SlideShare a Scribd company logo
1 of 27
Row Space, Column Space, Null Space
And
Rank Nullity Theorem
A part of active learning assignment.
An initiative by GTU.
Prepared by,
Ronak Machhi (130410109042)
(130410109044)
(130410109046)
(130410109048)
(130410109050)
Guided by:
Prof. Harshad R. Patel
Prof. J. B. Patel
Vector Calculus and Linear
Algebra
Outline
 Row Space
 Column Space
 Null space
 Rank And Nullity
Definition
11 12 1
21 22 2
1 2
1 11 12 1
2 21 22 2
For an m n matrix
...
...
A=
: : :
...
the vectors
[ ]
[ ]
:
n
n
m m mn
n
n
a a a
a a a
a a a
a a a
a a a
×
 
 
 
 
 
  
=
=
r
r
...
...
m 1 2
n
11 12 1
21 22 2
1 2
1 2
[ ]
in R formed form the rows of Aare called the row vectors of A, and the vectors
, , ...,
: : :
in
m m mn
n
n
n
m m mn
a a a
a a a
a a a
a a a
=
     
     
     = = =
     
     
          
r
c c c
...
m
R formed from the columns of A are called the column vectors of A.
Example 1
Row and Column Vectors in a 2×3
Matrix
 Let
The row vectors of A are
and the column vectors of A are
2 1 0
3 1 4
A
 
=  − 
[ ] [ ]1 22 1 0 and 3 1 4= = −r r
2 1 0
, , and
3 1 4
     
= = =     −     
1 2 3c c c
Definition
 If A is an m×n matrix, then the
subspace of Rn
spanned by the row
vectors of A is called the row space of
A, and the subspace of Rm
spanned by
the column vectors is called the column
space of A. The solution space of the
homogeneous system of equation
Ax=0, which is a subspace of Rn
, is
called the nullsapce of A.
Theorem
 Elementary row operations do not
change the nullspace of a matrix.
Example 4
Basis for Nullspace
 Find a basis for the nullspace of
Solution.
The nullspace of A is the solution space of the homogeneous
system
After solution we find that the vectors
Form a basis for this space.
2 2 1 0 1
1 1 2 3 1
1 1 2 0 1
0 0 1 1 1
A
− 
 − − − =
 − −
 
 
1 2 3 5
1 2 3 4 5
1 2 3 5
3 4 5
2 2 0
2 3 0
2 0
0
x x x x
x x x x x
x x x x
x x x
+ − + =
− − + − + =
+ − − =
+ + =
1 2
1 1
1 0
and0 1
0 0
0 1
− −   
   
   
   = = −
   
   
      
v v
Theorem
 Elementary row operations do not
change the row space of a matrix.
Theorem
 If a matrix R is in row echelon form,
then the row vectors with the leading
1’s (i.e., the nonzero row vectors) form
a basis for the row space of R, and the
column vectors with the leading 1’s of
the row vectors form a basis for the
column space of R.
Example 5
Bases for Row and Column Spaces
1
2
3
The matrix
1 2 5 0 3
0 1 3 0 0
0 0 0 1 0
0 0 0 0 0
is in row-echelon form. From Theorem 5.5.6 the vectors
[1 -2 5 0 3]
[0 1 3 0 0]
[0 0 0 1 0]
form a
R
− 
 
 =
 
 
 
=
=
=
r
r
r
1 2 4
basis for the row space of R, and the vectors
1 2 0
0 1 0
, ,
0 0 1
0 0 0
form a basis for the column space of R.
−     
     
     = = =
     
     
     
c c c
Example 6
Bases for Row and Column Spaces
(1/2)
 Find bases for the row and column spaces of
Solution.
Reducing A to row-echelon form we obtain
By Theorem 5.5.6 the nonzero row vectors of R form a basis for row space
of R, and hence form a basis for the row space of A. These basis
vectors are
1 3 4 2 5 4
2 6 9 1 8 2
2 6 9 1 9 7
1 3 4 2 5 4
A
− − 
 − − =
 − −
 
− − − − 
1 3 4 2 5 4
0 0 1 3 2 6
0 0 0 0 1 5
0 0 0 0 0 0
R
− − 
 − − =
 
 
 
[ ]
[ ]
[ ]
1
2
3
r 1 3 4 2 5 4
r 0 0 1 3 2 6
r 0 0 0 0 1 5
= − −
= − −
=
Example 6
Bases for Row and Column Spaces
(2/2)
We can find a set of column vectors of R that forms a basis for the column
space of R, then the corresponding column vectors of A will form a basis
for the column space of A.
The first, third, and fifth columns of R contain the leading 1’s of the row
vector , so
Form a basis for the column space of R; thus
Form a basis for the column space of A.
1 4 5
0 1 2
, ,
0 0 1
0 0 0
     
     −     = = =
     
     
     
' ' '
1 5 5c c c
1 4 5
2 9 8
, ,
2 9 9
1 4 5
     
     
     = = =
     
     
− − −     
1 3 5c c c
Example 7
Basis for a Vector Space Using Row
Operations (1/2)
 Find a basis for the space spanned by the vectors
v1=(1, -2, 0, 0, 3), v2=(2, -5, -3, -2, 6), v3=(0, 5, 15, 10, 0), v4=(2, 6,
18, 8, 6)
Solution.
Except for a variation in notation, the space spanned by these
vectors is row space of the matrix
Reducing this matrix to row-echelon form we obtain
1 2 0 0 3
2 5 3 2 6
0 5 15 10 0
2 6 18 8 6
− 
 − − − 
 
 
 
1 2 0 0 3
0 1 3 2 0
0 0 1 1 0
0 0 0 0 0
− 
 
 
 
 
 
Example 7
Basis for a Vector Space Using Row
Operations (2/2)
The nonzero row vectors in this matrix are
w1=(1, -2, 0, 0, 3), w2=(0, 1, 3, 2, 0),
w3=(0, 0, 1, 1, 0)
These vectors form a basis for the row
space and consequently form a basis
for the subspace of R5
spanned by v1,
v2, v3, and v4.
Example 8
Basis for the Row Space of a Matrix
(1/2)
 Find a basis for the row space of
Consisting entirely of row vectors from A.
Solution.
Transposing A yields
1 2 0 0 3
2 5 3 2 6
0 5 15 10 0
2 6 18 8 6
A
− 
 − − − =
 
 
 
1 2 0 2
2 5 5 6
0 3 15 18
0 2 10 8
3 6 0 6
T
A
 
 − − 
 = −
 
− 
  
Example 8
Basis for the Row Space of a Matrix
(2/2)
Reducing this matrix to row-echelon form yields
The first, second, and fourth columns contain the leading 1’s, so the
corresponding column vectors in AT
form a basis for the column
space of ; these are
Transposing again and adjusting the notation appropriately yields the
basis vectors
r1=[1 -2 0 0 3], r2=[2 -5 -3 -2 6], and r3=[2 -5 -3 -2 6]
for the row space of A.
1 2 0 2
0 1 5 10
0 0 0 1
0 0 0 0
0 0 0 0
 
 − 
 
 
 
  
1 2 2
2 5 6
, , and0 3 18
0 2 8
3 6 6
     
     − −     
     = = =−
     
−     
          
1 2 4c c c
Rank And Nullity
Theorem
 If A is any matrix, then the row space
and column space of A have the same
dimension.
Definition
 The common dimension of the row and
column space of a matrix A is called the
rank of A and is denoted by rank(A); the
dimension of the nullspace of a is called
the nullity of A and is denoted by
nullity(A).
Example 1
Rank and Nullity of a 4×6 Matrix
(1/2)
 Find the rank and nullity of the matrix
Solution.
The reduced row-echelon form of A is
Since there are two nonzero rows, the row space and column space
are both two-dimensional, so rank(A)=2.
1 2 0 4 5 3
3 7 2 0 1 4
2 5 2 4 6 1
4 9 2 4 4 7
A
− − 
 − =
 −
 
− − − 
1 0 4 28 37 13
0 1 2 12 16 5
0 0 0 0 0 0
0 0 0 0 0 0
− − − 
 − − − 
 
 
 
Example 1
Rank and Nullity of a 4×6 Matrix
(2/2)
The corresponding system of equations will be
x1-4x3-28x4-37x5+13x6=0
x2-2x3-12x4-16x5+5x6=0
It follows that the general solution of the system is
x1=4r+28s+37t-13u; x2=2r+12s+16t-5u; x3=r; x4=s; x5=t; x6=u
Or
So that nullity(A)=4.
1
2
3
4
5
6
4 28 37 13
2 12 16 5
1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1
x
x
x
r s t u
x
x
x
−         
         −         
         
= + + +         
         
         
         
                 
Theorem
 If A is any matrix, then rank(A)=
rank(AT
).
Theorem 5.6.3
Dimension Theorem for Matrices
 If A is a matrix with n columns, then
rank(A)+nullity(A)=n
Theorem
 If A is an m×n matrix, then:
a) rank(A)=the number of leading
variables in the solution of Ax=0.
b) nullity(A)=the number of parameters in
the general solution of Ax=0.
Example 2
The Sum of Rank and Nullity
 The matrix
has 6 columns, so
rank(A)+nullity(A)=6
This is consistent with Example 1, where we should
showed that
rank(A)=2 and nullity(A)=4
1 2 0 4 5 3
3 7 2 0 1 4
2 5 2 4 6 1
4 9 2 4 4 7
A
− − 
 − =
 −
 
− − − 
References:
 Textbook of Vector Calculus and
Linear Algebra (Atul Publications)
Note: All the excerpts taken from the
respective book were used only for
academic purpose. NO commercial
purpose was entertained.
Thank you. 

More Related Content

What's hot

Linear transformations and matrices
Linear transformations and matricesLinear transformations and matrices
Linear transformations and matrices
EasyStudy3
 
Linear Algebra and Matrix
Linear Algebra and MatrixLinear Algebra and Matrix
Linear Algebra and Matrix
itutor
 
Eigen values and eigen vectors
Eigen values and eigen vectorsEigen values and eigen vectors
Eigen values and eigen vectors
Riddhi Patel
 

What's hot (20)

Vector Spaces,subspaces,Span,Basis
Vector Spaces,subspaces,Span,BasisVector Spaces,subspaces,Span,Basis
Vector Spaces,subspaces,Span,Basis
 
linear transformation
linear transformationlinear transformation
linear transformation
 
Linear transformations and matrices
Linear transformations and matricesLinear transformations and matrices
Linear transformations and matrices
 
Eigen value , eigen vectors, caley hamilton theorem
Eigen value , eigen vectors, caley hamilton theoremEigen value , eigen vectors, caley hamilton theorem
Eigen value , eigen vectors, caley hamilton theorem
 
Linear Algebra and Matrix
Linear Algebra and MatrixLinear Algebra and Matrix
Linear Algebra and Matrix
 
derogatory and non derogatory matrices
derogatory and non derogatory matricesderogatory and non derogatory matrices
derogatory and non derogatory matrices
 
Vector space
Vector spaceVector space
Vector space
 
System Of Linear Equations
System Of Linear EquationsSystem Of Linear Equations
System Of Linear Equations
 
Independence, basis and dimension
Independence, basis and dimensionIndependence, basis and dimension
Independence, basis and dimension
 
Recurrence relations
Recurrence relationsRecurrence relations
Recurrence relations
 
Null space and rank nullity theorem
Null space and rank nullity theoremNull space and rank nullity theorem
Null space and rank nullity theorem
 
System of linear equations
System of linear equationsSystem of linear equations
System of linear equations
 
Eigen value and eigen vector
Eigen value and eigen vectorEigen value and eigen vector
Eigen value and eigen vector
 
Eigen values and eigen vectors
Eigen values and eigen vectorsEigen values and eigen vectors
Eigen values and eigen vectors
 
Maths-->>Eigenvalues and eigenvectors
Maths-->>Eigenvalues and eigenvectorsMaths-->>Eigenvalues and eigenvectors
Maths-->>Eigenvalues and eigenvectors
 
Diagonalization of Matrices
Diagonalization of MatricesDiagonalization of Matrices
Diagonalization of Matrices
 
34 polar coordinate and equations
34 polar coordinate and equations34 polar coordinate and equations
34 polar coordinate and equations
 
Eigenvalues and Eigenvectors
Eigenvalues and EigenvectorsEigenvalues and Eigenvectors
Eigenvalues and Eigenvectors
 
Linear transformation and application
Linear transformation and applicationLinear transformation and application
Linear transformation and application
 
2. Linear Algebra for Machine Learning: Basis and Dimension
2. Linear Algebra for Machine Learning: Basis and Dimension2. Linear Algebra for Machine Learning: Basis and Dimension
2. Linear Algebra for Machine Learning: Basis and Dimension
 

Viewers also liked

Lecture 8 nul col bases dim & rank - section 4-2, 4-3, 4-5 & 4-6
Lecture 8   nul col bases dim & rank - section 4-2, 4-3, 4-5 & 4-6Lecture 8   nul col bases dim & rank - section 4-2, 4-3, 4-5 & 4-6
Lecture 8 nul col bases dim & rank - section 4-2, 4-3, 4-5 & 4-6
njit-ronbrown
 
Eigen values and eigenvectors
Eigen values and eigenvectorsEigen values and eigenvectors
Eigen values and eigenvectors
Amit Singh
 
Taller de teatro para competencias lomce
Taller de teatro para competencias lomceTaller de teatro para competencias lomce
Taller de teatro para competencias lomce
victor diaz gomez
 
Serviciogastronomia en un hotel
Serviciogastronomia en un hotelServiciogastronomia en un hotel
Serviciogastronomia en un hotel
Carlos Lucero
 
Social media und recht claudia keller
Social media und recht claudia kellerSocial media und recht claudia keller
Social media und recht claudia keller
Social Hub Zürich
 
Diagnostico Motor
Diagnostico MotorDiagnostico Motor
Diagnostico Motor
guest07963
 
Paullin_SHRM Foundation EPG 2014_Leverage Talents of Mature Employees
Paullin_SHRM Foundation EPG 2014_Leverage Talents of Mature EmployeesPaullin_SHRM Foundation EPG 2014_Leverage Talents of Mature Employees
Paullin_SHRM Foundation EPG 2014_Leverage Talents of Mature Employees
Cheryl Paullin
 
ENVI-met como uma ferramenta de análise da qualidade do ar em micro-escala
ENVI-met como uma ferramenta de análise da qualidade do ar em micro-escalaENVI-met como uma ferramenta de análise da qualidade do ar em micro-escala
ENVI-met como uma ferramenta de análise da qualidade do ar em micro-escala
chicorasia
 

Viewers also liked (20)

rank of matrix
rank of matrixrank of matrix
rank of matrix
 
Lesson 13: Rank and Solutions to Systems of Linear Equations
Lesson 13: Rank and Solutions to Systems of Linear EquationsLesson 13: Rank and Solutions to Systems of Linear Equations
Lesson 13: Rank and Solutions to Systems of Linear Equations
 
ppt on Vector spaces (VCLA) by dhrumil patel and harshid panchal
ppt on Vector spaces (VCLA) by dhrumil patel and harshid panchalppt on Vector spaces (VCLA) by dhrumil patel and harshid panchal
ppt on Vector spaces (VCLA) by dhrumil patel and harshid panchal
 
ppt of VCLA
ppt of VCLAppt of VCLA
ppt of VCLA
 
Midterm II Review Session Slides
Midterm II Review Session SlidesMidterm II Review Session Slides
Midterm II Review Session Slides
 
Lecture 8 nul col bases dim & rank - section 4-2, 4-3, 4-5 & 4-6
Lecture 8   nul col bases dim & rank - section 4-2, 4-3, 4-5 & 4-6Lecture 8   nul col bases dim & rank - section 4-2, 4-3, 4-5 & 4-6
Lecture 8 nul col bases dim & rank - section 4-2, 4-3, 4-5 & 4-6
 
Lecture 9 dim & rank - 4-5 & 4-6
Lecture 9   dim & rank -  4-5 & 4-6Lecture 9   dim & rank -  4-5 & 4-6
Lecture 9 dim & rank - 4-5 & 4-6
 
Eigen values and eigenvectors
Eigen values and eigenvectorsEigen values and eigenvectors
Eigen values and eigenvectors
 
Lecture 11 diagonalization & complex eigenvalues - 5-3 & 5-5
Lecture  11   diagonalization & complex eigenvalues -  5-3 & 5-5Lecture  11   diagonalization & complex eigenvalues -  5-3 & 5-5
Lecture 11 diagonalization & complex eigenvalues - 5-3 & 5-5
 
Matrices
MatricesMatrices
Matrices
 
Taller de teatro para competencias lomce
Taller de teatro para competencias lomceTaller de teatro para competencias lomce
Taller de teatro para competencias lomce
 
Serviciogastronomia en un hotel
Serviciogastronomia en un hotelServiciogastronomia en un hotel
Serviciogastronomia en un hotel
 
Crisis climaticas riesgo y vulnerabilidad en un mundo desigual: el caso del S...
Crisis climaticas riesgo y vulnerabilidad en un mundo desigual: el caso del S...Crisis climaticas riesgo y vulnerabilidad en un mundo desigual: el caso del S...
Crisis climaticas riesgo y vulnerabilidad en un mundo desigual: el caso del S...
 
Social media und recht claudia keller
Social media und recht claudia kellerSocial media und recht claudia keller
Social media und recht claudia keller
 
Diagnostico Motor
Diagnostico MotorDiagnostico Motor
Diagnostico Motor
 
Paullin_SHRM Foundation EPG 2014_Leverage Talents of Mature Employees
Paullin_SHRM Foundation EPG 2014_Leverage Talents of Mature EmployeesPaullin_SHRM Foundation EPG 2014_Leverage Talents of Mature Employees
Paullin_SHRM Foundation EPG 2014_Leverage Talents of Mature Employees
 
Modelamiento para el Desarrollo Sostenible de la Cuenca Chira – Piura mediant...
Modelamiento para el Desarrollo Sostenible de la Cuenca Chira – Piura mediant...Modelamiento para el Desarrollo Sostenible de la Cuenca Chira – Piura mediant...
Modelamiento para el Desarrollo Sostenible de la Cuenca Chira – Piura mediant...
 
Los blogs
Los blogsLos blogs
Los blogs
 
Rapport environnement en
Rapport environnement enRapport environnement en
Rapport environnement en
 
ENVI-met como uma ferramenta de análise da qualidade do ar em micro-escala
ENVI-met como uma ferramenta de análise da qualidade do ar em micro-escalaENVI-met como uma ferramenta de análise da qualidade do ar em micro-escala
ENVI-met como uma ferramenta de análise da qualidade do ar em micro-escala
 

Similar to Null space, Rank and nullity theorem

Eigen value and vector of linear transformation.pptx
Eigen value and vector of linear transformation.pptxEigen value and vector of linear transformation.pptx
Eigen value and vector of linear transformation.pptx
AtulTiwari892261
 
Row space | Column Space | Null space | Rank | Nullity
Row space | Column Space | Null space | Rank | NullityRow space | Column Space | Null space | Rank | Nullity
Row space | Column Space | Null space | Rank | Nullity
Vishvesh Jasani
 

Similar to Null space, Rank and nullity theorem (20)

Row space, column space, null space And Rank, Nullity and Rank-Nullity theore...
Row space, column space, null space And Rank, Nullity and Rank-Nullity theore...Row space, column space, null space And Rank, Nullity and Rank-Nullity theore...
Row space, column space, null space And Rank, Nullity and Rank-Nullity theore...
 
Rank, Nullity, and Fundamental Matrix Spaces.pptx
Rank, Nullity, and Fundamental Matrix Spaces.pptxRank, Nullity, and Fundamental Matrix Spaces.pptx
Rank, Nullity, and Fundamental Matrix Spaces.pptx
 
Matrix and linear algebra Introduced by: Khalid Jawad Kadhim
Matrix and linear algebra Introduced by: Khalid Jawad KadhimMatrix and linear algebra Introduced by: Khalid Jawad Kadhim
Matrix and linear algebra Introduced by: Khalid Jawad Kadhim
 
Chapter 4: Vector Spaces - Part 4/Slides By Pearson
Chapter 4: Vector Spaces - Part 4/Slides By PearsonChapter 4: Vector Spaces - Part 4/Slides By Pearson
Chapter 4: Vector Spaces - Part 4/Slides By Pearson
 
Eigenvalues, Eigenvectors and Quadratic Forms.pdf
Eigenvalues, Eigenvectors and Quadratic Forms.pdfEigenvalues, Eigenvectors and Quadratic Forms.pdf
Eigenvalues, Eigenvectors and Quadratic Forms.pdf
 
Mat 223_Ch4-VectorSpaces.ppt
Mat 223_Ch4-VectorSpaces.pptMat 223_Ch4-VectorSpaces.ppt
Mat 223_Ch4-VectorSpaces.ppt
 
MODULE_05-Matrix Decomposition.pptx
MODULE_05-Matrix Decomposition.pptxMODULE_05-Matrix Decomposition.pptx
MODULE_05-Matrix Decomposition.pptx
 
Mathematical Foundations for Machine Learning and Data Mining
Mathematical Foundations for Machine Learning and Data MiningMathematical Foundations for Machine Learning and Data Mining
Mathematical Foundations for Machine Learning and Data Mining
 
ArrayBasics.ppt
ArrayBasics.pptArrayBasics.ppt
ArrayBasics.ppt
 
Electromagnetic theory Chapter 1
Electromagnetic theory Chapter 1Electromagnetic theory Chapter 1
Electromagnetic theory Chapter 1
 
Lecture 3 Inverse matrices(hotom).pdf
Lecture 3 Inverse matrices(hotom).pdfLecture 3 Inverse matrices(hotom).pdf
Lecture 3 Inverse matrices(hotom).pdf
 
Mat 223_Ch5-Eigenvalues.ppt
Mat 223_Ch5-Eigenvalues.pptMat 223_Ch5-Eigenvalues.ppt
Mat 223_Ch5-Eigenvalues.ppt
 
Chapter 3: Linear Systems and Matrices - Part 3/Slides
Chapter 3: Linear Systems and Matrices - Part 3/SlidesChapter 3: Linear Systems and Matrices - Part 3/Slides
Chapter 3: Linear Systems and Matrices - Part 3/Slides
 
Eigen value and vector of linear transformation.pptx
Eigen value and vector of linear transformation.pptxEigen value and vector of linear transformation.pptx
Eigen value and vector of linear transformation.pptx
 
Matrices ppt
Matrices pptMatrices ppt
Matrices ppt
 
Row space | Column Space | Null space | Rank | Nullity
Row space | Column Space | Null space | Rank | NullityRow space | Column Space | Null space | Rank | Nullity
Row space | Column Space | Null space | Rank | Nullity
 
Module 1 Theory of Matrices.pdf
Module 1 Theory of Matrices.pdfModule 1 Theory of Matrices.pdf
Module 1 Theory of Matrices.pdf
 
Linear Algebra.pptx
Linear Algebra.pptxLinear Algebra.pptx
Linear Algebra.pptx
 
Setting linear algebra problems
Setting linear algebra problemsSetting linear algebra problems
Setting linear algebra problems
 
matricesMrtices
matricesMrticesmatricesMrtices
matricesMrtices
 

Recently uploaded

Jual Obat Aborsi Hongkong ( Asli No.1 ) 085657271886 Obat Penggugur Kandungan...
Jual Obat Aborsi Hongkong ( Asli No.1 ) 085657271886 Obat Penggugur Kandungan...Jual Obat Aborsi Hongkong ( Asli No.1 ) 085657271886 Obat Penggugur Kandungan...
Jual Obat Aborsi Hongkong ( Asli No.1 ) 085657271886 Obat Penggugur Kandungan...
ZurliaSoop
 
Russian Escort Service in Delhi 11k Hotel Foreigner Russian Call Girls in Delhi
Russian Escort Service in Delhi 11k Hotel Foreigner Russian Call Girls in DelhiRussian Escort Service in Delhi 11k Hotel Foreigner Russian Call Girls in Delhi
Russian Escort Service in Delhi 11k Hotel Foreigner Russian Call Girls in Delhi
kauryashika82
 
1029-Danh muc Sach Giao Khoa khoi 6.pdf
1029-Danh muc Sach Giao Khoa khoi  6.pdf1029-Danh muc Sach Giao Khoa khoi  6.pdf
1029-Danh muc Sach Giao Khoa khoi 6.pdf
QucHHunhnh
 
Seal of Good Local Governance (SGLG) 2024Final.pptx
Seal of Good Local Governance (SGLG) 2024Final.pptxSeal of Good Local Governance (SGLG) 2024Final.pptx
Seal of Good Local Governance (SGLG) 2024Final.pptx
negromaestrong
 
The basics of sentences session 3pptx.pptx
The basics of sentences session 3pptx.pptxThe basics of sentences session 3pptx.pptx
The basics of sentences session 3pptx.pptx
heathfieldcps1
 
Spellings Wk 3 English CAPS CARES Please Practise
Spellings Wk 3 English CAPS CARES Please PractiseSpellings Wk 3 English CAPS CARES Please Practise
Spellings Wk 3 English CAPS CARES Please Practise
AnaAcapella
 

Recently uploaded (20)

How to Give a Domain for a Field in Odoo 17
How to Give a Domain for a Field in Odoo 17How to Give a Domain for a Field in Odoo 17
How to Give a Domain for a Field in Odoo 17
 
Kodo Millet PPT made by Ghanshyam bairwa college of Agriculture kumher bhara...
Kodo Millet  PPT made by Ghanshyam bairwa college of Agriculture kumher bhara...Kodo Millet  PPT made by Ghanshyam bairwa college of Agriculture kumher bhara...
Kodo Millet PPT made by Ghanshyam bairwa college of Agriculture kumher bhara...
 
Unit-IV- Pharma. Marketing Channels.pptx
Unit-IV- Pharma. Marketing Channels.pptxUnit-IV- Pharma. Marketing Channels.pptx
Unit-IV- Pharma. Marketing Channels.pptx
 
ICT Role in 21st Century Education & its Challenges.pptx
ICT Role in 21st Century Education & its Challenges.pptxICT Role in 21st Century Education & its Challenges.pptx
ICT Role in 21st Century Education & its Challenges.pptx
 
Jual Obat Aborsi Hongkong ( Asli No.1 ) 085657271886 Obat Penggugur Kandungan...
Jual Obat Aborsi Hongkong ( Asli No.1 ) 085657271886 Obat Penggugur Kandungan...Jual Obat Aborsi Hongkong ( Asli No.1 ) 085657271886 Obat Penggugur Kandungan...
Jual Obat Aborsi Hongkong ( Asli No.1 ) 085657271886 Obat Penggugur Kandungan...
 
TỔNG ÔN TẬP THI VÀO LỚP 10 MÔN TIẾNG ANH NĂM HỌC 2023 - 2024 CÓ ĐÁP ÁN (NGỮ Â...
TỔNG ÔN TẬP THI VÀO LỚP 10 MÔN TIẾNG ANH NĂM HỌC 2023 - 2024 CÓ ĐÁP ÁN (NGỮ Â...TỔNG ÔN TẬP THI VÀO LỚP 10 MÔN TIẾNG ANH NĂM HỌC 2023 - 2024 CÓ ĐÁP ÁN (NGỮ Â...
TỔNG ÔN TẬP THI VÀO LỚP 10 MÔN TIẾNG ANH NĂM HỌC 2023 - 2024 CÓ ĐÁP ÁN (NGỮ Â...
 
Asian American Pacific Islander Month DDSD 2024.pptx
Asian American Pacific Islander Month DDSD 2024.pptxAsian American Pacific Islander Month DDSD 2024.pptx
Asian American Pacific Islander Month DDSD 2024.pptx
 
UGC NET Paper 1 Mathematical Reasoning & Aptitude.pdf
UGC NET Paper 1 Mathematical Reasoning & Aptitude.pdfUGC NET Paper 1 Mathematical Reasoning & Aptitude.pdf
UGC NET Paper 1 Mathematical Reasoning & Aptitude.pdf
 
Russian Escort Service in Delhi 11k Hotel Foreigner Russian Call Girls in Delhi
Russian Escort Service in Delhi 11k Hotel Foreigner Russian Call Girls in DelhiRussian Escort Service in Delhi 11k Hotel Foreigner Russian Call Girls in Delhi
Russian Escort Service in Delhi 11k Hotel Foreigner Russian Call Girls in Delhi
 
Third Battle of Panipat detailed notes.pptx
Third Battle of Panipat detailed notes.pptxThird Battle of Panipat detailed notes.pptx
Third Battle of Panipat detailed notes.pptx
 
1029-Danh muc Sach Giao Khoa khoi 6.pdf
1029-Danh muc Sach Giao Khoa khoi  6.pdf1029-Danh muc Sach Giao Khoa khoi  6.pdf
1029-Danh muc Sach Giao Khoa khoi 6.pdf
 
Accessible Digital Futures project (20/03/2024)
Accessible Digital Futures project (20/03/2024)Accessible Digital Futures project (20/03/2024)
Accessible Digital Futures project (20/03/2024)
 
Spatium Project Simulation student brief
Spatium Project Simulation student briefSpatium Project Simulation student brief
Spatium Project Simulation student brief
 
Sociology 101 Demonstration of Learning Exhibit
Sociology 101 Demonstration of Learning ExhibitSociology 101 Demonstration of Learning Exhibit
Sociology 101 Demonstration of Learning Exhibit
 
Micro-Scholarship, What it is, How can it help me.pdf
Micro-Scholarship, What it is, How can it help me.pdfMicro-Scholarship, What it is, How can it help me.pdf
Micro-Scholarship, What it is, How can it help me.pdf
 
Making communications land - Are they received and understood as intended? we...
Making communications land - Are they received and understood as intended? we...Making communications land - Are they received and understood as intended? we...
Making communications land - Are they received and understood as intended? we...
 
Seal of Good Local Governance (SGLG) 2024Final.pptx
Seal of Good Local Governance (SGLG) 2024Final.pptxSeal of Good Local Governance (SGLG) 2024Final.pptx
Seal of Good Local Governance (SGLG) 2024Final.pptx
 
Food safety_Challenges food safety laboratories_.pdf
Food safety_Challenges food safety laboratories_.pdfFood safety_Challenges food safety laboratories_.pdf
Food safety_Challenges food safety laboratories_.pdf
 
The basics of sentences session 3pptx.pptx
The basics of sentences session 3pptx.pptxThe basics of sentences session 3pptx.pptx
The basics of sentences session 3pptx.pptx
 
Spellings Wk 3 English CAPS CARES Please Practise
Spellings Wk 3 English CAPS CARES Please PractiseSpellings Wk 3 English CAPS CARES Please Practise
Spellings Wk 3 English CAPS CARES Please Practise
 

Null space, Rank and nullity theorem

  • 1. Row Space, Column Space, Null Space And Rank Nullity Theorem A part of active learning assignment. An initiative by GTU. Prepared by, Ronak Machhi (130410109042) (130410109044) (130410109046) (130410109048) (130410109050) Guided by: Prof. Harshad R. Patel Prof. J. B. Patel Vector Calculus and Linear Algebra
  • 2. Outline  Row Space  Column Space  Null space  Rank And Nullity
  • 3. Definition 11 12 1 21 22 2 1 2 1 11 12 1 2 21 22 2 For an m n matrix ... ... A= : : : ... the vectors [ ] [ ] : n n m m mn n n a a a a a a a a a a a a a a a ×              = = r r ... ... m 1 2 n 11 12 1 21 22 2 1 2 1 2 [ ] in R formed form the rows of Aare called the row vectors of A, and the vectors , , ..., : : : in m m mn n n n m m mn a a a a a a a a a a a a =                  = = =                        r c c c ... m R formed from the columns of A are called the column vectors of A.
  • 4. Example 1 Row and Column Vectors in a 2×3 Matrix  Let The row vectors of A are and the column vectors of A are 2 1 0 3 1 4 A   =  −  [ ] [ ]1 22 1 0 and 3 1 4= = −r r 2 1 0 , , and 3 1 4       = = =     −      1 2 3c c c
  • 5. Definition  If A is an m×n matrix, then the subspace of Rn spanned by the row vectors of A is called the row space of A, and the subspace of Rm spanned by the column vectors is called the column space of A. The solution space of the homogeneous system of equation Ax=0, which is a subspace of Rn , is called the nullsapce of A.
  • 6. Theorem  Elementary row operations do not change the nullspace of a matrix.
  • 7. Example 4 Basis for Nullspace  Find a basis for the nullspace of Solution. The nullspace of A is the solution space of the homogeneous system After solution we find that the vectors Form a basis for this space. 2 2 1 0 1 1 1 2 3 1 1 1 2 0 1 0 0 1 1 1 A −   − − − =  − −     1 2 3 5 1 2 3 4 5 1 2 3 5 3 4 5 2 2 0 2 3 0 2 0 0 x x x x x x x x x x x x x x x x + − + = − − + − + = + − − = + + = 1 2 1 1 1 0 and0 1 0 0 0 1 − −               = = −                v v
  • 8. Theorem  Elementary row operations do not change the row space of a matrix.
  • 9. Theorem  If a matrix R is in row echelon form, then the row vectors with the leading 1’s (i.e., the nonzero row vectors) form a basis for the row space of R, and the column vectors with the leading 1’s of the row vectors form a basis for the column space of R.
  • 10. Example 5 Bases for Row and Column Spaces 1 2 3 The matrix 1 2 5 0 3 0 1 3 0 0 0 0 0 1 0 0 0 0 0 0 is in row-echelon form. From Theorem 5.5.6 the vectors [1 -2 5 0 3] [0 1 3 0 0] [0 0 0 1 0] form a R −     =       = = = r r r 1 2 4 basis for the row space of R, and the vectors 1 2 0 0 1 0 , , 0 0 1 0 0 0 form a basis for the column space of R. −                 = = =                   c c c
  • 11. Example 6 Bases for Row and Column Spaces (1/2)  Find bases for the row and column spaces of Solution. Reducing A to row-echelon form we obtain By Theorem 5.5.6 the nonzero row vectors of R form a basis for row space of R, and hence form a basis for the row space of A. These basis vectors are 1 3 4 2 5 4 2 6 9 1 8 2 2 6 9 1 9 7 1 3 4 2 5 4 A − −   − − =  − −   − − − −  1 3 4 2 5 4 0 0 1 3 2 6 0 0 0 0 1 5 0 0 0 0 0 0 R − −   − − =       [ ] [ ] [ ] 1 2 3 r 1 3 4 2 5 4 r 0 0 1 3 2 6 r 0 0 0 0 1 5 = − − = − − =
  • 12. Example 6 Bases for Row and Column Spaces (2/2) We can find a set of column vectors of R that forms a basis for the column space of R, then the corresponding column vectors of A will form a basis for the column space of A. The first, third, and fifth columns of R contain the leading 1’s of the row vector , so Form a basis for the column space of R; thus Form a basis for the column space of A. 1 4 5 0 1 2 , , 0 0 1 0 0 0            −     = = =                   ' ' ' 1 5 5c c c 1 4 5 2 9 8 , , 2 9 9 1 4 5                  = = =             − − −      1 3 5c c c
  • 13. Example 7 Basis for a Vector Space Using Row Operations (1/2)  Find a basis for the space spanned by the vectors v1=(1, -2, 0, 0, 3), v2=(2, -5, -3, -2, 6), v3=(0, 5, 15, 10, 0), v4=(2, 6, 18, 8, 6) Solution. Except for a variation in notation, the space spanned by these vectors is row space of the matrix Reducing this matrix to row-echelon form we obtain 1 2 0 0 3 2 5 3 2 6 0 5 15 10 0 2 6 18 8 6 −   − − −        1 2 0 0 3 0 1 3 2 0 0 0 1 1 0 0 0 0 0 0 −           
  • 14. Example 7 Basis for a Vector Space Using Row Operations (2/2) The nonzero row vectors in this matrix are w1=(1, -2, 0, 0, 3), w2=(0, 1, 3, 2, 0), w3=(0, 0, 1, 1, 0) These vectors form a basis for the row space and consequently form a basis for the subspace of R5 spanned by v1, v2, v3, and v4.
  • 15. Example 8 Basis for the Row Space of a Matrix (1/2)  Find a basis for the row space of Consisting entirely of row vectors from A. Solution. Transposing A yields 1 2 0 0 3 2 5 3 2 6 0 5 15 10 0 2 6 18 8 6 A −   − − − =       1 2 0 2 2 5 5 6 0 3 15 18 0 2 10 8 3 6 0 6 T A    − −   = −   −    
  • 16. Example 8 Basis for the Row Space of a Matrix (2/2) Reducing this matrix to row-echelon form yields The first, second, and fourth columns contain the leading 1’s, so the corresponding column vectors in AT form a basis for the column space of ; these are Transposing again and adjusting the notation appropriately yields the basis vectors r1=[1 -2 0 0 3], r2=[2 -5 -3 -2 6], and r3=[2 -5 -3 -2 6] for the row space of A. 1 2 0 2 0 1 5 10 0 0 0 1 0 0 0 0 0 0 0 0    −           1 2 2 2 5 6 , , and0 3 18 0 2 8 3 6 6            − −           = = =−       −                 1 2 4c c c
  • 18. Theorem  If A is any matrix, then the row space and column space of A have the same dimension.
  • 19. Definition  The common dimension of the row and column space of a matrix A is called the rank of A and is denoted by rank(A); the dimension of the nullspace of a is called the nullity of A and is denoted by nullity(A).
  • 20. Example 1 Rank and Nullity of a 4×6 Matrix (1/2)  Find the rank and nullity of the matrix Solution. The reduced row-echelon form of A is Since there are two nonzero rows, the row space and column space are both two-dimensional, so rank(A)=2. 1 2 0 4 5 3 3 7 2 0 1 4 2 5 2 4 6 1 4 9 2 4 4 7 A − −   − =  −   − − −  1 0 4 28 37 13 0 1 2 12 16 5 0 0 0 0 0 0 0 0 0 0 0 0 − − −   − − −       
  • 21. Example 1 Rank and Nullity of a 4×6 Matrix (2/2) The corresponding system of equations will be x1-4x3-28x4-37x5+13x6=0 x2-2x3-12x4-16x5+5x6=0 It follows that the general solution of the system is x1=4r+28s+37t-13u; x2=2r+12s+16t-5u; x3=r; x4=s; x5=t; x6=u Or So that nullity(A)=4. 1 2 3 4 5 6 4 28 37 13 2 12 16 5 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 x x x r s t u x x x −                   −                    = + + +                                                         
  • 22. Theorem  If A is any matrix, then rank(A)= rank(AT ).
  • 23. Theorem 5.6.3 Dimension Theorem for Matrices  If A is a matrix with n columns, then rank(A)+nullity(A)=n
  • 24. Theorem  If A is an m×n matrix, then: a) rank(A)=the number of leading variables in the solution of Ax=0. b) nullity(A)=the number of parameters in the general solution of Ax=0.
  • 25. Example 2 The Sum of Rank and Nullity  The matrix has 6 columns, so rank(A)+nullity(A)=6 This is consistent with Example 1, where we should showed that rank(A)=2 and nullity(A)=4 1 2 0 4 5 3 3 7 2 0 1 4 2 5 2 4 6 1 4 9 2 4 4 7 A − −   − =  −   − − − 
  • 26. References:  Textbook of Vector Calculus and Linear Algebra (Atul Publications) Note: All the excerpts taken from the respective book were used only for academic purpose. NO commercial purpose was entertained.