Distribuição binomial, poisson e hipergeométrica - Estatística I

17.900 visualizações

Publicada em

Aula de Estatística

Publicada em: Educação
4 comentários
10 gostaram
Estatísticas
Notas
Sem downloads
Visualizações
Visualizações totais
17.900
No SlideShare
0
A partir de incorporações
0
Número de incorporações
51
Ações
Compartilhamentos
0
Downloads
341
Comentários
4
Gostaram
10
Incorporações 0
Nenhuma incorporação

Nenhuma nota no slide

Distribuição binomial, poisson e hipergeométrica - Estatística I

  1. 1. CURSO DE ESTATÍSTICA I Ricardo Bruno N. dos Santos FACECON-PPGE (UFPA)
  2. 2. Distribuição Binomial, Poisson e Hipergeométrica
  3. 3. DISTRIBUIÇÕES DISCRETAS DISTRIBUIÇÕES DISCRETAS: Imagine uma situação na qual somente podem ocorrer dois possíveis resultados, “sucesso” e “fracasso”. Veja alguns exemplos: - uma venda é efetuada ou não em uma ligação de call center; - um contribuinte pode ser adimplente ou inadimplente; - uma guia recolhida pode ter seu preenchimento ocorrido de forma correta ou incorreta; e - um consumidor que entra em uma loja pode comprarou não comprar um produto.
  4. 4. DISTRIBUIÇÕES DISCRETAS Essas situações correspondem à Distribuição de Bernoulli. Ou seja, se associarmos uma variável aleatória x aos possíveis resultados do experimento de forma que X=1 se o resultado for “sucesso” e X=0 se o resultado for “fracasso”, então, a variável aleatória X, assim definida, tem Distribuição de Bernoulli, com p sendo a probabilidade de ocorrer “sucesso” e q = (1-p) a probabilidade de ocorrer “fracasso”. Ampliando a discussão, é importante frisar que a função de probabilidade da Distribuição de Bernoulli é dada por: 𝑷 𝑿 = 𝒙 = 𝑝 para 𝑥 = 1 𝑞 = 1 − 𝑝 para 𝑥 = 0 0 para 𝑥 diferente de 0 ou 1
  5. 5. DISTRIBUIÇÕES DISCRETAS Dessa forma, a média e a variância serão obtidas por: Média = 𝑝 (onde p corresponde à probabilidade de sucesso). Variância = 𝑝 × 𝑞 (onde q corresponde à probabilidade de fracasso). Essa obtenção da estimativa de média e desvio padrão é importante, pois, tais medidas, podem ser usadas para caracterizar a situação e também para a definição da média e do desvio padrão da distribuição binomial que será vista posteriormente.
  6. 6. DISTRIBUIÇÕES DISCRETAS Contextualizando a Distribuição de Bernoulli, tem-se a seguinte situação: a experiência tem mostrado que até fevereiro o motorista que é parado em uma blitz tem 60% de chance de estar adimplente em relação ao Imposto sobre a Propriedade de Veículos Automotores (IPVA). Temos, portanto, uma probabilidade de sucesso (o motorista não estar devendo o IPVA) de 0,6 e uma probabilidade de estar devendo de 0,4 (vem da diferença 𝒒 = 𝟏 – 𝟎, 𝟔).
  7. 7. DISTRIBUIÇÃO BINOMIAL Para que uma situação possa se enquadrar em uma distribuição binomial, deve atender as seguintes condições: - são realizadas n repetições (tentativas) independentes; - cada tentativa é uma prova de Bernoulli (somente podem ocorrer dois possíveis resultados); e - a probabilidade 𝑝 de sucesso em cada prova é constante. Se uma situação atende a todas as condições anteriores, então a variável aleatória 𝑋 = número de sucessos obtidos nas 𝑛 tentativas terá uma distribuição binomial com 𝑛 tentativas e 𝑝 probabilidades de sucesso.
  8. 8. DISTRIBUIÇÃO BINOMIAL O problema da loja de Roupas do Martin Considere as decisões de compra dos próximos três clientes que entram na loja de roupas do Martin. Com base em experiências passadas, o gerente da loja estima que a probabilidade de que qualquer um dos clientes comprará é de 0,30. Qual é a probabilidade de que dois primeiros dos próximos três clientes realizarão a compra?
  9. 9. DISTRIBUIÇÃO BINOMIAL Usando um diagrama de Árvore para identificar tal situação temos:
  10. 10. DISTRIBUIÇÃO BINOMIAL Verificando as quatro exigências para um experimento binomial, nota-se que: 1 – São realizadas 3 repetições (tentativas) independentes; 2 – Cada uma das tentativas é uma prova de Bernoulli compra (sucesso) ou o cliente não faz a compra (fracasso); 3 – A probabilidade p de sucesso em cada prova é constante, pois 𝑝 = 0,30 e 1 − 𝑝 = 0,70 é a mesma para todos os clientes. O número de resultados experimentais resultado em exatamente x sucessos e n ensaios pode ser calculado a partir da combinação, onde (para 3 sucesso tem-se): 𝐶 𝑥 𝑛 = 𝑛 𝑥 = 𝑛! 𝑥! 𝑛 − 𝑥 ! = 3! 3! 3 − 3 ! = 3 2 1 3 2 1 1 = 6 6 = 1
  11. 11. DISTRIBUIÇÃO BINOMIAL A probabilidade de compra pelos primeiros dois clientes e de não- compra pelo terceiro é dada por: 𝑝𝑝 1 − 𝑝 𝑝𝑝 1 − 𝑝 = 0,30 0,30 0,70 = 0,063 Duas outras sequências de resultados seguem-se em dois sucessos e em um fracasso. As probabilidades para as três sequências, envolvendo dois sucessos, são mostradas abaixo:
  12. 12. DISTRIBUIÇÃO BINOMIAL Simbolicamente, temos: 𝑋 ~ 𝐵 (𝑛, 𝑝) com a interpretação: A variável aleatória 𝑋 tem distribuição binomial (𝐵) com 𝑛 ensaios e uma probabilidade p de sucesso (em cada ensaio). A função binomial de probabilidade é expressa como: 𝑷 𝑿 = 𝒙 = 𝑪 𝒙 𝒏 𝒑 𝒙 𝟏 − 𝒑 𝒏−𝒙 𝑷(𝑿 = 𝒙) – é a probabilidade de 𝑥 sucessos em 𝑛 ensaios; 𝒏 – é o número de ensaios; 𝑝 é probabilidade de “sucesso” em cada ensaio; 𝑞 = 1 − 𝑝 é a probabilidade de “fracasso” em cada ensaio; 𝐶 𝑥 𝑛 = 𝑛 𝑥 = 𝑛! 𝑥! 𝑛−𝑥 ! - combinação de 𝑛 valores tomados de 𝑥 a 𝑥.
  13. 13. DISTRIBUIÇÃO BINOMIAL Fazendo o gráfico da probabilidade contra o número de ensaios tem-se:
  14. 14. DISTRIBUIÇÃO BINOMIAL Faça a aplicação aumentando no R o número de ensaios, o que acontece? A programação no R segue abaixo: bino < - dbinom(0:3, 3, 0.3) # valores das probabilidades bino # expõe todas os resultados possíveis da probabilidade plot (0:3, #intervalo desejado bino, #valores de probabilidade type=“h”, # traços do eixo x xlab=“valores de x”, #Nomenclatura do eixo de x ylab=“prob. X”, #Texto do eixo de y main=“Distr. Binomial de x) #Título do gráfico
  15. 15. DISTRIBUIÇÃO BINOMIAL A média e variância para a distribuição binomial podem ser calculadas da seguinte forma: Média = μ = 𝑛𝑝 Variância= 𝑉𝑎𝑟 𝑥 = 𝜎2 = 𝑛𝑝(1 − 𝑝) Para o problema teríamos: 𝜇 = 3 0,3 = 0,9 𝜎2 = 3 0,3 0,7 = 0,63 𝜎 = 𝜎2 = 0,79 No próximo slide temos a tabela da binomial, localize a probabilidade para n=10, x=3, p=0,4
  16. 16. DISTRIBUIÇÃO BINOMIAL Tabela da Binomial (Localizar n=10, x=3, p=0,4)
  17. 17. DISTRIBUIÇÃO BINOMIAL Mais um exemplo: Em uma determinada repartição pública, 10% das guias preenchidas estão incorretas. Essas guias correspondem a uma liberação na qual cinco guias devem estar preenchidas conjuntamente. Considere que cada guia tem a mesma probabilidade de ser preenchida incorretamente (como se houvesse repetição no experimento de retirar guias). a) Qual a probabilidade de haver exatamente três guias incorretas nas cinco guias para liberação? 𝑃 𝑋 = 3 = 𝐶5 3 0,1 3 0,9 2 = 0,0081 b) Qual a probabilidade de haver duas ou mais guias incorretas nas cinco guias para liberação? 𝑃 𝑋 ≥ 2 = 𝑃 𝑋 = 2 + 𝑃 𝑋 = 3 + 𝑃 𝑋 = 4 + 𝑃 𝑋 = 5 = 1 − 𝑃 𝑋 = 0 + 𝑃 𝑋 = 1 = 1 − 𝐶0 5 0,1 0 0,9 5 + 𝐶1 5 0,1 1 0,9 4 = 1 − 0,5905 + 0,3281 = 0,0815 c) Qual a probabilidade de um conjunto de cinco guias não apresentar nenhuma guia incorreta? 𝑃 𝑋 = 0 = 𝐶0 5 0,1 0 0,9 5 = 0,5905
  18. 18. DISTRIBUIÇÃO POISSON Você pode empregar a Distribuição de Poisson em situações nas quais não se está interessado no número de sucessos obtidos em n tentativas, como ocorre no caso da distribuição binomial, entretanto, esse número de sucessos deve estar dentro de um intervalo contínuo, ou seja, o número de sucessos ocorridos durante um intervalo contínuo, que pode ser um intervalo de tempo, espaço etc. Imagine que você queira estudar o número de suicídios ocorridos em uma cidade durante um ano ou o número de acidentes automobilísticos ocorridos em uma rodovia em um mês ou o número de defeitos encontrados em um rolo de arame ovalado de 500m. Essas situações são exemplos daquelas que se enquadram na DISTRIBUIÇÃO DE POISSON.
  19. 19. DISTRIBUIÇÃO POISSON Note que nos exemplos anteriores não há como você determinar a probabilidade de ocorrência de um sucesso, mas sim a frequência média de sua ocorrência, como dois suicídios por ano, que denominaremos . Em uma situação com essas características, a variável aleatória 𝑋 = número de sucessos em um intervalo contínuo, terá uma Distribuição Poisson, com  (frequência média de sucesso). Simbolicamente, podemos utilizar a notação 𝑿 ~ 𝑷(). Assim: A variável aleatória 𝑋 tem uma Distribuição de Poisson (𝑃) com uma frequência média de sucesso .
  20. 20. DISTRIBUIÇÃO POISSON A função de probabilidade da Distribuição de Poisson será dada por meio da seguinte expressão: 𝑃 𝑋 = 𝑥 = 𝑒−𝜇 𝜇 𝑥 𝑥! Lembrando que: 𝑃 𝑋 = 𝑥 - Probabilidade de 𝑥 ocorrências em um intervalo e =2,7182 (base dos logaritmos neperianos); e  corresponde a frequência média de sucesso no intervalo contínuo que se deseja calcular a probabilidade.
  21. 21. DISTRIBUIÇÃO POISSON Exemplo: A análise dos dados dos últimos anos de uma empresa de energia elétrica forneceu o valor médio de um blecaute por ano. Pense na probabilidade de isso ocorrer no próximo ano: a) Nenhum blecaute. b) De 2 a 4 blecautes. c) No máximo 2 blecautes. Observe que o exemplo afirma que a cada ano acontece em média um blecaute, ou seja, o número de sucesso ocorrido em um intervalo contínuo. Verificamos que a variável tem Distribuição Poisson: 𝑃 𝑋 = 𝑥 = 𝑒−𝜇 𝜇 𝑥 𝑥!
  22. 22. DISTRIBUIÇÃO POISSON Veja que aqui não é necessário fazer regra de três, pois as perguntas são no intervalo de um ano. Então:  = 1 𝑎) 𝑃 𝑥 = 0 = 𝑒−1 1 0 0! = 0,3679 1 1 = 0,3679 𝑏) 𝑃 𝑥 = 2 + 𝑃 𝑥 = 3 + 𝑃 𝑥 = 4 = 𝑒−1 1 2 2! + 𝑒−1 1 3 3! + 𝑒−1 1 4 4! = 0,1839 + 0,061 + 0,015 = 0,2599
  23. 23. DISTRIBUIÇÃO POISSON 𝑐) como já temos os valores de 𝑥 = 0 𝑒 𝑥 = 2 basta calcular o valor para 𝑥 = 1 𝑃 𝑥 = 1 = 𝑒−1 1 1 1! = 0,3679 𝑃 𝑥 ≤ 2 = 𝑃 𝑥 = 0 + 𝑃 𝑥 = 1 + 𝑃 𝑥 = 2 = 0,3679 + 0,3679 + 0,1839 = 0,9197 Vejamos a mesma aplicação no R Vamos usar a função dpois()
  24. 24. DISTRIBUIÇÃO POISSON Uma característica da Distribuição de Poisson é que as estatísticas da distribuição (média e variância) apresentam o mesmo valor, ou seja, são iguais a  . Então, teremos: 𝑀é𝑑𝑖𝑎 = 𝑉𝑎𝑟𝑖â𝑛𝑐𝑖𝑎 = 𝜇 No próximo Slide temos a apresentação da Tabela de Poisson, onde está destacada a probabilidade para 𝜇 = 10, 𝑥 = 5
  25. 25. DISTRIBUIÇÃO POISSON
  26. 26. DISTRIBUIÇÃO HIPERGEOMÉTRICA A DISTRIBUIÇÃO HIPERGEOMÉTRICA é uma distribuição de probabilidade discreta que descreve a probabilidade de se retirar 𝑥 elementos do tipo 𝐴 numa sequência de 𝑛 extrações de uma população finita de tamanho 𝑁, com 𝑟 elementos do tipo 𝐴 e 𝑁 − 𝑟 elementos do tipo 𝐵, sem reposição. Seja um conjunto com 𝑁 elementos tal que existem 𝑟 elementos do tipo 𝐴 e 𝑁 − 𝑟 elementos do tipo 𝐵. Um conjunto de 𝑛 elementos é selecionado, aleatoriamente e sem reposição, do conjunto de 𝑁 elementos. A variável aleatória 𝑋 denota o número de elementos tipo 𝐴. Então, 𝑋 tem distribuição hipergeométrica e
  27. 27. DISTRIBUIÇÃO HIPERGEOMÉTRICA 𝑃 𝑋 = 𝑥|𝑁, 𝑟, 𝑛 = 𝑟 𝑥 𝑁−𝑟 𝑛−𝑥 𝑁 𝑛 = 𝐶 𝑥 𝑟 𝐶 𝑛−𝑥 𝑁−𝑟 𝐶 𝑛 𝑁 , 𝑝𝑎𝑟𝑎 0 ≤ 𝑥 ≤ 𝑟 𝑃 𝑋 = 𝑥|𝑁, 𝑟, 𝑛 - Probabilidade de 𝑥 sucessos em n ensaios; 𝑛 – Número de ensaios; 𝑁 – número de elementos na população; 𝑟 – Número de elementos na população rotulados de sucesso.
  28. 28. DISTRIBUIÇÃO HIPERGEOMÉTRICA Um jogo de loteria consiste em selecionar seis dezenas do conjunto de cem dezenas de 00 a 99, com uma bola para cada dezena e sem reposição. Num volante (cartão aposta) o jogador pode escolher de 6 a 12 dezenas. Qual é a probabilidade de acertar- se a quina (5 dezenas) marcando-se 10 dezenas no volante? N: total de dezenas, N = 100 n: total de dezenas sorteadas/escolhidas pelo jogador), n = 10 r: total de dezenas premiadas, r = 6 X: total de sucessos, queremos X = 5 𝑃 𝑋 = 5 100,6,10 = 𝐶5 6 𝐶10−5 100−6 𝐶10 100 = 252 × 90 1.192.052.400 = 0,000019
  29. 29. DISTRIBUIÇÃO HIPERGEOMÉTRICA Com relação a média e a variância da mesma temos: 𝜇 = 𝑛 𝑟 𝑁 𝜎2 = 𝑁−𝑛 𝑁−1 𝑛 𝑟 𝑁 1 − 𝑟 𝑁

×