Definición de Función:
es un tipo de relación (correspondencia)
que existe entre dos variables, con la
condición que a cada valor de la variable
independiente (Dominio) le corresponde
un sólo valor de la variable dependiente
( Rango).
Elementos para definir una Función
• Para construir una función es necesario tener dos
conjuntos D y R y una regla de correspondencia, como se
ilustra en el siguiente diagrama.
Dominio Rango
D R
Regla de
correspondencia
Elementos para poder definir
a una función
x y=f(x)
Variable
Independiente
Variable
Dependiente
f
Características de una función
• Dominio:Conjunto de valores que pueden asignarse a
la variable independiente (x) para los cuales la función
existe o está definida.
• Rango:Conjunto de valores que puede tomar la
variable dependiente (y) en una función.
• Valores positivos y negativos:
• Ceros de la función o intersección con el eje “x”
• Intersección con el eje “y”
• Máximos y mínimos.
• Concavidad ( Hacia arriba o hacia abajo)
• Asíntotas horizontales y verticales.
Función
Ejemplos:
1. Encontrar el dominio y el rango de la función:
f = {(1, 4), (3, 6), (5, 8), (7, 10)}
Solución:
El dominio de la función es el conjunto formado por los primeros componentes de los pares
ordenados, es decir:
A = {1, 3, 5, 7}
El rango de la función es el conjunto formado por los segundos componentes de los pares
ordenados, es decir:
C = {4, 6, 8, 10}
Clasificación de una función
Algebraica
Irracional
Funciones
Trigonométrica
Trascendente Logarítmica
Exponencial
Polinomial
Racional
Función algebraica
• Es aquella que puede expresarse como un número
finito de sumas, diferencias, múltiplos, cocientes y
radicales que contienen
• Algunos ejemplos son:
n
x
5 2
5
1
2
2
2
4
2
4
)
(
1
3
2
)
(
6
2
)
(
8
5
2
3
)
(
x
x
x
x
x
f
x
x
x
h
x
x
x
g
x
x
x
f
I. Función Lineal
• Es de la forma f(x) = mx + n
con m : Pendiente
n : Ordenada del punto de intersección entre la recta y el eje Y
(coeficiente de posición).
Ejemplo:
La función f(x) = 5x – 3, tiene pendiente 5 e intersecta al eje Y en la
ordenada -3.
I. Función Lineal
• Análisis de la Pendiente
Para saber con qué tipo de función se está trabajando, se debe analizar el
signo de la pendiente.
• Si m < 0, entonces la función es decreciente.
• Si m = 0, entonces la función es constante.
• Si m > 0, entonces la función es creciente.
I. Función Lineal
I) II)
X
Y
n
m > 0
n > 0
X
Y
n m < 0
n > 0
X
Y
n
m > 0
n < 0
X
Y
n
m < 0
n < 0
III) IV)
2. Función Polinomial
• Función polinomial: Las funciones polinomiales tienen la siguiente
notación:
n
grado
de
reales
es
coeficient
con
y
a
con
a
x
a
x
a
x
a
x
f
n
n
n
n
n
0
......
)
( 0
1
1
1
3. Función Racional
• Es aquella que puede escribirse como el cociente de
dos polinomios. De modo específico, una función es
racional si tiene la forma:
• y
0
)
(
;
)
(
)
(
)
(
x
q
donde
x
q
x
p
x
f
polinomios
son
x
q
x
p )
(
),
(
5. Función trascendente
• Son todas aquellas funciones que además de contener las
operaciones aritméticas básicas, contienen los operadores
trigonométricos, logarítmicos y exponenciales. Por ejemplo:
1
2
2
)
(
)
1
ln(
)
(
4
2
)
(
x
x
h
x
x
g
senx
x
f
Formas de Representar a una Función
a) En forma de enunciado:
Por ejemplo: El área de un círculo es igual a pi por su radio al cuadrado.
b) Fórmula o Ecuación:
c) Tabulación:
2
r
A
radio Área
r1 A1
r2 A2
r3 A3
r4 A4
. .
. .
rn An
Formas de Representar a una Función
e) En forma de conjunto:
Dominio Rango
r1
r2
r3
r4
.
.
.
rn
A1
A2
A3
A4
.
.
.
An
Regla de
correspondencia
Variable
Independiente
Variable
Dependiente
Función lineal como caso particular de función
polinomial
• Función lineal: Las funciones lineales representan
gráficamente una recta, y son de la forma f(x)=mx+b,
donde m es la pendiente de la recta y b es el valor de
la ordenada al origen o la intersección con el eje “y”.
1
2
1
2
x
x
y
y
m
Función Cuadrática(como caso particular de función
polinomial)
• Las funciones cuadráticas son aquellas cuya
característica principal es que su grado máximo es 2 y
son de la forma:
)
(
)
(
)
(
)
(
:
,
0
0
0
,
,
2
2
2
pura
función
c
ax
x
f
o
mixta
función
bx
ax
x
f
forma
la
tiene
y
incompleta
es
función
la
entonces
c
bien
o
b
si
a
con
reales
números
son
c
b
a
donde
c
bx
ax
f(x)
Función exponencial
• Las funciones exponenciales generalmente tienen la
forma:
• La definición de función exponencial exige que la base
sea siempre positiva y diferente de uno.
variable
una
es
y
exponente
denomina
y
constante
:
)
(
le
se
x
una
es
y
base
llama
le
se
a
donde
a
x
f x
Función exponencial
• El dominio de la función exponencial está formado
por el conjunto de los números reales y su rango esta
representado por el conjunto de los números
positivos. Con base en esto observamos las
propiedades:
1. La función existe para cualquier valor de x.
2. En todos los casos la función pasa por un punto fijo (0,1).
3. Los valores de la función son siempre positivos para
cualquier valor de x.
4. La función siempre es creciente o decreciente ( para
cualquier valor de x) dependiendo de los valores de la
base “a”. La función es creciente si a>1, y es decreciente
si 0<a<1
5. El eje x es una asíntota ( hacia la izquierda si a>1 y hacia la
derecha si a<1
A continuación se presentan algunas gráficas de funciones
exponenciales:
Función Logaritmo
• La función logaritmo tiene la forma
• Donde a se llama base y es un número real positivo
distinto de uno.
• La función logaritmo de base se define como la inversa
de la función exponencial, es decir; el logaritmo de
base “a” de un número “x” es el exponente al cual
debe elevarse la base “a” para obtener el mismo
número “x”.
x
y a
log
x
a
x
y y
a
log
Función
Ejemplos:
2. Encontrar el dominio y rango de la función f (x) = - 2x + 1
Solución:
En este caso se observa que la x se puede sustituir por cualquier número real para realizar las operaciones que se indica
en la regla de correspondencia y obtener su respectiva imagen. Por tanto, el dominio de la función es A = ℝ .
Como f (x) = y la regla de correspondencia de la función se expresa de la siguiente manera
y = - 2x + 1
Despejando x se expresa.
y + 2x = 1
x = (1 – y) / 2
Donde y puede tomar cualquier valor real y en consecuencia el rango de la función es C = ℝ , que, en este caso, es igual al
contradominio B.
Función
Recursos adicionales para el trazo de gráficas
Cuando se traza una gráfica por puntos se debe localizar un número suficiente de ellos para que el diseño de la gráfica sea
muy claro.
Entre otros recursos adicionales, para el trazo de una gráfica se puede utilizar:
a) Las intersecciones con los ejes
b) Las simetrías.
Intersecciones con los ejes
En el plano coordenado rectangular, el eje x tiene por ecuación y = 0 mientras que el eje y tiene por ecuación x = 0.
Aplicando el teorema fundamental de la geometría analítica a una ecuación, las intersecciones de ésta con los ejes
coordenados se obtiene resolviendo el sistema de ecuaciones que se forma con la ecuación dada y la ecuación de cada eje.
En la práctica esto equivale a sustituir x = 0 en la ecuación dada y despejar y para obtener las intersecciones con el eje y; a
sustituir y = 0 en la ecuación dada y despejar x para obtener las intersecciones con el eje x.
Función
Ejemplos:
1. Encontrar las intersecciones de 2x + 3y – 6 = 0 con los ejes coordenados.
Solución:
La ecuación es de la forma Ax + By + C = 0. Por geometría analítica se sabe que dicha forma corresponde a una línea
recta.
La gráfica interseca al eje x cuando y = 0, es decir, si
2x + 3y – 6 = 0
Entonces:
2x + 3(0) – 6 = 0
donde:
2x – 6 = 0
Despejando x se obtiene:
2x = 6
x = 6 / 2
x = 3
Por tanto, la gráfica pasa por el punto (3, 0).
Función
La gráfica interseca al eje y cuando x = 0, es decir, si:
2x + 3y – 6 = 0
Entonces:
2(0) + 3y – 6 = 0
De donde:
3y – 6 = 0
Despejando y:
3y = 6
y = 6 / 3
y = 2
Por tanto, la gráfica pasa por el punto de coordenadas (0, 2). Entonces la línea recta cuya ecuación es 2x + 3y – 6 = 0 queda
determinada por los puntos (3, 0) y (0, 2).
Propiedades de la función logaritmo
Para a>1
• Su dominio son todos los números reales positivos.
• Su rango son todos los números reales
• Son continuas y crecientes en todo su dominio.
• Su gráfica siempre pasa por el punto (1,0) y (a,1).
• El eje “y” es una asíntota vertical
• La función es negativa para valores de “x” menores
que 1
• La función es positiva para valores de “x” mayores
que 1
Propiedades de la función logaritmo
Para 0<a<1
• Su dominio son todos los números reales positivos.
• Su rango son todos los números reales
• Son continuas y decrecientes en todo su dominio.
• Su gráfica siempre pasa por el punto (1,0) y (a,1).
• El eje “y” es una asíntota vertical
• La función es negativa para valores de “x” mayores
que 1
• La función es positiva para valores de “x” menores
que 1