SlideShare uma empresa Scribd logo
1 de 92
EEEC4340318 INSTRUMENTATION AND CONTROL SYSTEMS
System Models
FACULTY OF ENGINEERING AND COMPUTER TECHNOLOGY
DIPLOMA IN ELECTRICALAND ELECTRONIC ENGINEERING
Ravandran Muttiah BEng (Hons) MSc MIET
1
Differential Equation Models
β€’ Most of the systems that we will deal with are dynamic
β€’ Differential equations provide a powerful way to describe
dynamic systems
β€’ Will form the basis of our models
β€’ We saw differential equations for inductors and capacitors.
β€’ What about mechanical systems?
both translational and rotational
2
Translational Spring
𝐹 𝑑 : resultant force in direction π‘₯
Recall free body diagrams and β€œaction and reaction”
β€’ Spring. π‘˜: spring constant, 𝐿r: relaxed length of spring
𝐹 𝑑 = π‘˜ π‘₯2 𝑑 βˆ’ π‘₯1 𝑑 βˆ’ 𝐿r
π‘₯ π‘₯1 𝑑 π‘₯2 𝑑
𝐹 𝑑
3
Translational Damper
𝐹 𝑑 : resultant force in direction π‘₯
β€’ Viscous damper. 𝑏: viscous friction coefficient
𝐹 𝑑 = 𝑏
dπ‘₯2 𝑑
d𝑑
βˆ’
dπ‘₯1 𝑑
d𝑑
= 𝑏 𝑣2 𝑑 βˆ’ 𝑣1 𝑑
π‘₯ π‘₯1 𝑑 π‘₯2 𝑑
𝐹 𝑑
4
Mass
𝐹 𝑑 : resultant force in direction π‘₯
β€’ Mass: 𝑀
𝐹 𝑑 = 𝑀
d2
π‘₯m 𝑑
d𝑑2
= 𝑀
d𝑣m 𝑑
d𝑑
= π‘€π‘Žm 𝑑
π‘₯
π‘₯m 𝑑
𝐹 𝑑
5
Rotational Spring
𝑇 𝑑 : resultant force in direction πœƒ
β€’ Rotational spring. π‘˜: rotational spring constant,
βˆ…r: rotation of relaxed spring
𝑇 𝑑 = π‘˜ πœƒ2 𝑑 βˆ’ πœƒ1 𝑑 βˆ’ βˆ…r
πœƒ
πœƒ1 𝑑 πœƒ2 𝑑 𝑇 𝑑
6
Rotational Damper
𝑇 𝑑 : resultant torque in direction πœƒ
β€’ Rotational viscous damper.
𝑏: rotational viscous friction coefficient
πœƒ
πœƒ1 𝑑 πœƒ2 𝑑 𝑇 𝑑
𝑇 𝑑 = 𝑏
dπœƒ2 𝑑
d𝑑
βˆ’
dπœƒ1 𝑑
d𝑑
= 𝑏 πœ”2 𝑑 βˆ’ πœ”1 𝑑
7
Rotational Inertia
𝑇 𝑑 : resultant torque in direction πœƒ
β€’ Rotational inertia: 𝐽
πœƒ
πœƒm 𝑑 𝑇 𝑑
𝑇 𝑑 = 𝐽
d2
πœƒm 𝑑
d𝑑2
= 𝐽
dπœ”m 𝑑
d𝑑
= 𝐽𝛼m 𝑑
8
Translational
Horizontal. Origin for y: y = 0 when spring relaxed
𝐹 = 𝑀
d𝑣 𝑑
d𝑑
𝑣 𝑑 =
d𝑦 𝑑
d𝑑
𝐹 𝑑 = π‘Ÿ 𝑑 βˆ’ 𝑏
d𝑦 𝑑
d𝑑
βˆ’ π‘˜π‘¦ 𝑑
𝑀
d2
𝑦 𝑑
d𝑑
+ 𝑏
d𝑦 𝑑
d𝑑
+ π‘˜π‘¦ 𝑑 = π‘Ÿ 𝑑
Mass
𝑀
Wall
Friction, 𝑏
y
π‘˜
π‘Ÿ 𝑑
Force
𝑀
π‘˜π‘¦
𝑏𝑦
π‘Ÿ 𝑑
y
Figure 1
9
Mass
𝑀
Wall
Friction, 𝑏
y
π‘˜
π‘Ÿ 𝑑
Force
𝑀
π‘˜π‘¦
𝑏𝑦
π‘Ÿ 𝑑
y
β€’ Stretch the spring a little and hold.
β€’ Assume an under-damped system.
β€’ What happens when we let it go?
Figure 2
10
β€’ Nature does not have many linear systems.
β€’ However, many systems behave approximately linearly in the
neighbourhood of a given point.
β€’ Apply first-order Taylor’s Series at a given point.
β€’ Obtain a locally linear model.
β€’ In this course we will focus on the case of a single linearized
differential equation model for the system, in which the
coefficients are constants.
β€’ e.g., in previous examples mass, viscosity and spring constant
did not change with time, position, velocity, temperature, etc.
Taylor’s Series
11
Pendulum Example
Assume shaft is light with respect to 𝑀, and stiff with respect to
gravitational forces.
Torque due to gravity: 𝑇 πœƒ = 𝑀𝑔𝐿 sin πœƒ
Apply Taylor’s series around πœƒ = 0:
𝑇 πœƒ = 𝑀𝑔𝐿 πœƒ βˆ’
πœƒ3
3!
+
πœƒ5
5!
βˆ’
πœƒ7
7!
+ β‹―
For small πœƒ around πœƒ = 0 we can build an approximate model that
is linear,
𝑇 πœƒ β‰ˆ π‘€π‘”πΏπœƒ
12
πœƒ
𝑇
πœƒ
βˆ’Ο€
βˆ’
Ο€
2
Ο€
2
Ο€
Figure 3
Length 𝑇
Mass 𝑀
13
Laplace Transform
Once we have a linearised differential equation (with constant
coefficients) we can take Laplace Transforms to obtain the transfer
function.
We will consider the β€œone-sided” Laplace transform, for signals
that are zero to the left of the origin.
𝐹 𝑠 =
0βˆ’
∞
𝑓 𝑑 eβˆ’π‘ π‘‘
d𝑑
What does
∞
mean ? limπ‘‡β†’βˆž
𝑇
.
Does this limit exist ?
If 𝑓 𝑑 < 𝑀e𝛼𝑑
, then exists for all Re 𝑠 > 𝛼.
Includes all physically realisable signals.
Note: When multiplying transfer function by Laplace of input,
output is only valid for values of 𝑠 in intersection of regions of
convergence.
14
Poles And Zeros
In this course, most Laplace transforms will be rational functions,
that is, a ratio of two polynomials in 𝑠; i.e.,
𝐹 𝑠 =
𝑛F 𝑠
𝑑F 𝑠
where 𝑛F 𝑠 and 𝑑F 𝑠 are polynomials.
Definitions:
- Poles of 𝐹 𝑠 are the roots of 𝑑F 𝑠
- Zeros of 𝐹 𝑠 are the roots of 𝑛F 𝑠
Hence,
𝐹 𝑠 =
𝐾F 𝑖=1
𝑀
𝑠 + 𝑧𝑖
𝑗=1
𝑛
𝑠 + 𝑝𝑗
=
𝐾F 𝑖=1
𝑀
𝑧𝑖
𝑗=1
𝑛
𝑝𝑗
𝑖=1
𝑀 𝑠
𝑧𝑖 + 1
𝑗=1
𝑛 𝑠
𝑝𝑗 + 1
where βˆ’π‘§π‘– are the zeros and βˆ’π‘π‘— are the poles.
15
Visualising Poles And Zeros
Consider the simple Laplace transform 𝐹 𝑠 =
𝑠 𝑠+3
𝑠2+2𝑠+5
zeros: 0, βˆ’3; poles: βˆ’1 + j2, βˆ’1 βˆ’ j2
Figure 4: Pole-zero plot (left) and magnitude of 𝐹 𝑠 right
16
𝐹 𝑠 from above (left) and previous view of 𝐹 𝑠 right.
Figure 5
17
Laplace Transforms Pairs
Simple ones can be computed analytically;
For more complicated ones, one can typically obtain the inverse
Laplace transform by:
- Identifying poles;
- Constructing partial fraction expansion;
- Using of properties and some simple pairs to invent each
component of partial fraction expansion.
18
Figure 6
Recall that complex poles come in conjugate pairs
19
Key Properties
Linearity,
d𝑓 𝑑
d𝑑
↔ 𝑠𝐹 𝑠 βˆ’ 𝑓 0βˆ’
βˆ’βˆž
𝑑
𝑓 π‘₯ dπ‘₯ ↔
𝐹 𝑠
𝑠
+
1
𝑠 βˆ’βˆž
0βˆ’
𝑓 π‘₯ dπ‘₯
20
Final Value Theorem
Can we avoid having to do an inverse Laplace transform ?
Sometimes.
Consider the case when we only want to find the final value of
𝑓 𝑑 , namely limπ‘‘β†’βˆžπ‘“ 𝑑 .
If 𝐹 𝑠 has all its poles in the left half plane, except, perhaps, for a
single pole at the origin, then,
lim
π‘‘β†’βˆž
𝑓 𝑑 = lim
𝑠→0
𝑠𝐹 𝑠
Common application: Steady state value of step response.
What if there are poles in Right Half Plane (RHP), or on the jπœ” -
axis and not at the origin ?
21
Mass-Spring-Damper System
Horizontal (no gravity)
Set origin of 𝑦 where spring is β€œrelaxed”
𝐹 = 𝑀
d𝑣 𝑑
d𝑑
𝑣 𝑑 =
d𝑦 𝑑
d𝑑
𝐹 𝑑 = π‘Ÿ 𝑑 βˆ’ 𝑏
d𝑦 𝑑
d𝑑
βˆ’ π‘˜π‘¦ 𝑑 𝑀
d2
𝑦 𝑑
d𝑑
+ 𝑏
d𝑦 𝑑
d𝑑
+ π‘˜π‘¦ 𝑑 = π‘Ÿ 𝑑
Mass
𝑀
Wall
Friction, 𝑏
y
π‘˜
π‘Ÿ 𝑑
Force
𝑀
π‘˜π‘¦
𝑏𝑦
π‘Ÿ 𝑑
y
Figure 7
22
𝑀
d2
𝑦 𝑑
d𝑑
+ 𝑏
d𝑦 𝑑
d𝑑
+ π‘˜π‘¦ 𝑑 = π‘Ÿ 𝑑
Consider 𝑑 β‰₯ 0 and take Laplace transform.
𝑀 𝑠2
π‘Œ 𝑠 βˆ’ 𝑠𝑦 0βˆ’
βˆ’
d𝑦 𝑑
d𝑑 𝑑=0βˆ’
+ 𝑏 π‘ π‘Œ 𝑠 βˆ’ 𝑦 0βˆ’1
+ π‘˜π‘Œ 𝑠 = 𝑅 𝑠
Hence,
π‘Œ 𝑠 =
1
𝑀
𝑠2 +
𝑏
𝑀
𝑠 +
π‘˜
𝑀
𝑅 𝑠 +
𝑠 +
𝑏
𝑀
𝑠2 +
𝑏
𝑀
𝑠 +
π‘˜
𝑀
𝑦 0βˆ’
+
1
𝑠2 +
𝑏
𝑀
𝑠 +
π‘˜
𝑀
d𝑦(𝑑)
d𝑑
𝑑=0βˆ’
Note that linearity yields superposition.
23
Response To Static Initial Condition
Spring stretched to a point 𝑦0, held, then let go at time 𝑑 = 0
Hence, π‘Ÿ 𝑑 = 0 and
d𝑦 𝑑
d𝑑 𝑑=0
= 0
Hence,
π‘Œ 𝑠 =
𝑠 +
𝑏
𝑀
𝑠2 +
𝑏
𝑀
𝑠 +
π‘˜
𝑀
𝑦0
What can we learn about this response without having to invert π‘Œ 𝑠
24
Standard Form
π‘Œ 𝑠 =
𝑠 +
𝑏
𝑀
𝑠2 +
𝑏
𝑀
𝑠 +
π‘˜
𝑀
𝑦0
=
𝑠 + 2πœπœ”π‘›
𝑠2 + 2πœπœ”π‘›π‘  + πœ”π‘›
2 𝑦0
where πœ”π‘› =
π‘˜
𝑀
and 𝜁 =
𝑏
2 π‘˜π‘€
Poles: 𝑠1, 𝑠2 = βˆ’πœπœ”π‘› Β± πœ”π‘› 𝜁2 βˆ’ 1
β€’ 𝜁 > 1 (equivalent 𝑏 > 2 π‘˜π‘€ ): distinct real roots, overdamped
β€’ 𝜁 = 1 (equivalent 𝑏 = 2 π‘˜π‘€ ): equal real roots, critically damped
β€’ 𝜁 < 1 (equivalent 𝑏 < 2 π‘˜π‘€ ): complex conjugate roots, underdamped
25
Overdamped Case
𝑠1, 𝑠2 = βˆ’πœπœ”π‘› Β± πœ”π‘› 𝜁2 βˆ’ 1
Overdamped response: 𝜁 > 1 (equivalent 𝑏 > 2 π‘˜π‘€ )
𝑦 𝑑 = 𝑐1e𝑠1𝑑
+ 𝑐2e𝑠2𝑑
𝑦 0 = 𝑦0 β‡’ 𝑐1 + 𝑐2 = 𝑦0
d𝑦 𝑑
d𝑑 𝑑=0
= 0 β‡’ 𝑠1𝑐1 +𝑠2𝑐2 = 0
What does this look like when strongly overdamped.
𝑠2 is large and negative, 𝑠1 is small and negative.
Hence e𝑠2𝑑
decays much faster than e𝑠1𝑑
.
Also, 𝑐2 = βˆ’
𝑐1𝑠1
𝑠2
. Hence, small.
Hence 𝑦 𝑑 β‰ˆ 𝑐1e𝑠1𝑑
. Looks like a first order system.
26
Critically Damped Case
𝑠1 = 𝑠2 = βˆ’πœ”π‘›
𝑦 𝑑 = 𝑐1eπœ”π‘›π‘‘
+ 𝑐2𝑑eβˆ’πœ”π‘›π‘‘
𝑦 0 = 𝑦0 β‡’ 𝑐1 = 𝑦0
d𝑦 𝑑
d𝑑 𝑑=0
= 0 β‡’ βˆ’π‘1πœ”π‘› +𝑐2 = 0
27
Underdamped Case
𝑠1, 𝑠2 = βˆ’πœπœ”π‘› Β± π‘—πœ”π‘› 1 βˆ’ 𝜁2
Therefore, 𝑆𝑖 = πœ”π‘›: poles lies on a circle.
Angle to negative real axis is cosβˆ’1
𝜁 .
Γ—
Γ—
jπœ”π‘› 1 βˆ’ 𝜁2
βˆ’jπœ”π‘› 1 βˆ’ 𝜁2
jπœ”
𝑠1
𝑠2
βˆ’πœπœ”π‘›
πœ”π‘›
πœƒ = cosβˆ’1
𝜁
βˆ’2πœπœ”π‘›
jπœ”π‘›
βˆ’jπœ”π‘›
jπœ”
𝜁 > 1
πœ”π‘›
𝜁 increasing
𝜁 = 1
𝜁 > 1
𝜁 < 1
𝜎 𝜎
Figure 8
0
0
𝜁 = 0
28
Define 𝜎 = πœπœ”π‘›, πœ”d = πœ”π‘› 1 βˆ’ 𝜁2. Response is:
𝑦 𝑑 = 𝑐1eβˆ’πœŽπ‘‘
cos πœ”d𝑑 + 𝑐2eβˆ’πœŽπ‘‘
sin πœ”d𝑑
= 𝐴eβˆ’πœŽπ‘‘
cos πœ”d𝑑 + πœ™
Homework: Relate 𝐴 and πœ™ to 𝑐1 and 𝑐2.
Homework: Write the initial conditions 𝑦 0 = 𝑦0 and
d𝑦 𝑑
dπ‘₯ 𝑑=0
= 0 in terms of 𝑐1 and 𝑐2, and in terms of 𝐴 and πœ™
29
π‘Œ 𝑠 =
𝑠 + 2πœπœ”π‘›
𝑠2 + 2πœπœ”π‘›π‘  + πœ”π‘›
2 𝑦0
where πœ”π‘› =
π‘˜
𝑀
and 𝜁 =
𝑏
2 π‘˜π‘€
Poles: 𝑠1, 𝑠2 = βˆ’πœπœ”π‘› Β± πœ”π‘› 𝜁2 βˆ’ 1
𝜁 > 1: overdamped; 𝜁 < 1: underdamped
Consider the case of 𝑀 = 1, π‘˜ = 1.
Hence, πœ”π‘› = 1,
𝑏 = 3 β†’ 0.
Hence, 𝜁 = 1.5 β†’ 0
Initial conditions: 𝑦0 = 1,
d𝑦 𝑑
dπ‘₯ 𝑑=0
= 0
30
𝑏 = 3 𝑏 = 3
Re s t
Poles And Transient Response, 𝒃 = πŸ‘
31
𝑏 = 2.75 𝑏 = 2.75
Poles And Transient Response, 𝒃 = 𝟐. πŸ•πŸ“
Re s t
32
Poles And Transient Response, 𝒃 = 𝟐. πŸ“
𝑏 = 2.5 𝑏 = 2.5
Re s t
33
Poles And Transient Response, 𝒃 = 𝟐. πŸπŸ“
𝑏 = 2.25 𝑏 = 2.25
Re s t
34
Poles And Transient Response, 𝒃 = 𝟐
𝑏 = 2 𝑏 = 2
Re s t
35
Poles And Transient Response, 𝒃 = 𝟏. πŸ—πŸ“
𝑏 = 1.95 𝑏 = 1.95
Re s t
36
Poles And Transient Response, 𝒃 = 𝟏. πŸ•πŸ“
𝑏 = 1.75 𝑏 = 1.75
Re s t
37
Poles And Transient Response, 𝒃 = 𝟏. πŸ“
𝑏 = 1.5 𝑏 = 1.5
Re s t
38
Poles And Transient Response, 𝒃 = 𝟏. πŸπŸ“
𝑏 = 1.25 𝑏 = 1.25
Re s t
39
Poles And Transient Response, 𝒃 = 𝟏
𝑏 = 1 𝑏 = 1
Re s t
40
Poles And Transient Response, 𝒃 = 𝟎. πŸ•πŸ“
𝑏 = 0.75 𝑏 = 0.75
Re s t
41
Poles And Transient Response, 𝒃 = 𝟎. πŸ“
𝑏 = 0.5 𝑏 = 0.5
Re s t
42
Poles And Transient Response, 𝒃 = 𝟎. πŸπŸ“
𝑏 = 0.25 𝑏 = 0.25
Re s t
43
Poles And Transient Response, 𝒃 = 𝟎
𝑏 = 0 𝑏 = 0
Re s t
44
Transfer Function
Definition:
Laplace transform of output over Laplace transform of input when
initial conditions are zero.
Most of the transfer functions in this course will be ratios of
polynomials in 𝑠.
Hence, poles and zeros of transfer functions have natural definitions.
Example:
Recall the mass-spring-damper system,
45
Transfer Function, Mass-Spring-Damper
For the mass-spring-damper system,
π‘Œ 𝑠 =
1
𝑀
𝑠2 +
𝑏
𝑀
𝑠 +
π‘˜
𝑀
𝑅 𝑠 +
𝑠 +
𝑏
𝑀
𝑠2 +
𝑏
𝑀
𝑠 +
π‘˜
𝑀
𝑦 0βˆ’
+
1
𝑠2 +
𝑏
𝑀
𝑠 +
π‘˜
𝑀
d𝑦(𝑑)
d𝑑
𝑑=0βˆ’
Therefore, transfer function is:
1
𝑀
𝑠2 +
𝑏
𝑀
𝑠 +
π‘˜
𝑀
=
1
𝑀𝑠2 + 𝑏𝑠 + π‘˜
46
Step Response
Recall that 𝑒 𝑑 ↔
1
𝑠
Therefore, for transfer function 𝐺 𝑠 , the step response is:
β„’βˆ’1
𝐺 𝑠
𝑠
For the mass-spring-damper system, step response is,
β„’βˆ’1
1
𝑠 𝑀𝑠2 + 𝑏𝑠 + π‘˜
What is the final position for a step input ?
Recall final value theorem. Final position is
1
𝐾
.
What about the complete step response ?
47
Step response:
β„’βˆ’1
𝐺 𝑠
1
𝑠
Hence poles of Laplace transform of step response are poles of 𝐺 𝑠 ,
plus an additional pole at 𝑠 = 0.
For the mass-spring-damper system, using partial fractions, step
response is:
β„’βˆ’1
1
𝑠 𝑀𝑠2 + 𝑏𝑠 + π‘˜
= β„’βˆ’1
1
π‘˜
𝑠
βˆ’
1
π‘˜
β„’βˆ’1
𝑀𝑠 + 𝑏
𝑀𝑠2 + 𝑏𝑠 + π‘˜
=
1
π‘˜
𝑒 𝑑 βˆ’
1
π‘˜
β„’βˆ’1
𝑀𝑠 + 𝑏
𝑀𝑠2 + 𝑏𝑠 + π‘˜
Consider again the case of 𝑀 = π‘˜ = 1, 𝑏 = 3 β†’ 0.
πœ”π‘› = 1, 𝜁 = 1.5 β†’ 0.
48
Poles And Step Response, 𝒃 = πŸ‘
49
Poles And Step Response, 𝒃 = 𝟐. πŸ•πŸ“
50
Poles And Step Response, 𝒃 = 𝟐. πŸ“
51
Poles And Step Response, 𝒃 = 𝟐. πŸπŸ“
52
Poles And Step Response, 𝒃 = 𝟐
53
Poles And Step Response, 𝒃 = 𝟏. πŸ—πŸ“
54
Poles And Step Response, 𝒃 = 𝟏. πŸ•πŸ“
55
Poles And Step Response, 𝒃 = 𝟏. πŸ“
56
Poles And Step Response, 𝒃 = 𝟏. πŸπŸ“
57
Poles And Step Response, 𝒃 = 𝟏
58
Poles And Step Response, 𝒃 = 𝟎. πŸ•πŸ“
59
Poles And Step Response, 𝒃 = 𝟎. πŸ“
60
Poles And Step Response, 𝒃 = 𝟎. πŸπŸ“
61
Poles And Step Response, 𝒃 = 𝟎
62
We will consider linearised model for each component.
Flux in the air gap: βˆ… 𝑑 = 𝐾f𝑖f 𝑑
Torque: 𝑇m 𝑑 = 𝐾1βˆ… 𝑑 𝑖a 𝑑 = 𝐾1𝐾f𝑖f 𝑑 𝑖a 𝑑
Is that linear ? Only if one of 𝑖f 𝑑 or 𝑖f 𝑑 is constant.
We will consider β€œarmature control”: 𝑖f 𝑑 constant.
A DC Motor
Figure 9
63
Armature Controlled DC Motor
𝑖f 𝑑 will be constant (to set up magnetic field), 𝑖f 𝑑 = 𝐼f
Torque: 𝑇m 𝑑 = 𝐾1𝐾f𝐼f𝑖a 𝑑 = 𝐾m𝑖a 𝑑
Will control motor using armature voltage 𝑉
a 𝑑 .
What is the transfer function from 𝑉
a 𝑠 to angular position πœƒ 𝑠 ?
Origin ?
64
𝑇m 𝑑 = 𝐾m𝑖a 𝑑 ↔ 𝑇m 𝑠 = 𝐾m𝐼a 𝑠
Kirchhoff Voltage Law: 𝑉
a 𝑠 = 𝑅a + 𝑠𝐿a 𝐼a 𝑠 + 𝑉b 𝑠
𝑉b 𝑠 is back-emf voltage, due to Faraday’s Law.
𝑉b 𝑠 = 𝐾bπœ” 𝑠 ,
where πœ” 𝑠 = π‘ πœƒ 𝑠 is rotational velocity.
Remember: transfer function implies zero initial conditions.
Towards Transfer Function
65
Torque on load: 𝑇L 𝑠 = 𝑇m 𝑠 βˆ’ 𝑇d 𝑠
𝑇d 𝑠 : disturbance. Often small, unknown.
Load torque and load angle (Newton plus friction):
𝑇L 𝑠 = 𝐽𝑠2
πœƒ 𝑠 + π‘π‘ πœƒ 𝑠
Now put it all together.
66
𝑇m 𝑠 = 𝐾m𝐼a 𝑠 = 𝐾m
𝑉
a 𝑠 βˆ’ 𝑉b 𝑠
𝑅a + 𝑠𝐿a
𝑉b 𝑠 = 𝐾bπœ” 𝑠
𝑇L 𝑠 = 𝑇m 𝑠 βˆ’ 𝑇d 𝑠
𝑇L 𝑠 = 𝐽𝑠2
πœƒ 𝑠 + π‘π‘ πœƒ 𝑠 = π½π‘ πœ” 𝑠 + π‘πœ” 𝑠
Hence πœ” 𝑠 =
𝑇L 𝑠
𝐽𝑠+𝑏
πœƒ 𝑠 =
πœ” 𝑠
𝑠
67
Transfer Function
𝐾m
𝑅a + 𝐿a𝑠
Armature
1
𝐽𝑠 + 𝑏
1
𝑠
𝐾b
Disturbance
𝑇d 𝑠
Position
πœƒ 𝑠
𝑉
a 𝑠
+
βˆ’
+
βˆ’
𝑇m 𝑠 𝑇L 𝑠
Speed
πœ” 𝑠
Back Electromotive Force
Set 𝑇d 𝑠 = 0 and solve (you MUST do this yourself)
𝐺 𝑠 =
πœƒ 𝑠
𝑉
a 𝑠
=
𝐾m
𝑠 𝑅a + 𝑠𝐿a 𝐽𝑠 + 𝑏 + 𝐾b𝐾m
=
𝐾m
𝑠 𝑠2 + 2πœπœ”π‘›π‘  + πœ”π‘›
2
Figure 10
68
Second Order Approximation
𝐺 𝑠 =
πœƒ 𝑠
𝑉
a 𝑠
=
𝐾m
𝑠 𝑅a + 𝑠𝐿a 𝐽𝑠 + 𝑏 + 𝐾b𝐾m
Sometimes armature time constant, πœπ‘Ž =
𝐿a
𝑅a
is negligible
Hence (you MUST derive this yourself)
𝐺 𝑠 β‰ˆ
𝐾m
𝑠 𝑅a 𝐽𝑠 + 𝑏 𝐾b𝐾m
=
πΎπ‘š
𝑅a𝑏 + 𝐾b𝐾m
𝑠 𝜏1𝑠 + 1
where 𝜏1 =
𝑅a𝐽
𝑅a𝑏+𝐾b𝐾m
69
Model For A Disk Drive Read System
Uses a permanent magnet DC motor
Can be modelled using armature control model with 𝐾b = 0
Hence, motor transfer function:
𝐺 𝑠 =
πœƒ 𝑠
𝑉
a 𝑠
=
𝐾m
𝑠 𝑅a + 𝑠𝐿a 𝐽𝑠 + 𝑏
Assume for now that the arm is stiff.
Figure 11
70
Typical Values
Parameter Symbol Typical Value
Inertia of Arm and Read Head 𝐽 1 Nm𝑠2
/rad
Friction 𝑏 20 Nms/rad
Amplifier 𝐾a 10-1000
Armature Resistance 𝑅 1 Ξ©
Motor Constant 𝐾m 5 Nm/A
Armature Inductance 𝐿 1 mH
𝐺 𝑠 =
5000
𝑠 𝑠 + 20 𝑠 + 1000
Table 1
71
Time Constants
Initial model,
𝐺 𝑠 =
5000
𝑠 𝑠 + 20 𝑠 + 1000
Motor time constant =
1
20
= 50 ms
Armature time constant =
1
1000
= 1 ms
Hence,
𝐺 𝑠 β‰ˆ 𝐺 𝑠 =
5
𝑠 𝑠 + 20
72
A Simple Feedback Controller
Now that we have a model, how to control ?
Simple idea: Apply voltage to motor that is proportional to error
between where we are and where we want to be.
Amplifier
Control Device Actuator and Read Arm
Input
Voltage Actual
Head
Position
+
βˆ’
DC Motor and Arm
Sensor
Read Head and Index Track on Disk
Desired
Head
Position
Error
Figure 12
73
𝐾a
Amplifier Motor and Arm 𝐺 𝑠
𝑉 𝑠
π‘Œ 𝑠
+
βˆ’
𝐺 𝑠 =
𝐾m
𝑠 𝐽𝑠 + 𝑏 𝐿𝑠 + 𝑅
Sensor
𝐻 𝑠 = 1
𝑅 𝑠
𝐸 𝑠
Here, 𝑉 𝑠 = 𝑉
a 𝑠 and π‘Œ 𝑠 = πœƒ 𝑠
Figure 13
74
Simplified Block Diagram
𝐾a π‘Œ 𝑠
+
βˆ’
𝐺 𝑠
𝑅 𝑠
What is the transfer function from command to position ? Derive this
yourself.
π‘Œ 𝑠
𝑅 𝑠
=
𝐾a𝐺 𝑠
1 + 𝐾a𝐺 𝑠
Using second-order approximation, 𝐺 𝑠 β‰ˆ 𝐺 𝑠 =
5
𝑠 𝑠+20
π‘Œ 𝑠 β‰ˆ
5𝐾a
𝑠2 + 20𝑠 + 5𝐾a
𝑅 𝑠
For 0 < 𝐾a < 20: overdamped
For 𝐾a > 20: underdamped
Figure 14
75
Response To 𝒓 𝒕 = 𝟎. πŸπ’– 𝒕 ; π‘²πš = 𝟏𝟎
Slow. Slower than IBMs first drive from late 1950’s.
Disks in the 1970’s had 25 ms seek times; now < 10 ms
Perhaps increase 𝐾a ?
That would result in a β€œbigger” input to the motor for a given error.
Poles in s-plane Response
76
Response To 𝒓 𝒕 = 𝟎. πŸπ’– 𝒕 ; π‘²πš = 𝟏𝟎, πŸπŸ“
Poles in s-plane Response
Changing 𝐾a changes the position of the closed loop poles.
Hence, step response changes.
77
Response To 𝒓 𝒕 = 𝟎. πŸπ’– 𝒕 ; π‘²πš = 𝟏𝟎, πŸπŸ“, 𝟐𝟎
Changing 𝐾a changes the position of the closed loop poles.
Hence, step response changes (now critically damped).
78
Response To 𝒓 𝒕 = 𝟎. πŸπ’– 𝒕 ; π‘²πš = 𝟏𝟎, πŸπŸ“, 𝟐𝟎, πŸ’πŸŽ
Changing 𝐾a changes the position of the closed loop poles.
Hence, step response changes (now underdamped).
79
Response To 𝒓 𝒕 = 𝟎. πŸπ’– 𝒕 ; π‘²πš = 𝟏𝟎, πŸπŸ“, 𝟐𝟎, πŸ’πŸŽ, πŸ”πŸŽ
Changing 𝐾a changes the position of the closed loop poles.
Hence, step response changes (now more underdamped).
80
Response To 𝒓 𝒕 = 𝟎. πŸπ’– 𝒕 ; π‘²πš = 𝟏𝟎, πŸπŸ“, 𝟐𝟎, πŸ’πŸŽ, πŸ”πŸŽ, πŸ–πŸŽ
What is happening to the settling time of the underdamped cases ?
Only just beats IBM’s first drive.
What else could we do with the controller ? Prediction ?
81
Block Diagram Models
As we have just seen, a convenient way to represent a transfer function is via
a block diagram.
In this case, π‘ˆ 𝑠 = 𝐺c 𝑠 𝑅 𝑠 and π‘Œ 𝑠 = 𝐺 𝑠 π‘ˆ 𝑠
Hence, π‘Œ 𝑠 = 𝐺 𝑠 𝐺c 𝑠 𝑅 𝑠
Consistent with the engineering procedure of breaking things up into little
bits, studying the little bits, and then put them together.
𝐺c 𝑠 π‘Œ 𝑠
𝐺 𝑠
𝑅 𝑠
Figure 15
Controller Process
π‘ˆ 𝑠
82
𝐺11 𝑠 π‘Œ1 𝑠
𝑅1 𝑠
Simple Example
𝐺22 𝑠
+
+
π‘Œ2 𝑠
𝑅2 𝑠
+
+
π‘Œ1 𝑠 = 𝐺11 𝑠 𝑅1 𝑠 + 𝐺12 𝑠 𝑅2 𝑠
π‘Œ2 𝑠 = 𝐺21 𝑠 𝑅1 𝑠 + 𝐺22 𝑠 𝑅2 𝑠
Figure 16
83
Example: Loop Transfer Function
𝐺c 𝑠
Controller
𝑍 𝑠
π‘Œ 𝑠
+
βˆ’
𝑅 𝑠
𝐸a 𝑠
Figure 17
𝐺a 𝑠
Actuator
𝐺 𝑠
Process
𝐻 𝑠
Sensor
π‘ˆ 𝑠
𝐡 𝑠
πΈπ‘Ž 𝑠 = 𝑅 𝑠 βˆ’ 𝐡 𝑠 = 𝑅 𝑠 βˆ’ 𝐻 𝑠 π‘Œ 𝑠
π‘Œ 𝑠 = 𝐺 𝑠 π‘ˆ 𝑠 = 𝐺 𝑠 𝐺a 𝑠 𝑍 𝑠 = 𝐺 𝑠 𝐺a 𝑠 𝐺c 𝑠 𝐸a 𝑠
= 𝐺 𝑠 𝐺a 𝑠 𝐺c 𝑠 𝑅 𝑠 βˆ’ 𝐻 𝑠 π‘Œ 𝑠
π‘Œ 𝑠
𝑅 𝑠
=
𝐺 𝑠 𝐺a 𝑠 𝐺c 𝑠
1 + 𝐺 𝑠 πΊπ‘Ž 𝑠 𝐺𝑐 𝑠 𝐻 𝑠
Each transfer function is a ratio of polynomials in 𝑠.
What is
𝐸a 𝑠
𝑅 𝑠
?
84
Block Diagram Transformations
Combining Block In Cascade
Original Diagram Equivalent Diagram
𝐺1 𝑠
𝑋1 𝐺2 𝑠 𝑋3
𝑋2
𝐺1𝐺2
𝑋1 𝑋3
Moving A Summing Point Behind A Block
𝐺 𝑋3
+
Β±
𝑋1
𝑋2
𝐺
+
Β±
𝑋1
𝑋2
𝐺
𝑋3
Original Diagram Equivalent Diagram
85
Moving A Pickoff Point Ahead Of A Block
Original Diagram Equivalent Diagram
𝐺
𝑋1 𝑋2 𝐺
𝑋1 𝑋3
Moving A Pickoff Point Behind A Block
𝐺
𝑋1
1
𝐺
𝑋2
Original Diagram Equivalent Diagram
𝑋2
𝐺
𝑋2
𝐺
𝑋1 𝑋2
𝑋1
𝑋1
86
Moving A Summing Point Ahead Of A Block
Original Diagram Equivalent Diagram
𝐺
𝑋1 𝑋3 𝐺 𝑋3
Eliminating A Feedback Loop
𝐺
1 ± 𝐺𝐻
𝑋1
𝑋2
Original Diagram Equivalent Diagram
𝑋2
1
𝐺
𝑋2
+
Β± Β±
𝑋1
+
𝐺 𝑋2
𝐻
Β±
𝑋1
+
87
𝐺1
+
βˆ’
𝑅 𝑠
𝐻2
𝐺2
+
βˆ’
+
𝐻1
𝐺3 𝐺4 π‘Œ 𝑠
𝐻3
Using Block Diagram Transformations
Figure 18
+
88
𝐺1
+
βˆ’
𝑅 𝑠
+
𝐻2
𝐺4
𝐺2
+
βˆ’
+
𝐻1
𝐺3 𝐺4 π‘Œ 𝑠
𝐻3
Figure 19
88
𝐺1
+
βˆ’
𝑅 𝑠
+
𝐻2
𝐺4
βˆ’
𝐺2
𝐺3𝐺4
1 βˆ’ 𝐺3𝐺4𝐻1
π‘Œ 𝑠
𝐻3
Figure 20
89
+
βˆ’
𝑅 𝑠 𝐺1
𝐺2𝐺3𝐺4
1 βˆ’ 𝐺3𝐺4𝐻1 + 𝐺2𝐺3𝐻2
π‘Œ 𝑠
𝐻3
Figure 21
𝑅 𝑠
𝐺1𝐺2𝐺3𝐺4
1 βˆ’ 𝐺3𝐺4𝐻1 + 𝐺2𝐺3𝐻2 + 𝐺1𝐺2𝐺3𝐺4𝐻3
π‘Œ 𝑠
Figure 22
90
References
(1) Tim Davidson, Introduction to Linear Control Systems, McMaster
University, 2018.

Mais conteΓΊdo relacionado

Mais procurados

Application of Convolution Theorem
Application of Convolution TheoremApplication of Convolution Theorem
Application of Convolution Theoremijtsrd
Β 
Inverse laplacetransform
Inverse laplacetransformInverse laplacetransform
Inverse laplacetransformTarun Gehlot
Β 
Frequency Response Analysis and Bode Diagrams for First Order Systems
Frequency Response Analysis and Bode Diagrams for First Order SystemsFrequency Response Analysis and Bode Diagrams for First Order Systems
Frequency Response Analysis and Bode Diagrams for First Order SystemsVishvaraj Chauhan
Β 
Inverse Laplace Transform
Inverse Laplace TransformInverse Laplace Transform
Inverse Laplace TransformUniversity Malaya
Β 
BEC 26 control-systems_unit-IV
BEC 26 control-systems_unit-IVBEC 26 control-systems_unit-IV
BEC 26 control-systems_unit-IVShadab Siddiqui
Β 
MTH101 - Calculus and Analytical Geometry- Lecture 44
MTH101 - Calculus and Analytical Geometry- Lecture 44MTH101 - Calculus and Analytical Geometry- Lecture 44
MTH101 - Calculus and Analytical Geometry- Lecture 44Bilal Ahmed
Β 
Linear transforamtion and it,s applications.(VCLA)
Linear transforamtion and it,s applications.(VCLA)Linear transforamtion and it,s applications.(VCLA)
Linear transforamtion and it,s applications.(VCLA)DeepRaval7
Β 
Jif 315 lesson 1 Laplace and fourier transform
Jif 315 lesson 1 Laplace and fourier transformJif 315 lesson 1 Laplace and fourier transform
Jif 315 lesson 1 Laplace and fourier transformKurenai Ryu
Β 
Laplace transformation
Laplace transformationLaplace transformation
Laplace transformationWasim Shah
Β 
Inverse Laplace Transform
Inverse Laplace TransformInverse Laplace Transform
Inverse Laplace TransformVishnu V
Β 
Using Laplace Transforms to Solve Differential Equations
Using Laplace Transforms to Solve Differential EquationsUsing Laplace Transforms to Solve Differential Equations
Using Laplace Transforms to Solve Differential EquationsGeorge Stevens
Β 
Z transfrm ppt
Z transfrm pptZ transfrm ppt
Z transfrm pptSWATI MISHRA
Β 
Hawkinrad a source_notes ii _secured
Hawkinrad a source_notes ii _securedHawkinrad a source_notes ii _secured
Hawkinrad a source_notes ii _securedfoxtrot jp R
Β 

Mais procurados (20)

Application of Convolution Theorem
Application of Convolution TheoremApplication of Convolution Theorem
Application of Convolution Theorem
Β 
Ch05 1
Ch05 1Ch05 1
Ch05 1
Β 
inverse z transform
inverse z transforminverse z transform
inverse z transform
Β 
Inverse laplacetransform
Inverse laplacetransformInverse laplacetransform
Inverse laplacetransform
Β 
Frequency Response Analysis and Bode Diagrams for First Order Systems
Frequency Response Analysis and Bode Diagrams for First Order SystemsFrequency Response Analysis and Bode Diagrams for First Order Systems
Frequency Response Analysis and Bode Diagrams for First Order Systems
Β 
Inverse laplace
Inverse laplaceInverse laplace
Inverse laplace
Β 
Inverse Laplace Transform
Inverse Laplace TransformInverse Laplace Transform
Inverse Laplace Transform
Β 
BEC 26 control-systems_unit-IV
BEC 26 control-systems_unit-IVBEC 26 control-systems_unit-IV
BEC 26 control-systems_unit-IV
Β 
MTH101 - Calculus and Analytical Geometry- Lecture 44
MTH101 - Calculus and Analytical Geometry- Lecture 44MTH101 - Calculus and Analytical Geometry- Lecture 44
MTH101 - Calculus and Analytical Geometry- Lecture 44
Β 
Inverse laplace transforms
Inverse laplace transformsInverse laplace transforms
Inverse laplace transforms
Β 
Linear transforamtion and it,s applications.(VCLA)
Linear transforamtion and it,s applications.(VCLA)Linear transforamtion and it,s applications.(VCLA)
Linear transforamtion and it,s applications.(VCLA)
Β 
Jif 315 lesson 1 Laplace and fourier transform
Jif 315 lesson 1 Laplace and fourier transformJif 315 lesson 1 Laplace and fourier transform
Jif 315 lesson 1 Laplace and fourier transform
Β 
Power series
Power seriesPower series
Power series
Β 
Laplace transformation
Laplace transformationLaplace transformation
Laplace transformation
Β 
1605 power series
1605 power series1605 power series
1605 power series
Β 
Inverse Laplace Transform
Inverse Laplace TransformInverse Laplace Transform
Inverse Laplace Transform
Β 
Power series
Power seriesPower series
Power series
Β 
Using Laplace Transforms to Solve Differential Equations
Using Laplace Transforms to Solve Differential EquationsUsing Laplace Transforms to Solve Differential Equations
Using Laplace Transforms to Solve Differential Equations
Β 
Z transfrm ppt
Z transfrm pptZ transfrm ppt
Z transfrm ppt
Β 
Hawkinrad a source_notes ii _secured
Hawkinrad a source_notes ii _securedHawkinrad a source_notes ii _secured
Hawkinrad a source_notes ii _secured
Β 

Semelhante a Lecture Notes: EEEC4340318 Instrumentation and Control Systems - System Models

Engineering Analysis -Third Class.ppsx
Engineering Analysis -Third Class.ppsxEngineering Analysis -Third Class.ppsx
Engineering Analysis -Third Class.ppsxHebaEng
Β 
slidesWaveRegular.pdf
slidesWaveRegular.pdfslidesWaveRegular.pdf
slidesWaveRegular.pdfcfisicaster
Β 
Laplace Transform and its applications
Laplace Transform and its applicationsLaplace Transform and its applications
Laplace Transform and its applicationsDeepRaval7
Β 
Schrodinger Equation of Hydrogen Atom
Schrodinger Equation of Hydrogen AtomSchrodinger Equation of Hydrogen Atom
Schrodinger Equation of Hydrogen AtomSaad Shaukat
Β 
Gauge Theory for Beginners.pptx
Gauge Theory for Beginners.pptxGauge Theory for Beginners.pptx
Gauge Theory for Beginners.pptxHassaan Saleem
Β 
Digital control systems (dcs) lecture 18-19-20
Digital control systems (dcs) lecture 18-19-20Digital control systems (dcs) lecture 18-19-20
Digital control systems (dcs) lecture 18-19-20Ali Rind
Β 
Magnetic Monopoles, Duality and SUSY.pptx
Magnetic Monopoles, Duality and SUSY.pptxMagnetic Monopoles, Duality and SUSY.pptx
Magnetic Monopoles, Duality and SUSY.pptxHassaan Saleem
Β 
Ac_steady_state_analyis.pptx
Ac_steady_state_analyis.pptxAc_steady_state_analyis.pptx
Ac_steady_state_analyis.pptxLucasMogaka
Β 
Ac_steady_state_analyis.pptx
Ac_steady_state_analyis.pptxAc_steady_state_analyis.pptx
Ac_steady_state_analyis.pptxLucasMogaka
Β 
Max flows via electrical flows (long talk)
Max flows via electrical flows (long talk)Max flows via electrical flows (long talk)
Max flows via electrical flows (long talk)Thatchaphol Saranurak
Β 
Review of Seiberg Witten duality.pptx
Review of Seiberg Witten duality.pptxReview of Seiberg Witten duality.pptx
Review of Seiberg Witten duality.pptxHassaan Saleem
Β 
ΨͺΨ·Ψ¨ΩŠΩ‚Ψ§Ψͺ Ψ§Ω„Ω…ΨΉΨ§Ψ―Ω„Ψ§Ψͺ Ψ§Ω„ΨͺΩΨ§ΨΆΩ„ΩŠΨ©
ΨͺΨ·Ψ¨ΩŠΩ‚Ψ§Ψͺ Ψ§Ω„Ω…ΨΉΨ§Ψ―Ω„Ψ§Ψͺ Ψ§Ω„ΨͺΩΨ§ΨΆΩ„ΩŠΨ©ΨͺΨ·Ψ¨ΩŠΩ‚Ψ§Ψͺ Ψ§Ω„Ω…ΨΉΨ§Ψ―Ω„Ψ§Ψͺ Ψ§Ω„ΨͺΩΨ§ΨΆΩ„ΩŠΨ©
ΨͺΨ·Ψ¨ΩŠΩ‚Ψ§Ψͺ Ψ§Ω„Ω…ΨΉΨ§Ψ―Ω„Ψ§Ψͺ Ψ§Ω„ΨͺΩΨ§ΨΆΩ„ΩŠΨ©MohammedRazzaqSalman
Β 
Mathematics of nyquist plot [autosaved] [autosaved]
Mathematics of nyquist plot [autosaved] [autosaved]Mathematics of nyquist plot [autosaved] [autosaved]
Mathematics of nyquist plot [autosaved] [autosaved]Asafak Husain
Β 
Sistemas de Primer Orden, Segundo Orden y Orden Superior
Sistemas de Primer Orden, Segundo Orden y Orden SuperiorSistemas de Primer Orden, Segundo Orden y Orden Superior
Sistemas de Primer Orden, Segundo Orden y Orden SuperiorWinnerPineda1
Β 
Optimum Engineering Design - Day 2b. Classical Optimization methods
Optimum Engineering Design - Day 2b. Classical Optimization methodsOptimum Engineering Design - Day 2b. Classical Optimization methods
Optimum Engineering Design - Day 2b. Classical Optimization methodsSantiagoGarridoBulln
Β 
Small amplitude oscillations
Small amplitude oscillationsSmall amplitude oscillations
Small amplitude oscillationsharshsharma5537
Β 
Elasticity, Plasticity and elastic plastic analysis
Elasticity, Plasticity and elastic plastic analysisElasticity, Plasticity and elastic plastic analysis
Elasticity, Plasticity and elastic plastic analysisJAGARANCHAKMA2
Β 
Dynamics slideshare
Dynamics slideshareDynamics slideshare
Dynamics slideshareMalarMohana
Β 

Semelhante a Lecture Notes: EEEC4340318 Instrumentation and Control Systems - System Models (20)

Engineering Analysis -Third Class.ppsx
Engineering Analysis -Third Class.ppsxEngineering Analysis -Third Class.ppsx
Engineering Analysis -Third Class.ppsx
Β 
slidesWaveRegular.pdf
slidesWaveRegular.pdfslidesWaveRegular.pdf
slidesWaveRegular.pdf
Β 
Laplace Transform and its applications
Laplace Transform and its applicationsLaplace Transform and its applications
Laplace Transform and its applications
Β 
Schrodinger Equation of Hydrogen Atom
Schrodinger Equation of Hydrogen AtomSchrodinger Equation of Hydrogen Atom
Schrodinger Equation of Hydrogen Atom
Β 
Gauge Theory for Beginners.pptx
Gauge Theory for Beginners.pptxGauge Theory for Beginners.pptx
Gauge Theory for Beginners.pptx
Β 
Digital control systems (dcs) lecture 18-19-20
Digital control systems (dcs) lecture 18-19-20Digital control systems (dcs) lecture 18-19-20
Digital control systems (dcs) lecture 18-19-20
Β 
Magnetic Monopoles, Duality and SUSY.pptx
Magnetic Monopoles, Duality and SUSY.pptxMagnetic Monopoles, Duality and SUSY.pptx
Magnetic Monopoles, Duality and SUSY.pptx
Β 
Ac_steady_state_analyis.pptx
Ac_steady_state_analyis.pptxAc_steady_state_analyis.pptx
Ac_steady_state_analyis.pptx
Β 
Ac_steady_state_analyis.pptx
Ac_steady_state_analyis.pptxAc_steady_state_analyis.pptx
Ac_steady_state_analyis.pptx
Β 
Max flows via electrical flows (long talk)
Max flows via electrical flows (long talk)Max flows via electrical flows (long talk)
Max flows via electrical flows (long talk)
Β 
Mod 3.pptx
Mod 3.pptxMod 3.pptx
Mod 3.pptx
Β 
Review of Seiberg Witten duality.pptx
Review of Seiberg Witten duality.pptxReview of Seiberg Witten duality.pptx
Review of Seiberg Witten duality.pptx
Β 
ΨͺΨ·Ψ¨ΩŠΩ‚Ψ§Ψͺ Ψ§Ω„Ω…ΨΉΨ§Ψ―Ω„Ψ§Ψͺ Ψ§Ω„ΨͺΩΨ§ΨΆΩ„ΩŠΨ©
ΨͺΨ·Ψ¨ΩŠΩ‚Ψ§Ψͺ Ψ§Ω„Ω…ΨΉΨ§Ψ―Ω„Ψ§Ψͺ Ψ§Ω„ΨͺΩΨ§ΨΆΩ„ΩŠΨ©ΨͺΨ·Ψ¨ΩŠΩ‚Ψ§Ψͺ Ψ§Ω„Ω…ΨΉΨ§Ψ―Ω„Ψ§Ψͺ Ψ§Ω„ΨͺΩΨ§ΨΆΩ„ΩŠΨ©
ΨͺΨ·Ψ¨ΩŠΩ‚Ψ§Ψͺ Ψ§Ω„Ω…ΨΉΨ§Ψ―Ω„Ψ§Ψͺ Ψ§Ω„ΨͺΩΨ§ΨΆΩ„ΩŠΨ©
Β 
Mathematics of nyquist plot [autosaved] [autosaved]
Mathematics of nyquist plot [autosaved] [autosaved]Mathematics of nyquist plot [autosaved] [autosaved]
Mathematics of nyquist plot [autosaved] [autosaved]
Β 
Sistemas de Primer Orden, Segundo Orden y Orden Superior
Sistemas de Primer Orden, Segundo Orden y Orden SuperiorSistemas de Primer Orden, Segundo Orden y Orden Superior
Sistemas de Primer Orden, Segundo Orden y Orden Superior
Β 
Optimum Engineering Design - Day 2b. Classical Optimization methods
Optimum Engineering Design - Day 2b. Classical Optimization methodsOptimum Engineering Design - Day 2b. Classical Optimization methods
Optimum Engineering Design - Day 2b. Classical Optimization methods
Β 
Small amplitude oscillations
Small amplitude oscillationsSmall amplitude oscillations
Small amplitude oscillations
Β 
Elasticity, Plasticity and elastic plastic analysis
Elasticity, Plasticity and elastic plastic analysisElasticity, Plasticity and elastic plastic analysis
Elasticity, Plasticity and elastic plastic analysis
Β 
Dynamics slideshare
Dynamics slideshareDynamics slideshare
Dynamics slideshare
Β 
Dynamics problems
Dynamics problemsDynamics problems
Dynamics problems
Β 

Mais de AIMST University

Future Generation of Mobile and Satellite Communication Technology
Future Generation of Mobile and Satellite Communication TechnologyFuture Generation of Mobile and Satellite Communication Technology
Future Generation of Mobile and Satellite Communication TechnologyAIMST University
Β 
Research Cluster - Wireless Communications for 5G/6G
Research Cluster - Wireless Communications for 5G/6GResearch Cluster - Wireless Communications for 5G/6G
Research Cluster - Wireless Communications for 5G/6GAIMST University
Β 
1G, 2G, 3G, 4G, and 5G Technology
1G, 2G, 3G, 4G, and 5G Technology1G, 2G, 3G, 4G, and 5G Technology
1G, 2G, 3G, 4G, and 5G TechnologyAIMST University
Β 
Lecture Notes - EEEC6430310 Electromagnetic Fields and Waves - Smith Chart
Lecture Notes - EEEC6430310 Electromagnetic Fields and Waves - Smith ChartLecture Notes - EEEC6430310 Electromagnetic Fields and Waves - Smith Chart
Lecture Notes - EEEC6430310 Electromagnetic Fields and Waves - Smith ChartAIMST University
Β 
Mini Project 2 - Wien Bridge Oscillator
Mini Project 2 - Wien Bridge OscillatorMini Project 2 - Wien Bridge Oscillator
Mini Project 2 - Wien Bridge OscillatorAIMST University
Β 
Experiment 1 - Frequency Determination Using The Lissajous Polar
Experiment 1 - Frequency Determination Using The Lissajous PolarExperiment 1 - Frequency Determination Using The Lissajous Polar
Experiment 1 - Frequency Determination Using The Lissajous PolarAIMST University
Β 
Experiment 2 - Phase Determination Using The Lissajous Polar
Experiment 2 - Phase Determination Using The Lissajous PolarExperiment 2 - Phase Determination Using The Lissajous Polar
Experiment 2 - Phase Determination Using The Lissajous PolarAIMST University
Β 
Experiment 3 - Dynamic Characteristic of Thermistor
Experiment 3 - Dynamic Characteristic of ThermistorExperiment 3 - Dynamic Characteristic of Thermistor
Experiment 3 - Dynamic Characteristic of ThermistorAIMST University
Β 
Mini Project 1 - Wheatstone Bridge Light Detector
Mini Project 1 - Wheatstone Bridge Light DetectorMini Project 1 - Wheatstone Bridge Light Detector
Mini Project 1 - Wheatstone Bridge Light DetectorAIMST University
Β 
Lecture Notes: EEEC6430310 Electromagnetic Fields And Waves - Dipole Arrays
Lecture Notes:  EEEC6430310 Electromagnetic Fields And Waves - Dipole ArraysLecture Notes:  EEEC6430310 Electromagnetic Fields And Waves - Dipole Arrays
Lecture Notes: EEEC6430310 Electromagnetic Fields And Waves - Dipole ArraysAIMST University
Β 
Lecture Notes: EEEE6490345 RF And Microwave Electronics - Radio Communicatio...
Lecture Notes:  EEEE6490345 RF And Microwave Electronics - Radio Communicatio...Lecture Notes:  EEEE6490345 RF And Microwave Electronics - Radio Communicatio...
Lecture Notes: EEEE6490345 RF And Microwave Electronics - Radio Communicatio...AIMST University
Β 
Lecture Notes: EEEC6430312 Measurements And Instrumentation - Instrumentation
Lecture Notes:  EEEC6430312 Measurements And Instrumentation - InstrumentationLecture Notes:  EEEC6430312 Measurements And Instrumentation - Instrumentation
Lecture Notes: EEEC6430312 Measurements And Instrumentation - InstrumentationAIMST University
Β 
Lecture Notes: EEEC6430312 Measurements And Instrumentation - Fundamentals O...
Lecture Notes:  EEEC6430312 Measurements And Instrumentation - Fundamentals O...Lecture Notes:  EEEC6430312 Measurements And Instrumentation - Fundamentals O...
Lecture Notes: EEEC6430312 Measurements And Instrumentation - Fundamentals O...AIMST University
Β 
Lecture Notes: EEEC6430312 Measurements And Instrumentation - Instrument Typ...
Lecture Notes:  EEEC6430312 Measurements And Instrumentation - Instrument Typ...Lecture Notes:  EEEC6430312 Measurements And Instrumentation - Instrument Typ...
Lecture Notes: EEEC6430312 Measurements And Instrumentation - Instrument Typ...AIMST University
Β 
Lecture Notes: EEEC6430312 Measurements And Instrumentation - Errors During ...
Lecture Notes:  EEEC6430312 Measurements And Instrumentation - Errors During ...Lecture Notes:  EEEC6430312 Measurements And Instrumentation - Errors During ...
Lecture Notes: EEEC6430312 Measurements And Instrumentation - Errors During ...AIMST University
Β 
Lecture Notes: EEEC6430310 Electromagnetic Fields And Waves - Maxwell's Equa...
Lecture Notes:  EEEC6430310 Electromagnetic Fields And Waves - Maxwell's Equa...Lecture Notes:  EEEC6430310 Electromagnetic Fields And Waves - Maxwell's Equa...
Lecture Notes: EEEC6430310 Electromagnetic Fields And Waves - Maxwell's Equa...AIMST University
Β 
Lecture Notes: EEEC6430310 Electromagnetic Fields And Waves - Transmission Line
Lecture Notes:  EEEC6430310 Electromagnetic Fields And Waves - Transmission LineLecture Notes:  EEEC6430310 Electromagnetic Fields And Waves - Transmission Line
Lecture Notes: EEEC6430310 Electromagnetic Fields And Waves - Transmission LineAIMST University
Β 
Lecture Notes: EEEC6430310 Electromagnetic Fields And Waves - Cylindrical Ca...
Lecture Notes:  EEEC6430310 Electromagnetic Fields And Waves - Cylindrical Ca...Lecture Notes:  EEEC6430310 Electromagnetic Fields And Waves - Cylindrical Ca...
Lecture Notes: EEEC6430310 Electromagnetic Fields And Waves - Cylindrical Ca...AIMST University
Β 
Lecture Notes: EEEC6440315 Communication Systems - Time Frequency Analysis -...
Lecture Notes:  EEEC6440315 Communication Systems - Time Frequency Analysis -...Lecture Notes:  EEEC6440315 Communication Systems - Time Frequency Analysis -...
Lecture Notes: EEEC6440315 Communication Systems - Time Frequency Analysis -...AIMST University
Β 
Mini Project 1: Impedance Matching With A Single Stub Tuner
Mini Project 1:  Impedance Matching With A Single Stub TunerMini Project 1:  Impedance Matching With A Single Stub Tuner
Mini Project 1: Impedance Matching With A Single Stub TunerAIMST University
Β 

Mais de AIMST University (20)

Future Generation of Mobile and Satellite Communication Technology
Future Generation of Mobile and Satellite Communication TechnologyFuture Generation of Mobile and Satellite Communication Technology
Future Generation of Mobile and Satellite Communication Technology
Β 
Research Cluster - Wireless Communications for 5G/6G
Research Cluster - Wireless Communications for 5G/6GResearch Cluster - Wireless Communications for 5G/6G
Research Cluster - Wireless Communications for 5G/6G
Β 
1G, 2G, 3G, 4G, and 5G Technology
1G, 2G, 3G, 4G, and 5G Technology1G, 2G, 3G, 4G, and 5G Technology
1G, 2G, 3G, 4G, and 5G Technology
Β 
Lecture Notes - EEEC6430310 Electromagnetic Fields and Waves - Smith Chart
Lecture Notes - EEEC6430310 Electromagnetic Fields and Waves - Smith ChartLecture Notes - EEEC6430310 Electromagnetic Fields and Waves - Smith Chart
Lecture Notes - EEEC6430310 Electromagnetic Fields and Waves - Smith Chart
Β 
Mini Project 2 - Wien Bridge Oscillator
Mini Project 2 - Wien Bridge OscillatorMini Project 2 - Wien Bridge Oscillator
Mini Project 2 - Wien Bridge Oscillator
Β 
Experiment 1 - Frequency Determination Using The Lissajous Polar
Experiment 1 - Frequency Determination Using The Lissajous PolarExperiment 1 - Frequency Determination Using The Lissajous Polar
Experiment 1 - Frequency Determination Using The Lissajous Polar
Β 
Experiment 2 - Phase Determination Using The Lissajous Polar
Experiment 2 - Phase Determination Using The Lissajous PolarExperiment 2 - Phase Determination Using The Lissajous Polar
Experiment 2 - Phase Determination Using The Lissajous Polar
Β 
Experiment 3 - Dynamic Characteristic of Thermistor
Experiment 3 - Dynamic Characteristic of ThermistorExperiment 3 - Dynamic Characteristic of Thermistor
Experiment 3 - Dynamic Characteristic of Thermistor
Β 
Mini Project 1 - Wheatstone Bridge Light Detector
Mini Project 1 - Wheatstone Bridge Light DetectorMini Project 1 - Wheatstone Bridge Light Detector
Mini Project 1 - Wheatstone Bridge Light Detector
Β 
Lecture Notes: EEEC6430310 Electromagnetic Fields And Waves - Dipole Arrays
Lecture Notes:  EEEC6430310 Electromagnetic Fields And Waves - Dipole ArraysLecture Notes:  EEEC6430310 Electromagnetic Fields And Waves - Dipole Arrays
Lecture Notes: EEEC6430310 Electromagnetic Fields And Waves - Dipole Arrays
Β 
Lecture Notes: EEEE6490345 RF And Microwave Electronics - Radio Communicatio...
Lecture Notes:  EEEE6490345 RF And Microwave Electronics - Radio Communicatio...Lecture Notes:  EEEE6490345 RF And Microwave Electronics - Radio Communicatio...
Lecture Notes: EEEE6490345 RF And Microwave Electronics - Radio Communicatio...
Β 
Lecture Notes: EEEC6430312 Measurements And Instrumentation - Instrumentation
Lecture Notes:  EEEC6430312 Measurements And Instrumentation - InstrumentationLecture Notes:  EEEC6430312 Measurements And Instrumentation - Instrumentation
Lecture Notes: EEEC6430312 Measurements And Instrumentation - Instrumentation
Β 
Lecture Notes: EEEC6430312 Measurements And Instrumentation - Fundamentals O...
Lecture Notes:  EEEC6430312 Measurements And Instrumentation - Fundamentals O...Lecture Notes:  EEEC6430312 Measurements And Instrumentation - Fundamentals O...
Lecture Notes: EEEC6430312 Measurements And Instrumentation - Fundamentals O...
Β 
Lecture Notes: EEEC6430312 Measurements And Instrumentation - Instrument Typ...
Lecture Notes:  EEEC6430312 Measurements And Instrumentation - Instrument Typ...Lecture Notes:  EEEC6430312 Measurements And Instrumentation - Instrument Typ...
Lecture Notes: EEEC6430312 Measurements And Instrumentation - Instrument Typ...
Β 
Lecture Notes: EEEC6430312 Measurements And Instrumentation - Errors During ...
Lecture Notes:  EEEC6430312 Measurements And Instrumentation - Errors During ...Lecture Notes:  EEEC6430312 Measurements And Instrumentation - Errors During ...
Lecture Notes: EEEC6430312 Measurements And Instrumentation - Errors During ...
Β 
Lecture Notes: EEEC6430310 Electromagnetic Fields And Waves - Maxwell's Equa...
Lecture Notes:  EEEC6430310 Electromagnetic Fields And Waves - Maxwell's Equa...Lecture Notes:  EEEC6430310 Electromagnetic Fields And Waves - Maxwell's Equa...
Lecture Notes: EEEC6430310 Electromagnetic Fields And Waves - Maxwell's Equa...
Β 
Lecture Notes: EEEC6430310 Electromagnetic Fields And Waves - Transmission Line
Lecture Notes:  EEEC6430310 Electromagnetic Fields And Waves - Transmission LineLecture Notes:  EEEC6430310 Electromagnetic Fields And Waves - Transmission Line
Lecture Notes: EEEC6430310 Electromagnetic Fields And Waves - Transmission Line
Β 
Lecture Notes: EEEC6430310 Electromagnetic Fields And Waves - Cylindrical Ca...
Lecture Notes:  EEEC6430310 Electromagnetic Fields And Waves - Cylindrical Ca...Lecture Notes:  EEEC6430310 Electromagnetic Fields And Waves - Cylindrical Ca...
Lecture Notes: EEEC6430310 Electromagnetic Fields And Waves - Cylindrical Ca...
Β 
Lecture Notes: EEEC6440315 Communication Systems - Time Frequency Analysis -...
Lecture Notes:  EEEC6440315 Communication Systems - Time Frequency Analysis -...Lecture Notes:  EEEC6440315 Communication Systems - Time Frequency Analysis -...
Lecture Notes: EEEC6440315 Communication Systems - Time Frequency Analysis -...
Β 
Mini Project 1: Impedance Matching With A Single Stub Tuner
Mini Project 1:  Impedance Matching With A Single Stub TunerMini Project 1:  Impedance Matching With A Single Stub Tuner
Mini Project 1: Impedance Matching With A Single Stub Tuner
Β 

Último

4.11.24 Mass Incarceration and the New Jim Crow.pptx
4.11.24 Mass Incarceration and the New Jim Crow.pptx4.11.24 Mass Incarceration and the New Jim Crow.pptx
4.11.24 Mass Incarceration and the New Jim Crow.pptxmary850239
Β 
Team Lead Succeed – Helping you and your team achieve high-performance teamwo...
Team Lead Succeed – Helping you and your team achieve high-performance teamwo...Team Lead Succeed – Helping you and your team achieve high-performance teamwo...
Team Lead Succeed – Helping you and your team achieve high-performance teamwo...Association for Project Management
Β 
THEORIES OF ORGANIZATION-PUBLIC ADMINISTRATION
THEORIES OF ORGANIZATION-PUBLIC ADMINISTRATIONTHEORIES OF ORGANIZATION-PUBLIC ADMINISTRATION
THEORIES OF ORGANIZATION-PUBLIC ADMINISTRATIONHumphrey A BeΓ±a
Β 
Transaction Management in Database Management System
Transaction Management in Database Management SystemTransaction Management in Database Management System
Transaction Management in Database Management SystemChristalin Nelson
Β 
How to Fix XML SyntaxError in Odoo the 17
How to Fix XML SyntaxError in Odoo the 17How to Fix XML SyntaxError in Odoo the 17
How to Fix XML SyntaxError in Odoo the 17Celine George
Β 
Visit to a blind student's schoolπŸ§‘β€πŸ¦―πŸ§‘β€πŸ¦―(community medicine)
Visit to a blind student's schoolπŸ§‘β€πŸ¦―πŸ§‘β€πŸ¦―(community medicine)Visit to a blind student's schoolπŸ§‘β€πŸ¦―πŸ§‘β€πŸ¦―(community medicine)
Visit to a blind student's schoolπŸ§‘β€πŸ¦―πŸ§‘β€πŸ¦―(community medicine)lakshayb543
Β 
31 ĐỀ THI THỬ VΓ€O LỚP 10 - TIαΊΎNG ANH - FORM MỚI 2025 - 40 CΓ‚U HỎI - BΓ™I VΔ‚N V...
31 ĐỀ THI THỬ VΓ€O LỚP 10 - TIαΊΎNG ANH - FORM MỚI 2025 - 40 CΓ‚U HỎI - BΓ™I VΔ‚N V...31 ĐỀ THI THỬ VΓ€O LỚP 10 - TIαΊΎNG ANH - FORM MỚI 2025 - 40 CΓ‚U HỎI - BΓ™I VΔ‚N V...
31 ĐỀ THI THỬ VΓ€O LỚP 10 - TIαΊΎNG ANH - FORM MỚI 2025 - 40 CΓ‚U HỎI - BΓ™I VΔ‚N V...Nguyen Thanh Tu Collection
Β 
ESP 4-EDITED.pdfmmcncncncmcmmnmnmncnmncmnnjvnnv
ESP 4-EDITED.pdfmmcncncncmcmmnmnmncnmncmnnjvnnvESP 4-EDITED.pdfmmcncncncmcmmnmnmncnmncmnnjvnnv
ESP 4-EDITED.pdfmmcncncncmcmmnmnmncnmncmnnjvnnvRicaMaeCastro1
Β 
Reading and Writing Skills 11 quarter 4 melc 1
Reading and Writing Skills 11 quarter 4 melc 1Reading and Writing Skills 11 quarter 4 melc 1
Reading and Writing Skills 11 quarter 4 melc 1GloryAnnCastre1
Β 
Textual Evidence in Reading and Writing of SHS
Textual Evidence in Reading and Writing of SHSTextual Evidence in Reading and Writing of SHS
Textual Evidence in Reading and Writing of SHSMae Pangan
Β 
DIFFERENT BASKETRY IN THE PHILIPPINES PPT.pptx
DIFFERENT BASKETRY IN THE PHILIPPINES PPT.pptxDIFFERENT BASKETRY IN THE PHILIPPINES PPT.pptx
DIFFERENT BASKETRY IN THE PHILIPPINES PPT.pptxMichelleTuguinay1
Β 
week 1 cookery 8 fourth - quarter .pptx
week 1 cookery 8  fourth  -  quarter .pptxweek 1 cookery 8  fourth  -  quarter .pptx
week 1 cookery 8 fourth - quarter .pptxJonalynLegaspi2
Β 
Multi Domain Alias In the Odoo 17 ERP Module
Multi Domain Alias In the Odoo 17 ERP ModuleMulti Domain Alias In the Odoo 17 ERP Module
Multi Domain Alias In the Odoo 17 ERP ModuleCeline George
Β 
ClimART Action | eTwinning Project
ClimART Action    |    eTwinning ProjectClimART Action    |    eTwinning Project
ClimART Action | eTwinning Projectjordimapav
Β 
INTRODUCTION TO CATHOLIC CHRISTOLOGY.pptx
INTRODUCTION TO CATHOLIC CHRISTOLOGY.pptxINTRODUCTION TO CATHOLIC CHRISTOLOGY.pptx
INTRODUCTION TO CATHOLIC CHRISTOLOGY.pptxHumphrey A BeΓ±a
Β 
How to Manage Engineering to Order in Odoo 17
How to Manage Engineering to Order in Odoo 17How to Manage Engineering to Order in Odoo 17
How to Manage Engineering to Order in Odoo 17Celine George
Β 
4.18.24 Movement Legacies, Reflection, and Review.pptx
4.18.24 Movement Legacies, Reflection, and Review.pptx4.18.24 Movement Legacies, Reflection, and Review.pptx
4.18.24 Movement Legacies, Reflection, and Review.pptxmary850239
Β 
Choosing the Right CBSE School A Comprehensive Guide for Parents
Choosing the Right CBSE School A Comprehensive Guide for ParentsChoosing the Right CBSE School A Comprehensive Guide for Parents
Choosing the Right CBSE School A Comprehensive Guide for Parentsnavabharathschool99
Β 
BIOCHEMISTRY-CARBOHYDRATE METABOLISM CHAPTER 2.pptx
BIOCHEMISTRY-CARBOHYDRATE METABOLISM CHAPTER 2.pptxBIOCHEMISTRY-CARBOHYDRATE METABOLISM CHAPTER 2.pptx
BIOCHEMISTRY-CARBOHYDRATE METABOLISM CHAPTER 2.pptxSayali Powar
Β 

Último (20)

4.11.24 Mass Incarceration and the New Jim Crow.pptx
4.11.24 Mass Incarceration and the New Jim Crow.pptx4.11.24 Mass Incarceration and the New Jim Crow.pptx
4.11.24 Mass Incarceration and the New Jim Crow.pptx
Β 
Team Lead Succeed – Helping you and your team achieve high-performance teamwo...
Team Lead Succeed – Helping you and your team achieve high-performance teamwo...Team Lead Succeed – Helping you and your team achieve high-performance teamwo...
Team Lead Succeed – Helping you and your team achieve high-performance teamwo...
Β 
THEORIES OF ORGANIZATION-PUBLIC ADMINISTRATION
THEORIES OF ORGANIZATION-PUBLIC ADMINISTRATIONTHEORIES OF ORGANIZATION-PUBLIC ADMINISTRATION
THEORIES OF ORGANIZATION-PUBLIC ADMINISTRATION
Β 
Transaction Management in Database Management System
Transaction Management in Database Management SystemTransaction Management in Database Management System
Transaction Management in Database Management System
Β 
How to Fix XML SyntaxError in Odoo the 17
How to Fix XML SyntaxError in Odoo the 17How to Fix XML SyntaxError in Odoo the 17
How to Fix XML SyntaxError in Odoo the 17
Β 
Visit to a blind student's schoolπŸ§‘β€πŸ¦―πŸ§‘β€πŸ¦―(community medicine)
Visit to a blind student's schoolπŸ§‘β€πŸ¦―πŸ§‘β€πŸ¦―(community medicine)Visit to a blind student's schoolπŸ§‘β€πŸ¦―πŸ§‘β€πŸ¦―(community medicine)
Visit to a blind student's schoolπŸ§‘β€πŸ¦―πŸ§‘β€πŸ¦―(community medicine)
Β 
prashanth updated resume 2024 for Teaching Profession
prashanth updated resume 2024 for Teaching Professionprashanth updated resume 2024 for Teaching Profession
prashanth updated resume 2024 for Teaching Profession
Β 
31 ĐỀ THI THỬ VΓ€O LỚP 10 - TIαΊΎNG ANH - FORM MỚI 2025 - 40 CΓ‚U HỎI - BΓ™I VΔ‚N V...
31 ĐỀ THI THỬ VΓ€O LỚP 10 - TIαΊΎNG ANH - FORM MỚI 2025 - 40 CΓ‚U HỎI - BΓ™I VΔ‚N V...31 ĐỀ THI THỬ VΓ€O LỚP 10 - TIαΊΎNG ANH - FORM MỚI 2025 - 40 CΓ‚U HỎI - BΓ™I VΔ‚N V...
31 ĐỀ THI THỬ VΓ€O LỚP 10 - TIαΊΎNG ANH - FORM MỚI 2025 - 40 CΓ‚U HỎI - BΓ™I VΔ‚N V...
Β 
ESP 4-EDITED.pdfmmcncncncmcmmnmnmncnmncmnnjvnnv
ESP 4-EDITED.pdfmmcncncncmcmmnmnmncnmncmnnjvnnvESP 4-EDITED.pdfmmcncncncmcmmnmnmncnmncmnnjvnnv
ESP 4-EDITED.pdfmmcncncncmcmmnmnmncnmncmnnjvnnv
Β 
Reading and Writing Skills 11 quarter 4 melc 1
Reading and Writing Skills 11 quarter 4 melc 1Reading and Writing Skills 11 quarter 4 melc 1
Reading and Writing Skills 11 quarter 4 melc 1
Β 
Textual Evidence in Reading and Writing of SHS
Textual Evidence in Reading and Writing of SHSTextual Evidence in Reading and Writing of SHS
Textual Evidence in Reading and Writing of SHS
Β 
DIFFERENT BASKETRY IN THE PHILIPPINES PPT.pptx
DIFFERENT BASKETRY IN THE PHILIPPINES PPT.pptxDIFFERENT BASKETRY IN THE PHILIPPINES PPT.pptx
DIFFERENT BASKETRY IN THE PHILIPPINES PPT.pptx
Β 
week 1 cookery 8 fourth - quarter .pptx
week 1 cookery 8  fourth  -  quarter .pptxweek 1 cookery 8  fourth  -  quarter .pptx
week 1 cookery 8 fourth - quarter .pptx
Β 
Multi Domain Alias In the Odoo 17 ERP Module
Multi Domain Alias In the Odoo 17 ERP ModuleMulti Domain Alias In the Odoo 17 ERP Module
Multi Domain Alias In the Odoo 17 ERP Module
Β 
ClimART Action | eTwinning Project
ClimART Action    |    eTwinning ProjectClimART Action    |    eTwinning Project
ClimART Action | eTwinning Project
Β 
INTRODUCTION TO CATHOLIC CHRISTOLOGY.pptx
INTRODUCTION TO CATHOLIC CHRISTOLOGY.pptxINTRODUCTION TO CATHOLIC CHRISTOLOGY.pptx
INTRODUCTION TO CATHOLIC CHRISTOLOGY.pptx
Β 
How to Manage Engineering to Order in Odoo 17
How to Manage Engineering to Order in Odoo 17How to Manage Engineering to Order in Odoo 17
How to Manage Engineering to Order in Odoo 17
Β 
4.18.24 Movement Legacies, Reflection, and Review.pptx
4.18.24 Movement Legacies, Reflection, and Review.pptx4.18.24 Movement Legacies, Reflection, and Review.pptx
4.18.24 Movement Legacies, Reflection, and Review.pptx
Β 
Choosing the Right CBSE School A Comprehensive Guide for Parents
Choosing the Right CBSE School A Comprehensive Guide for ParentsChoosing the Right CBSE School A Comprehensive Guide for Parents
Choosing the Right CBSE School A Comprehensive Guide for Parents
Β 
BIOCHEMISTRY-CARBOHYDRATE METABOLISM CHAPTER 2.pptx
BIOCHEMISTRY-CARBOHYDRATE METABOLISM CHAPTER 2.pptxBIOCHEMISTRY-CARBOHYDRATE METABOLISM CHAPTER 2.pptx
BIOCHEMISTRY-CARBOHYDRATE METABOLISM CHAPTER 2.pptx
Β 

Lecture Notes: EEEC4340318 Instrumentation and Control Systems - System Models

  • 1. EEEC4340318 INSTRUMENTATION AND CONTROL SYSTEMS System Models FACULTY OF ENGINEERING AND COMPUTER TECHNOLOGY DIPLOMA IN ELECTRICALAND ELECTRONIC ENGINEERING Ravandran Muttiah BEng (Hons) MSc MIET
  • 2. 1 Differential Equation Models β€’ Most of the systems that we will deal with are dynamic β€’ Differential equations provide a powerful way to describe dynamic systems β€’ Will form the basis of our models β€’ We saw differential equations for inductors and capacitors. β€’ What about mechanical systems? both translational and rotational
  • 3. 2 Translational Spring 𝐹 𝑑 : resultant force in direction π‘₯ Recall free body diagrams and β€œaction and reaction” β€’ Spring. π‘˜: spring constant, 𝐿r: relaxed length of spring 𝐹 𝑑 = π‘˜ π‘₯2 𝑑 βˆ’ π‘₯1 𝑑 βˆ’ 𝐿r π‘₯ π‘₯1 𝑑 π‘₯2 𝑑 𝐹 𝑑
  • 4. 3 Translational Damper 𝐹 𝑑 : resultant force in direction π‘₯ β€’ Viscous damper. 𝑏: viscous friction coefficient 𝐹 𝑑 = 𝑏 dπ‘₯2 𝑑 d𝑑 βˆ’ dπ‘₯1 𝑑 d𝑑 = 𝑏 𝑣2 𝑑 βˆ’ 𝑣1 𝑑 π‘₯ π‘₯1 𝑑 π‘₯2 𝑑 𝐹 𝑑
  • 5. 4 Mass 𝐹 𝑑 : resultant force in direction π‘₯ β€’ Mass: 𝑀 𝐹 𝑑 = 𝑀 d2 π‘₯m 𝑑 d𝑑2 = 𝑀 d𝑣m 𝑑 d𝑑 = π‘€π‘Žm 𝑑 π‘₯ π‘₯m 𝑑 𝐹 𝑑
  • 6. 5 Rotational Spring 𝑇 𝑑 : resultant force in direction πœƒ β€’ Rotational spring. π‘˜: rotational spring constant, βˆ…r: rotation of relaxed spring 𝑇 𝑑 = π‘˜ πœƒ2 𝑑 βˆ’ πœƒ1 𝑑 βˆ’ βˆ…r πœƒ πœƒ1 𝑑 πœƒ2 𝑑 𝑇 𝑑
  • 7. 6 Rotational Damper 𝑇 𝑑 : resultant torque in direction πœƒ β€’ Rotational viscous damper. 𝑏: rotational viscous friction coefficient πœƒ πœƒ1 𝑑 πœƒ2 𝑑 𝑇 𝑑 𝑇 𝑑 = 𝑏 dπœƒ2 𝑑 d𝑑 βˆ’ dπœƒ1 𝑑 d𝑑 = 𝑏 πœ”2 𝑑 βˆ’ πœ”1 𝑑
  • 8. 7 Rotational Inertia 𝑇 𝑑 : resultant torque in direction πœƒ β€’ Rotational inertia: 𝐽 πœƒ πœƒm 𝑑 𝑇 𝑑 𝑇 𝑑 = 𝐽 d2 πœƒm 𝑑 d𝑑2 = 𝐽 dπœ”m 𝑑 d𝑑 = 𝐽𝛼m 𝑑
  • 9. 8 Translational Horizontal. Origin for y: y = 0 when spring relaxed 𝐹 = 𝑀 d𝑣 𝑑 d𝑑 𝑣 𝑑 = d𝑦 𝑑 d𝑑 𝐹 𝑑 = π‘Ÿ 𝑑 βˆ’ 𝑏 d𝑦 𝑑 d𝑑 βˆ’ π‘˜π‘¦ 𝑑 𝑀 d2 𝑦 𝑑 d𝑑 + 𝑏 d𝑦 𝑑 d𝑑 + π‘˜π‘¦ 𝑑 = π‘Ÿ 𝑑 Mass 𝑀 Wall Friction, 𝑏 y π‘˜ π‘Ÿ 𝑑 Force 𝑀 π‘˜π‘¦ 𝑏𝑦 π‘Ÿ 𝑑 y Figure 1
  • 10. 9 Mass 𝑀 Wall Friction, 𝑏 y π‘˜ π‘Ÿ 𝑑 Force 𝑀 π‘˜π‘¦ 𝑏𝑦 π‘Ÿ 𝑑 y β€’ Stretch the spring a little and hold. β€’ Assume an under-damped system. β€’ What happens when we let it go? Figure 2
  • 11. 10 β€’ Nature does not have many linear systems. β€’ However, many systems behave approximately linearly in the neighbourhood of a given point. β€’ Apply first-order Taylor’s Series at a given point. β€’ Obtain a locally linear model. β€’ In this course we will focus on the case of a single linearized differential equation model for the system, in which the coefficients are constants. β€’ e.g., in previous examples mass, viscosity and spring constant did not change with time, position, velocity, temperature, etc. Taylor’s Series
  • 12. 11 Pendulum Example Assume shaft is light with respect to 𝑀, and stiff with respect to gravitational forces. Torque due to gravity: 𝑇 πœƒ = 𝑀𝑔𝐿 sin πœƒ Apply Taylor’s series around πœƒ = 0: 𝑇 πœƒ = 𝑀𝑔𝐿 πœƒ βˆ’ πœƒ3 3! + πœƒ5 5! βˆ’ πœƒ7 7! + β‹― For small πœƒ around πœƒ = 0 we can build an approximate model that is linear, 𝑇 πœƒ β‰ˆ π‘€π‘”πΏπœƒ
  • 14. 13 Laplace Transform Once we have a linearised differential equation (with constant coefficients) we can take Laplace Transforms to obtain the transfer function. We will consider the β€œone-sided” Laplace transform, for signals that are zero to the left of the origin. 𝐹 𝑠 = 0βˆ’ ∞ 𝑓 𝑑 eβˆ’π‘ π‘‘ d𝑑 What does ∞ mean ? limπ‘‡β†’βˆž 𝑇 . Does this limit exist ? If 𝑓 𝑑 < 𝑀e𝛼𝑑 , then exists for all Re 𝑠 > 𝛼. Includes all physically realisable signals. Note: When multiplying transfer function by Laplace of input, output is only valid for values of 𝑠 in intersection of regions of convergence.
  • 15. 14 Poles And Zeros In this course, most Laplace transforms will be rational functions, that is, a ratio of two polynomials in 𝑠; i.e., 𝐹 𝑠 = 𝑛F 𝑠 𝑑F 𝑠 where 𝑛F 𝑠 and 𝑑F 𝑠 are polynomials. Definitions: - Poles of 𝐹 𝑠 are the roots of 𝑑F 𝑠 - Zeros of 𝐹 𝑠 are the roots of 𝑛F 𝑠 Hence, 𝐹 𝑠 = 𝐾F 𝑖=1 𝑀 𝑠 + 𝑧𝑖 𝑗=1 𝑛 𝑠 + 𝑝𝑗 = 𝐾F 𝑖=1 𝑀 𝑧𝑖 𝑗=1 𝑛 𝑝𝑗 𝑖=1 𝑀 𝑠 𝑧𝑖 + 1 𝑗=1 𝑛 𝑠 𝑝𝑗 + 1 where βˆ’π‘§π‘– are the zeros and βˆ’π‘π‘— are the poles.
  • 16. 15 Visualising Poles And Zeros Consider the simple Laplace transform 𝐹 𝑠 = 𝑠 𝑠+3 𝑠2+2𝑠+5 zeros: 0, βˆ’3; poles: βˆ’1 + j2, βˆ’1 βˆ’ j2 Figure 4: Pole-zero plot (left) and magnitude of 𝐹 𝑠 right
  • 17. 16 𝐹 𝑠 from above (left) and previous view of 𝐹 𝑠 right. Figure 5
  • 18. 17 Laplace Transforms Pairs Simple ones can be computed analytically; For more complicated ones, one can typically obtain the inverse Laplace transform by: - Identifying poles; - Constructing partial fraction expansion; - Using of properties and some simple pairs to invent each component of partial fraction expansion.
  • 19. 18 Figure 6 Recall that complex poles come in conjugate pairs
  • 20. 19 Key Properties Linearity, d𝑓 𝑑 d𝑑 ↔ 𝑠𝐹 𝑠 βˆ’ 𝑓 0βˆ’ βˆ’βˆž 𝑑 𝑓 π‘₯ dπ‘₯ ↔ 𝐹 𝑠 𝑠 + 1 𝑠 βˆ’βˆž 0βˆ’ 𝑓 π‘₯ dπ‘₯
  • 21. 20 Final Value Theorem Can we avoid having to do an inverse Laplace transform ? Sometimes. Consider the case when we only want to find the final value of 𝑓 𝑑 , namely limπ‘‘β†’βˆžπ‘“ 𝑑 . If 𝐹 𝑠 has all its poles in the left half plane, except, perhaps, for a single pole at the origin, then, lim π‘‘β†’βˆž 𝑓 𝑑 = lim 𝑠→0 𝑠𝐹 𝑠 Common application: Steady state value of step response. What if there are poles in Right Half Plane (RHP), or on the jπœ” - axis and not at the origin ?
  • 22. 21 Mass-Spring-Damper System Horizontal (no gravity) Set origin of 𝑦 where spring is β€œrelaxed” 𝐹 = 𝑀 d𝑣 𝑑 d𝑑 𝑣 𝑑 = d𝑦 𝑑 d𝑑 𝐹 𝑑 = π‘Ÿ 𝑑 βˆ’ 𝑏 d𝑦 𝑑 d𝑑 βˆ’ π‘˜π‘¦ 𝑑 𝑀 d2 𝑦 𝑑 d𝑑 + 𝑏 d𝑦 𝑑 d𝑑 + π‘˜π‘¦ 𝑑 = π‘Ÿ 𝑑 Mass 𝑀 Wall Friction, 𝑏 y π‘˜ π‘Ÿ 𝑑 Force 𝑀 π‘˜π‘¦ 𝑏𝑦 π‘Ÿ 𝑑 y Figure 7
  • 23. 22 𝑀 d2 𝑦 𝑑 d𝑑 + 𝑏 d𝑦 𝑑 d𝑑 + π‘˜π‘¦ 𝑑 = π‘Ÿ 𝑑 Consider 𝑑 β‰₯ 0 and take Laplace transform. 𝑀 𝑠2 π‘Œ 𝑠 βˆ’ 𝑠𝑦 0βˆ’ βˆ’ d𝑦 𝑑 d𝑑 𝑑=0βˆ’ + 𝑏 π‘ π‘Œ 𝑠 βˆ’ 𝑦 0βˆ’1 + π‘˜π‘Œ 𝑠 = 𝑅 𝑠 Hence, π‘Œ 𝑠 = 1 𝑀 𝑠2 + 𝑏 𝑀 𝑠 + π‘˜ 𝑀 𝑅 𝑠 + 𝑠 + 𝑏 𝑀 𝑠2 + 𝑏 𝑀 𝑠 + π‘˜ 𝑀 𝑦 0βˆ’ + 1 𝑠2 + 𝑏 𝑀 𝑠 + π‘˜ 𝑀 d𝑦(𝑑) d𝑑 𝑑=0βˆ’ Note that linearity yields superposition.
  • 24. 23 Response To Static Initial Condition Spring stretched to a point 𝑦0, held, then let go at time 𝑑 = 0 Hence, π‘Ÿ 𝑑 = 0 and d𝑦 𝑑 d𝑑 𝑑=0 = 0 Hence, π‘Œ 𝑠 = 𝑠 + 𝑏 𝑀 𝑠2 + 𝑏 𝑀 𝑠 + π‘˜ 𝑀 𝑦0 What can we learn about this response without having to invert π‘Œ 𝑠
  • 25. 24 Standard Form π‘Œ 𝑠 = 𝑠 + 𝑏 𝑀 𝑠2 + 𝑏 𝑀 𝑠 + π‘˜ 𝑀 𝑦0 = 𝑠 + 2πœπœ”π‘› 𝑠2 + 2πœπœ”π‘›π‘  + πœ”π‘› 2 𝑦0 where πœ”π‘› = π‘˜ 𝑀 and 𝜁 = 𝑏 2 π‘˜π‘€ Poles: 𝑠1, 𝑠2 = βˆ’πœπœ”π‘› Β± πœ”π‘› 𝜁2 βˆ’ 1 β€’ 𝜁 > 1 (equivalent 𝑏 > 2 π‘˜π‘€ ): distinct real roots, overdamped β€’ 𝜁 = 1 (equivalent 𝑏 = 2 π‘˜π‘€ ): equal real roots, critically damped β€’ 𝜁 < 1 (equivalent 𝑏 < 2 π‘˜π‘€ ): complex conjugate roots, underdamped
  • 26. 25 Overdamped Case 𝑠1, 𝑠2 = βˆ’πœπœ”π‘› Β± πœ”π‘› 𝜁2 βˆ’ 1 Overdamped response: 𝜁 > 1 (equivalent 𝑏 > 2 π‘˜π‘€ ) 𝑦 𝑑 = 𝑐1e𝑠1𝑑 + 𝑐2e𝑠2𝑑 𝑦 0 = 𝑦0 β‡’ 𝑐1 + 𝑐2 = 𝑦0 d𝑦 𝑑 d𝑑 𝑑=0 = 0 β‡’ 𝑠1𝑐1 +𝑠2𝑐2 = 0 What does this look like when strongly overdamped. 𝑠2 is large and negative, 𝑠1 is small and negative. Hence e𝑠2𝑑 decays much faster than e𝑠1𝑑 . Also, 𝑐2 = βˆ’ 𝑐1𝑠1 𝑠2 . Hence, small. Hence 𝑦 𝑑 β‰ˆ 𝑐1e𝑠1𝑑 . Looks like a first order system.
  • 27. 26 Critically Damped Case 𝑠1 = 𝑠2 = βˆ’πœ”π‘› 𝑦 𝑑 = 𝑐1eπœ”π‘›π‘‘ + 𝑐2𝑑eβˆ’πœ”π‘›π‘‘ 𝑦 0 = 𝑦0 β‡’ 𝑐1 = 𝑦0 d𝑦 𝑑 d𝑑 𝑑=0 = 0 β‡’ βˆ’π‘1πœ”π‘› +𝑐2 = 0
  • 28. 27 Underdamped Case 𝑠1, 𝑠2 = βˆ’πœπœ”π‘› Β± π‘—πœ”π‘› 1 βˆ’ 𝜁2 Therefore, 𝑆𝑖 = πœ”π‘›: poles lies on a circle. Angle to negative real axis is cosβˆ’1 𝜁 . Γ— Γ— jπœ”π‘› 1 βˆ’ 𝜁2 βˆ’jπœ”π‘› 1 βˆ’ 𝜁2 jπœ” 𝑠1 𝑠2 βˆ’πœπœ”π‘› πœ”π‘› πœƒ = cosβˆ’1 𝜁 βˆ’2πœπœ”π‘› jπœ”π‘› βˆ’jπœ”π‘› jπœ” 𝜁 > 1 πœ”π‘› 𝜁 increasing 𝜁 = 1 𝜁 > 1 𝜁 < 1 𝜎 𝜎 Figure 8 0 0 𝜁 = 0
  • 29. 28 Define 𝜎 = πœπœ”π‘›, πœ”d = πœ”π‘› 1 βˆ’ 𝜁2. Response is: 𝑦 𝑑 = 𝑐1eβˆ’πœŽπ‘‘ cos πœ”d𝑑 + 𝑐2eβˆ’πœŽπ‘‘ sin πœ”d𝑑 = 𝐴eβˆ’πœŽπ‘‘ cos πœ”d𝑑 + πœ™ Homework: Relate 𝐴 and πœ™ to 𝑐1 and 𝑐2. Homework: Write the initial conditions 𝑦 0 = 𝑦0 and d𝑦 𝑑 dπ‘₯ 𝑑=0 = 0 in terms of 𝑐1 and 𝑐2, and in terms of 𝐴 and πœ™
  • 30. 29 π‘Œ 𝑠 = 𝑠 + 2πœπœ”π‘› 𝑠2 + 2πœπœ”π‘›π‘  + πœ”π‘› 2 𝑦0 where πœ”π‘› = π‘˜ 𝑀 and 𝜁 = 𝑏 2 π‘˜π‘€ Poles: 𝑠1, 𝑠2 = βˆ’πœπœ”π‘› Β± πœ”π‘› 𝜁2 βˆ’ 1 𝜁 > 1: overdamped; 𝜁 < 1: underdamped Consider the case of 𝑀 = 1, π‘˜ = 1. Hence, πœ”π‘› = 1, 𝑏 = 3 β†’ 0. Hence, 𝜁 = 1.5 β†’ 0 Initial conditions: 𝑦0 = 1, d𝑦 𝑑 dπ‘₯ 𝑑=0 = 0
  • 31. 30 𝑏 = 3 𝑏 = 3 Re s t Poles And Transient Response, 𝒃 = πŸ‘
  • 32. 31 𝑏 = 2.75 𝑏 = 2.75 Poles And Transient Response, 𝒃 = 𝟐. πŸ•πŸ“ Re s t
  • 33. 32 Poles And Transient Response, 𝒃 = 𝟐. πŸ“ 𝑏 = 2.5 𝑏 = 2.5 Re s t
  • 34. 33 Poles And Transient Response, 𝒃 = 𝟐. πŸπŸ“ 𝑏 = 2.25 𝑏 = 2.25 Re s t
  • 35. 34 Poles And Transient Response, 𝒃 = 𝟐 𝑏 = 2 𝑏 = 2 Re s t
  • 36. 35 Poles And Transient Response, 𝒃 = 𝟏. πŸ—πŸ“ 𝑏 = 1.95 𝑏 = 1.95 Re s t
  • 37. 36 Poles And Transient Response, 𝒃 = 𝟏. πŸ•πŸ“ 𝑏 = 1.75 𝑏 = 1.75 Re s t
  • 38. 37 Poles And Transient Response, 𝒃 = 𝟏. πŸ“ 𝑏 = 1.5 𝑏 = 1.5 Re s t
  • 39. 38 Poles And Transient Response, 𝒃 = 𝟏. πŸπŸ“ 𝑏 = 1.25 𝑏 = 1.25 Re s t
  • 40. 39 Poles And Transient Response, 𝒃 = 𝟏 𝑏 = 1 𝑏 = 1 Re s t
  • 41. 40 Poles And Transient Response, 𝒃 = 𝟎. πŸ•πŸ“ 𝑏 = 0.75 𝑏 = 0.75 Re s t
  • 42. 41 Poles And Transient Response, 𝒃 = 𝟎. πŸ“ 𝑏 = 0.5 𝑏 = 0.5 Re s t
  • 43. 42 Poles And Transient Response, 𝒃 = 𝟎. πŸπŸ“ 𝑏 = 0.25 𝑏 = 0.25 Re s t
  • 44. 43 Poles And Transient Response, 𝒃 = 𝟎 𝑏 = 0 𝑏 = 0 Re s t
  • 45. 44 Transfer Function Definition: Laplace transform of output over Laplace transform of input when initial conditions are zero. Most of the transfer functions in this course will be ratios of polynomials in 𝑠. Hence, poles and zeros of transfer functions have natural definitions. Example: Recall the mass-spring-damper system,
  • 46. 45 Transfer Function, Mass-Spring-Damper For the mass-spring-damper system, π‘Œ 𝑠 = 1 𝑀 𝑠2 + 𝑏 𝑀 𝑠 + π‘˜ 𝑀 𝑅 𝑠 + 𝑠 + 𝑏 𝑀 𝑠2 + 𝑏 𝑀 𝑠 + π‘˜ 𝑀 𝑦 0βˆ’ + 1 𝑠2 + 𝑏 𝑀 𝑠 + π‘˜ 𝑀 d𝑦(𝑑) d𝑑 𝑑=0βˆ’ Therefore, transfer function is: 1 𝑀 𝑠2 + 𝑏 𝑀 𝑠 + π‘˜ 𝑀 = 1 𝑀𝑠2 + 𝑏𝑠 + π‘˜
  • 47. 46 Step Response Recall that 𝑒 𝑑 ↔ 1 𝑠 Therefore, for transfer function 𝐺 𝑠 , the step response is: β„’βˆ’1 𝐺 𝑠 𝑠 For the mass-spring-damper system, step response is, β„’βˆ’1 1 𝑠 𝑀𝑠2 + 𝑏𝑠 + π‘˜ What is the final position for a step input ? Recall final value theorem. Final position is 1 𝐾 . What about the complete step response ?
  • 48. 47 Step response: β„’βˆ’1 𝐺 𝑠 1 𝑠 Hence poles of Laplace transform of step response are poles of 𝐺 𝑠 , plus an additional pole at 𝑠 = 0. For the mass-spring-damper system, using partial fractions, step response is: β„’βˆ’1 1 𝑠 𝑀𝑠2 + 𝑏𝑠 + π‘˜ = β„’βˆ’1 1 π‘˜ 𝑠 βˆ’ 1 π‘˜ β„’βˆ’1 𝑀𝑠 + 𝑏 𝑀𝑠2 + 𝑏𝑠 + π‘˜ = 1 π‘˜ 𝑒 𝑑 βˆ’ 1 π‘˜ β„’βˆ’1 𝑀𝑠 + 𝑏 𝑀𝑠2 + 𝑏𝑠 + π‘˜ Consider again the case of 𝑀 = π‘˜ = 1, 𝑏 = 3 β†’ 0. πœ”π‘› = 1, 𝜁 = 1.5 β†’ 0.
  • 49. 48 Poles And Step Response, 𝒃 = πŸ‘
  • 50. 49 Poles And Step Response, 𝒃 = 𝟐. πŸ•πŸ“
  • 51. 50 Poles And Step Response, 𝒃 = 𝟐. πŸ“
  • 52. 51 Poles And Step Response, 𝒃 = 𝟐. πŸπŸ“
  • 53. 52 Poles And Step Response, 𝒃 = 𝟐
  • 54. 53 Poles And Step Response, 𝒃 = 𝟏. πŸ—πŸ“
  • 55. 54 Poles And Step Response, 𝒃 = 𝟏. πŸ•πŸ“
  • 56. 55 Poles And Step Response, 𝒃 = 𝟏. πŸ“
  • 57. 56 Poles And Step Response, 𝒃 = 𝟏. πŸπŸ“
  • 58. 57 Poles And Step Response, 𝒃 = 𝟏
  • 59. 58 Poles And Step Response, 𝒃 = 𝟎. πŸ•πŸ“
  • 60. 59 Poles And Step Response, 𝒃 = 𝟎. πŸ“
  • 61. 60 Poles And Step Response, 𝒃 = 𝟎. πŸπŸ“
  • 62. 61 Poles And Step Response, 𝒃 = 𝟎
  • 63. 62 We will consider linearised model for each component. Flux in the air gap: βˆ… 𝑑 = 𝐾f𝑖f 𝑑 Torque: 𝑇m 𝑑 = 𝐾1βˆ… 𝑑 𝑖a 𝑑 = 𝐾1𝐾f𝑖f 𝑑 𝑖a 𝑑 Is that linear ? Only if one of 𝑖f 𝑑 or 𝑖f 𝑑 is constant. We will consider β€œarmature control”: 𝑖f 𝑑 constant. A DC Motor Figure 9
  • 64. 63 Armature Controlled DC Motor 𝑖f 𝑑 will be constant (to set up magnetic field), 𝑖f 𝑑 = 𝐼f Torque: 𝑇m 𝑑 = 𝐾1𝐾f𝐼f𝑖a 𝑑 = 𝐾m𝑖a 𝑑 Will control motor using armature voltage 𝑉 a 𝑑 . What is the transfer function from 𝑉 a 𝑠 to angular position πœƒ 𝑠 ? Origin ?
  • 65. 64 𝑇m 𝑑 = 𝐾m𝑖a 𝑑 ↔ 𝑇m 𝑠 = 𝐾m𝐼a 𝑠 Kirchhoff Voltage Law: 𝑉 a 𝑠 = 𝑅a + 𝑠𝐿a 𝐼a 𝑠 + 𝑉b 𝑠 𝑉b 𝑠 is back-emf voltage, due to Faraday’s Law. 𝑉b 𝑠 = 𝐾bπœ” 𝑠 , where πœ” 𝑠 = π‘ πœƒ 𝑠 is rotational velocity. Remember: transfer function implies zero initial conditions. Towards Transfer Function
  • 66. 65 Torque on load: 𝑇L 𝑠 = 𝑇m 𝑠 βˆ’ 𝑇d 𝑠 𝑇d 𝑠 : disturbance. Often small, unknown. Load torque and load angle (Newton plus friction): 𝑇L 𝑠 = 𝐽𝑠2 πœƒ 𝑠 + π‘π‘ πœƒ 𝑠 Now put it all together.
  • 67. 66 𝑇m 𝑠 = 𝐾m𝐼a 𝑠 = 𝐾m 𝑉 a 𝑠 βˆ’ 𝑉b 𝑠 𝑅a + 𝑠𝐿a 𝑉b 𝑠 = 𝐾bπœ” 𝑠 𝑇L 𝑠 = 𝑇m 𝑠 βˆ’ 𝑇d 𝑠 𝑇L 𝑠 = 𝐽𝑠2 πœƒ 𝑠 + π‘π‘ πœƒ 𝑠 = π½π‘ πœ” 𝑠 + π‘πœ” 𝑠 Hence πœ” 𝑠 = 𝑇L 𝑠 𝐽𝑠+𝑏 πœƒ 𝑠 = πœ” 𝑠 𝑠
  • 68. 67 Transfer Function 𝐾m 𝑅a + 𝐿a𝑠 Armature 1 𝐽𝑠 + 𝑏 1 𝑠 𝐾b Disturbance 𝑇d 𝑠 Position πœƒ 𝑠 𝑉 a 𝑠 + βˆ’ + βˆ’ 𝑇m 𝑠 𝑇L 𝑠 Speed πœ” 𝑠 Back Electromotive Force Set 𝑇d 𝑠 = 0 and solve (you MUST do this yourself) 𝐺 𝑠 = πœƒ 𝑠 𝑉 a 𝑠 = 𝐾m 𝑠 𝑅a + 𝑠𝐿a 𝐽𝑠 + 𝑏 + 𝐾b𝐾m = 𝐾m 𝑠 𝑠2 + 2πœπœ”π‘›π‘  + πœ”π‘› 2 Figure 10
  • 69. 68 Second Order Approximation 𝐺 𝑠 = πœƒ 𝑠 𝑉 a 𝑠 = 𝐾m 𝑠 𝑅a + 𝑠𝐿a 𝐽𝑠 + 𝑏 + 𝐾b𝐾m Sometimes armature time constant, πœπ‘Ž = 𝐿a 𝑅a is negligible Hence (you MUST derive this yourself) 𝐺 𝑠 β‰ˆ 𝐾m 𝑠 𝑅a 𝐽𝑠 + 𝑏 𝐾b𝐾m = πΎπ‘š 𝑅a𝑏 + 𝐾b𝐾m 𝑠 𝜏1𝑠 + 1 where 𝜏1 = 𝑅a𝐽 𝑅a𝑏+𝐾b𝐾m
  • 70. 69 Model For A Disk Drive Read System Uses a permanent magnet DC motor Can be modelled using armature control model with 𝐾b = 0 Hence, motor transfer function: 𝐺 𝑠 = πœƒ 𝑠 𝑉 a 𝑠 = 𝐾m 𝑠 𝑅a + 𝑠𝐿a 𝐽𝑠 + 𝑏 Assume for now that the arm is stiff. Figure 11
  • 71. 70 Typical Values Parameter Symbol Typical Value Inertia of Arm and Read Head 𝐽 1 Nm𝑠2 /rad Friction 𝑏 20 Nms/rad Amplifier 𝐾a 10-1000 Armature Resistance 𝑅 1 Ξ© Motor Constant 𝐾m 5 Nm/A Armature Inductance 𝐿 1 mH 𝐺 𝑠 = 5000 𝑠 𝑠 + 20 𝑠 + 1000 Table 1
  • 72. 71 Time Constants Initial model, 𝐺 𝑠 = 5000 𝑠 𝑠 + 20 𝑠 + 1000 Motor time constant = 1 20 = 50 ms Armature time constant = 1 1000 = 1 ms Hence, 𝐺 𝑠 β‰ˆ 𝐺 𝑠 = 5 𝑠 𝑠 + 20
  • 73. 72 A Simple Feedback Controller Now that we have a model, how to control ? Simple idea: Apply voltage to motor that is proportional to error between where we are and where we want to be. Amplifier Control Device Actuator and Read Arm Input Voltage Actual Head Position + βˆ’ DC Motor and Arm Sensor Read Head and Index Track on Disk Desired Head Position Error Figure 12
  • 74. 73 𝐾a Amplifier Motor and Arm 𝐺 𝑠 𝑉 𝑠 π‘Œ 𝑠 + βˆ’ 𝐺 𝑠 = 𝐾m 𝑠 𝐽𝑠 + 𝑏 𝐿𝑠 + 𝑅 Sensor 𝐻 𝑠 = 1 𝑅 𝑠 𝐸 𝑠 Here, 𝑉 𝑠 = 𝑉 a 𝑠 and π‘Œ 𝑠 = πœƒ 𝑠 Figure 13
  • 75. 74 Simplified Block Diagram 𝐾a π‘Œ 𝑠 + βˆ’ 𝐺 𝑠 𝑅 𝑠 What is the transfer function from command to position ? Derive this yourself. π‘Œ 𝑠 𝑅 𝑠 = 𝐾a𝐺 𝑠 1 + 𝐾a𝐺 𝑠 Using second-order approximation, 𝐺 𝑠 β‰ˆ 𝐺 𝑠 = 5 𝑠 𝑠+20 π‘Œ 𝑠 β‰ˆ 5𝐾a 𝑠2 + 20𝑠 + 5𝐾a 𝑅 𝑠 For 0 < 𝐾a < 20: overdamped For 𝐾a > 20: underdamped Figure 14
  • 76. 75 Response To 𝒓 𝒕 = 𝟎. πŸπ’– 𝒕 ; π‘²πš = 𝟏𝟎 Slow. Slower than IBMs first drive from late 1950’s. Disks in the 1970’s had 25 ms seek times; now < 10 ms Perhaps increase 𝐾a ? That would result in a β€œbigger” input to the motor for a given error. Poles in s-plane Response
  • 77. 76 Response To 𝒓 𝒕 = 𝟎. πŸπ’– 𝒕 ; π‘²πš = 𝟏𝟎, πŸπŸ“ Poles in s-plane Response Changing 𝐾a changes the position of the closed loop poles. Hence, step response changes.
  • 78. 77 Response To 𝒓 𝒕 = 𝟎. πŸπ’– 𝒕 ; π‘²πš = 𝟏𝟎, πŸπŸ“, 𝟐𝟎 Changing 𝐾a changes the position of the closed loop poles. Hence, step response changes (now critically damped).
  • 79. 78 Response To 𝒓 𝒕 = 𝟎. πŸπ’– 𝒕 ; π‘²πš = 𝟏𝟎, πŸπŸ“, 𝟐𝟎, πŸ’πŸŽ Changing 𝐾a changes the position of the closed loop poles. Hence, step response changes (now underdamped).
  • 80. 79 Response To 𝒓 𝒕 = 𝟎. πŸπ’– 𝒕 ; π‘²πš = 𝟏𝟎, πŸπŸ“, 𝟐𝟎, πŸ’πŸŽ, πŸ”πŸŽ Changing 𝐾a changes the position of the closed loop poles. Hence, step response changes (now more underdamped).
  • 81. 80 Response To 𝒓 𝒕 = 𝟎. πŸπ’– 𝒕 ; π‘²πš = 𝟏𝟎, πŸπŸ“, 𝟐𝟎, πŸ’πŸŽ, πŸ”πŸŽ, πŸ–πŸŽ What is happening to the settling time of the underdamped cases ? Only just beats IBM’s first drive. What else could we do with the controller ? Prediction ?
  • 82. 81 Block Diagram Models As we have just seen, a convenient way to represent a transfer function is via a block diagram. In this case, π‘ˆ 𝑠 = 𝐺c 𝑠 𝑅 𝑠 and π‘Œ 𝑠 = 𝐺 𝑠 π‘ˆ 𝑠 Hence, π‘Œ 𝑠 = 𝐺 𝑠 𝐺c 𝑠 𝑅 𝑠 Consistent with the engineering procedure of breaking things up into little bits, studying the little bits, and then put them together. 𝐺c 𝑠 π‘Œ 𝑠 𝐺 𝑠 𝑅 𝑠 Figure 15 Controller Process π‘ˆ 𝑠
  • 83. 82 𝐺11 𝑠 π‘Œ1 𝑠 𝑅1 𝑠 Simple Example 𝐺22 𝑠 + + π‘Œ2 𝑠 𝑅2 𝑠 + + π‘Œ1 𝑠 = 𝐺11 𝑠 𝑅1 𝑠 + 𝐺12 𝑠 𝑅2 𝑠 π‘Œ2 𝑠 = 𝐺21 𝑠 𝑅1 𝑠 + 𝐺22 𝑠 𝑅2 𝑠 Figure 16
  • 84. 83 Example: Loop Transfer Function 𝐺c 𝑠 Controller 𝑍 𝑠 π‘Œ 𝑠 + βˆ’ 𝑅 𝑠 𝐸a 𝑠 Figure 17 𝐺a 𝑠 Actuator 𝐺 𝑠 Process 𝐻 𝑠 Sensor π‘ˆ 𝑠 𝐡 𝑠 πΈπ‘Ž 𝑠 = 𝑅 𝑠 βˆ’ 𝐡 𝑠 = 𝑅 𝑠 βˆ’ 𝐻 𝑠 π‘Œ 𝑠 π‘Œ 𝑠 = 𝐺 𝑠 π‘ˆ 𝑠 = 𝐺 𝑠 𝐺a 𝑠 𝑍 𝑠 = 𝐺 𝑠 𝐺a 𝑠 𝐺c 𝑠 𝐸a 𝑠 = 𝐺 𝑠 𝐺a 𝑠 𝐺c 𝑠 𝑅 𝑠 βˆ’ 𝐻 𝑠 π‘Œ 𝑠 π‘Œ 𝑠 𝑅 𝑠 = 𝐺 𝑠 𝐺a 𝑠 𝐺c 𝑠 1 + 𝐺 𝑠 πΊπ‘Ž 𝑠 𝐺𝑐 𝑠 𝐻 𝑠 Each transfer function is a ratio of polynomials in 𝑠. What is 𝐸a 𝑠 𝑅 𝑠 ?
  • 85. 84 Block Diagram Transformations Combining Block In Cascade Original Diagram Equivalent Diagram 𝐺1 𝑠 𝑋1 𝐺2 𝑠 𝑋3 𝑋2 𝐺1𝐺2 𝑋1 𝑋3 Moving A Summing Point Behind A Block 𝐺 𝑋3 + Β± 𝑋1 𝑋2 𝐺 + Β± 𝑋1 𝑋2 𝐺 𝑋3 Original Diagram Equivalent Diagram
  • 86. 85 Moving A Pickoff Point Ahead Of A Block Original Diagram Equivalent Diagram 𝐺 𝑋1 𝑋2 𝐺 𝑋1 𝑋3 Moving A Pickoff Point Behind A Block 𝐺 𝑋1 1 𝐺 𝑋2 Original Diagram Equivalent Diagram 𝑋2 𝐺 𝑋2 𝐺 𝑋1 𝑋2 𝑋1 𝑋1
  • 87. 86 Moving A Summing Point Ahead Of A Block Original Diagram Equivalent Diagram 𝐺 𝑋1 𝑋3 𝐺 𝑋3 Eliminating A Feedback Loop 𝐺 1 Β± 𝐺𝐻 𝑋1 𝑋2 Original Diagram Equivalent Diagram 𝑋2 1 𝐺 𝑋2 + Β± Β± 𝑋1 + 𝐺 𝑋2 𝐻 Β± 𝑋1 +
  • 88. 87 𝐺1 + βˆ’ 𝑅 𝑠 𝐻2 𝐺2 + βˆ’ + 𝐻1 𝐺3 𝐺4 π‘Œ 𝑠 𝐻3 Using Block Diagram Transformations Figure 18 +
  • 91. 89 + βˆ’ 𝑅 𝑠 𝐺1 𝐺2𝐺3𝐺4 1 βˆ’ 𝐺3𝐺4𝐻1 + 𝐺2𝐺3𝐻2 π‘Œ 𝑠 𝐻3 Figure 21 𝑅 𝑠 𝐺1𝐺2𝐺3𝐺4 1 βˆ’ 𝐺3𝐺4𝐻1 + 𝐺2𝐺3𝐻2 + 𝐺1𝐺2𝐺3𝐺4𝐻3 π‘Œ 𝑠 Figure 22
  • 92. 90 References (1) Tim Davidson, Introduction to Linear Control Systems, McMaster University, 2018.