๐‘ฐ(๐’•) ๐‘ซ๐’†๐’“๐’Š๐’—๐’‚๐’•๐’Š๐’—๐’† (๐‘ฌ๐ŸŽ๐Ž๐’„๐’๐’”๐Ž๐’• ) ๐’๐’‡ ๐’†. ๐’Ž. ๐’‡ ๐‘ด๐’†๐’„๐’‰๐’‚๐’๐’Š๐’„๐’‚๐’ ๐‘บ๐’š๐’”๐’•๐’†๐’Ž ๐‘ด๐’‚๐’”๐’” ๐’Ž ๐‘ซ๐’‚๐’Ž๐’‘๐’Š๐’๐’ˆ ๐‘ช๐’๐’๐’”๐’•๐’‚๐’๐’• ๐’„ ๐‘บ๐’‘๐’“๐’Š๐’๐’ˆ ๐’„๐’๐’๐’”๐’•๐’‚๐’๐’• ๐’Œ ๐‘ซ๐’Š๐’”๐’‘๐’๐’‚๐’„๐’†๐’Ž๐’†๐’๐’• ๐’™ ๐’• ๐‘ซ๐’“๐’Š๐’—๐’Š๐’๐’ˆ ๐’‡๐’๐’“๐’„๐’† ๐น1๐‘๐‘œ๐‘ ๐›ฝ๐‘ก
  • 53. 53 PRACTICAL IMPOTTANCE This analogy is strictly quantitative in the sense that to a given mechanical system we can construct an electric circuit whose current will give the exact values of the displacement in the mechanical system when suitable scale factors are introduced. The practical importance of this analogy is almost obvious. The analogy may be used for constructing an โ€œ electrical modelโ€ of a given mechanical model , resulting in substantial savings of time and money because electric circuits are easy to assemble , and electric quantities can be measured much more quickly and accurately than mechanical ones.