SlideShare a Scribd company logo
1 of 48
Cahen-Hodes Weizmann Inst. of Science 1-2015
Photovoltaics:
Fundamental concepts and novel
systems
Preeti Choudhary
chaudharypreeti1997@gmail.com
MSc (Applied Physics)
Cahen-Hodes Weizmann Inst. of Science 1-2015
Photovoltaics:
Fundamental concepts and novel systems
First practical photovoltaic cell:
Chapin, Fuller, Pearson,
Bell Labs, 1954: 6% efficiency
Cahen-Hodes Weizmann Inst. of Science 1-2015
Outline
• Energy levels  bands
• Doping of semiconductors
• Energy band alignments between different phases
• Space charge layers
• p-n junctions, Schottky barriers
• p-n cells, Si cells, thin film cells
• Schottky cells (solid and liquid junction)
• p-i-n cells
• Fundamental limits of photovoltaic cells
• How to overcome/ bypass these limits
• New generation cells (brief survey)
• PV stability, efficiencies and economics
Cahen-Hodes Weizmann Inst. of Science 1-2015
From energy levels to bands
E
If EG < ~100-150x kTB
 semiconductor
1
e
-
energy
EG
EV
EC
CB
VB
HOMO
LUMO
Cahen-Hodes Weizmann Inst. of Science 1-2015
Doping of semiconductors
Si Si Si Si
Si Si Si Si
Si Si Si Si
Si Si Si Si
Si Si Si Si
Si Si Si
Si Si Si Si
Si Si Si Si
As
B C N
Al Si P
Ga Ge As
EC
E
EV
EG 1.1 eV
n-type
As5+ ---> 4e-+ e-
donors (ND)
EF = Fermi level (~electrochemical
potential of electrons
+ + + + + + + + + + + +
          
Free electrons in CB
Cahen-Hodes Weizmann Inst. of Science 1-2015
Si Si Si Si
Si Si Si Si
Si Si Si Si
Si Si Si Si
B C N
Al Si P
Ga Ge As
Si Si Si Si
Si Si Si Si
Si Si Si Si
Si Si Si
B
1018
1016
DE = kTln(ND/NC)
0 or
ND=NA
1010
1
e
-
energy
Doping of semiconductors -2
p-type
B3+ ---> 3e- - e-
Acceptors (NA)
EC
EV
EF
        
Free holes
in VB
Cahen-Hodes Weizmann Inst. of Science 1-2015
Energy band alignments between different phases
n-type
semiconductor
Evac
metal
EF
work function
electron affinity
e-
space charge
layer
 Formation of a metal - semiconductor junction
n-type p-type
space charge layer
 Formation of a p-n homojunction
1
e
-
energy
1
e
-
energy
space coordinate
Cahen-Hodes Weizmann Inst. of Science 1-2015
Space Charge layers
Width of space charge layer inversely proportional
to [doping density]1/2
2ee0V
qND(A)
1/2
W =
Typical widths of space charge layer:
N = 1022/cc (metallic) Ångstroms (~ 1-2 atomic layers)
N = 1018/cc (heavily doped semiconductor) 10s of nm
N = 1016/cc (medium doped semiconductor) 100s of nm
N = 1014/cc (low doped semiconductor) few µm
In a photovoltaic cell, the width of the space charge layer should be wide enough
to absorb most of the light in the E-field region –a few 100 nm in a typical cell.
Light absorption I = I0e-ad
space charge
layer
Cahen-Hodes Weizmann Inst. of Science 1-2015
Basics of photovoltaic cells
EC
EV
EF
e-
h+
hn
Charge separation in energy
Charge separation in space
e-
hn
h+
space coordinate
1
e
-
energy
1
e
-
energy
Cahen-Hodes Weizmann Inst. of Science 1-2015
e-
hn
h+
Amps
@ short circuit
VOC
Volts
@ open-circuit
V
load
@maximum power
Basics of photovoltaic cells
Cahen-Hodes Weizmann Inst. of Science 1-2015
ISC
VOC
max power
fill factor = (I mp . Vmp) / (I SC . VOC)
mp : max power
Voltage
Current
Dark- and Photo- I-V (current-voltage)
characteristics of a PV cell
Cahen-Hodes Weizmann Inst. of Science 1-2015
Other ways of creating a built-in field to separate charges
p-n heterojunction
CdTe/CdS
CdS
CdTe
back contact (Cu/Cu2Te)
TCO front contact
CdTe
CdS
e-
h+
Silicon
homojunction
Cahen-Hodes Weizmann Inst. of Science 1-2015
Ginley, Collins & Cahen in Ginley & Cahen,
Fundamentals of Materials for Energy…
space
1
e
-
energy
•Absorb light
•Absorbed light creates carriers
•Carrier collection, by diffusion, drift
Summary of how p-n junction PV cell works
Cahen-Hodes Weizmann Inst. of Science 1-2015
n-type
semiconductor
E0
metal
EF
work function
electron affinity
space charge
layer
Metal-semiconductor junction
(with semiconductor/ liquid electrolyte junction 
photoelectrochemical cell [PEC], where EF ≅ ERedox
Other ways of creating a built-in field to separate charges -2
Cahen-Hodes Weizmann Inst. of Science 1-2015
p-i-n (I = insulator) cell
EO
EC
EV
N = 1018/cc (heavily doped semiconductor)
10s of nm
N = 1016/cc (medium doped semiconductor)
100s of nm
N = 1014/cc (low doped semiconductor)
few µm
Reminder of
typical space charge layer widths
Other ways of creating a built-in field to separate charges -3
Cahen-Hodes Weizmann Inst. of Science 1-2015
Chapin
Fuller
Pearson
1954
2014
Cahen-Hodes Weizmann Inst. of Science 1-2015
Si (crystalline) cells : 1st generation cells
(thin film) CdTe, CIGS, α-Si : 2nd generation cells
Dye cells, organic cells and related ones : 3rd generation cells
There are newer ones and ‘generation number’ becomes fuzzy at this stage
Solar cell generations
Cahen-Hodes Weizmann Inst. of Science 1-2015
Organic
CdTe
GaAs
“the
single
crystal
divide”
Cahen-Hodes Weizmann Inst. of Science 1-2015
one
electron
energy
space
Generalized picture
•Metastable high and low energy
states
•Absorber transfers charges into
high and low energy state
•Driving force brings charges to
contacts
•Selective contacts
(1) cf. e.g., Green, M.A., Photovoltaic principles. Physica E, 14 (2002) 11-17
The Photovoltaic (PV) effect:
High
energy
state
Low
energy
state
Absorber
e-
p+
contact
contact
Cahen-Hodes Weizmann Inst. of Science 1-2015
e -
-
voltage ( qV)
e -
n-type
p-type
hn
h +
e -
useable photo -
voltage ( qV)
Energy
e -
n-type
p-type
hn
h +
Fundamental losses in single junction
solar cell
O. Niitsoo
space
high energy photon – partial loss
low energy photon – total loss
Cahen-Hodes Weizmann Inst. of Science 1-2015
>Eg
thermalized
< Eg
not absorbed
Etendu; Photon entropy –TD
~0.3eV @RT, lack of concentration
Carnot factor –TD
Emission loss- (current)
Electrical power out
Current – Voltage Characteristics
After Hirst & Ekins-Daukes
Prog.Photovolt:Res:Appl. (2010)
All fundamental losses in PV cell
0 1 2 3 4
0
10
20
30
40
50
60
70
80
Current
(mA/cm
2
)
Energy (eV)
Eg
Nayak, ……, Cahen., Energy Environ. Sci., 2012
Cahen-Hodes Weizmann Inst. of Science 1-2015
Shockley-Queisser* (SQ) Limit
0.5 1.0 1.5 2.0 2.5
5
10
15
20
25
30
OPV
CIGS
c-Si
Efficiency
(%)
Band Gap (eV)
GaAs
InP
CdTe
DSC
a-Si
SQ Limit
detailed balance,
photons-in = electrons-out + photons-
out;
on earth, @ RT,
for single absorber / junction;
cf. also Duysens (1958) “The path of light in photosynthesis”; Brookhaven Symp. Biol.
Prince, JAP 26 (1955) 534
Loferski, JAP 27 (1956) 777
Shockley & Queisser JAP (1961)
Cahen-Hodes Weizmann Inst. of Science 1-2015
How to circumvent SQ and other losses?
Better utilization of sunlight: Photon management:
Multi-bandgap, multi-junction photovoltaics
GaInP2 Eg = 1.8-1.9 eV up to 1.45 V VOC
Cahen-Hodes Weizmann Inst. of Science 1-2015
Up-conversion for a single junction
2 photons of energy 0.5 Eg< hν< Eg
are converted to 1 photon of hν> Eg
How to circumvent these losses?
Cahen-Hodes Weizmann Inst. of Science 1-2015
Down-conversion for a single junction
1 photon of energy hν > 2Eg
is converted into 2 photons of hν > Eg
How to circumvent these losses?
Cahen-Hodes Weizmann Inst. of Science 1-2015
Other ways to beat the SQ limit
e-
h+
e-
e-
h+ h+
Multiple exciton generation
Hot electrons
Intermediate bandgap
EG
EV
EC
EC
*
Cahen-Hodes Weizmann Inst. of Science 1-2015
e-
h+
Multiple exciton generation
Hot electrons
Intermediate bandgap
EG
EV
EC
EC
*
e-
EF
EF
Other ways to beat the SQ limit
Cahen-Hodes Weizmann Inst. of Science 1-2015
e-
h+
Multiple exciton generation
Hot electrons
Intermediate bandgap
EG
EV
Ei
EC
e-
Other ways to beat the SQ limit
Cahen-Hodes Weizmann Inst. of Science 1-2015
The principle of nanostructured cells
contact
contact
electron conductor hole conductor
absorber
light absorption
depth
e-
h+
light-absorbing
semiconductor
e-
h+
Advantage of high surface area:
Allows the use of locally thin absorber and therefore poor quality
(wider range of) absorbers
e-
h+
hole
selective
contact
electron
selective
contact
EC
EV
electron (hole) selective contact; conductor; transport medium
Cahen-Hodes Weizmann Inst. of Science 1-2015
Organic photovoltaic cells OPV
Two problems of OPV:
1. Low diffusion lengths of electron/hole
2. Low dielectric constant – high binding energy
e-
h+
Cahen-Hodes Weizmann Inst. of Science 1-2015
e-
h+
Wannier-Mott excitons – extended; low BE few/tens meV
Frenkel excitons – localized; high BE hundreds meV
Binding energy of H atom = me4
2h2ε2 = 13.6 eV
e-
e-
h+
h+
e-
e-
h+
Two problems of OPV:
1. Low diffusion lengths of electron/hole
2. Low dielectric constant and high effective mass – high binding energy
Binding energy of exciton ?
effective mass of
electrons and holes
dielectric constant
of material
Cahen-Hodes Weizmann Inst. of Science 1-2015
Notwithstanding these problems, OPV is now at ~ 11% conversion efficiency
Stability still not good enough for practical use, but improving
Advantages: Cheap (in capital and in energy)
Roll-to-roll manufacturing (large scale possible)
Cahen-Hodes Weizmann Inst. of Science 1-2015
Dye sensitized solar cell (DSC or DSSC)
HOMO
LUMO e-
e-
h+
light
e-
I- + h+ ---> I
2I + I- ---> I3
- (I is soluble in I-)
At counter electrode, I is reduced back to I-
Important difference between this cell and “standard’ photovoltaic cells
or previous nanocrystalline cell:
Charge generation and charge separation occur in different phases:
recombination is inherently low.
semiconductor
dye
TiO2
EC
EV
TiO2
Need single monolayer
dye on TiO2
But then low absorption
Cahen-Hodes Weizmann Inst. of Science 1-2015
Solution - use high surface area semiconductor
Early attempts increased surface area by roughening electrode - several times increase
Breakthrough: porous, nanocrystalline TiO2
Made by sintering a colloid or suspension of TiO2
O’Regan, B.; Grätzel, M. Nature 1991, 353, 737.
Dye molecule bonded to TiO2
Only a monolayer of dye at most on each TiO2
Cahen-Hodes Weizmann Inst. of Science 1-2015
The most common dye: Ru(dcbpyH2)2(NCS)2 or RuL2(NCS)2
cis-bis(4,4’-dicarboxy-2,2’-bipyridine)-bis(isothiocyanato)ruthenium(II)
Ti
N
Ru
N
C
-O
O
C
-O
O
e-
Excitation of dye is a metal-to-ligand
charge transfer
Ru d-orbitals
ligand p* orbital
Ti4+/3+
ca. 1.7 eV
N=C=S
N=C=S
h+
Cahen-Hodes Weizmann Inst. of Science 1-2015
Change the dye in a DSC to a semiconductor
• Semiconductor-sensitized solar cells (quantum dot cells)
• ETA (extremely thin absorber) solar cells
Variations:
Hole conductor – liquid or solid (if solid, commonly called ETA cell)
Semiconductor may be in the form of quantum dots – increase in Eg
Semiconductor does not have to be a single monolayer – typically few nm to few tens nm
Cahen-Hodes Weizmann Inst. of Science 1-2015
Hybrid Organic-Inorganic Perovskites
most common one- CH3NH3PbI3
Preparation
CH3NH2+HI  CH3NH3I(solid) in methanol, at 0˚C
CH3NH3X + PbI2  CH3NH3PbI3 in organic solvent
Solution processable, easy to scale
Heat at ca. 100ºC
Another +: very high VOC for CH3NH3PbI3 EG = 1.55 eV, VOC up to 1.2 V
Cahen-Hodes Weizmann Inst. of Science 1-2015
Evolution of hybrid I-O perovskite
solar cells
Cahen-Hodes Weizmann Inst. of Science 1-2015
The three important parameters for commercial cells
1. Efficiency
Cahen-Hodes Weizmann Inst. of Science 1-2015
 Shockley-Queisser* (SQ) Limit
0.5 1.0 1.5 2.0 2.5
5
10
15
20
25
30
CH3
NH3
SnI3
CZTS
CZTSS
PbS
Sb2
S3
GaInP
CdTe
OPV
CIGS
c-Si
Efficiency
(%)
Band Gap (eV)
GaAs
InP
CH3
NH3
PbClx
I3-x
DSC
a-Si
SQ Limit
Cahen-Hodes Weizmann Inst. of Science 1-2015
2. Stability Long term stability of PV modules/systems
Jordan & Kurtz, 2011 (August), National Renewable Energy
Laboratory (NREL)
Photovoltaic degradation rates – An analytical review
<2000 >2000 <2000 >2000 <2000 >2000 <2000 >2000 <2000 >2000
mean
Cahen-Hodes Weizmann Inst. of Science 1-2015
3. Cost (money and energy)
$/WP Energy payback time
$0.6/WP in 2030
Predicted cost
Cahen-Hodes Weizmann Inst. of Science 1-2015
(US)
Cahen-Hodes Weizmann Inst. of Science 1-2015
Solar PV Costs in the USA and Germany (2013)
A C O L D S H O W E R
Cahen-Hodes Weizmann Inst. of Science 1-2015
from
First Solar
website…
Peng, Lu, Yang,
Renew. Sustain. Energy Rev.
19 (2013) 255–274
Estimated Solar Cell Energy Payback Times 2013
Cahen-Hodes Weizmann Inst. of Science 1-2015
Wikipedia
And finally, PV production history and forecast
Cumulative PV
Cahen-Hodes Weizmann Inst. of Science 1-2015
World’s Largest Solar-Electric Plant
30 TWp (~ 6 TWC)
requires 1 such plant,
every HOUR, for ~ 12 years(+ storage…)
Solar Cell Power Stations TODAY
In 12/2014 Global
Cumulative Installed PV
Power ~ 0.15 TWp
PRC goal >2012
≥ 0.01 TWp/yr
0.55 GWp ( ~100 MWc) Topaz Solar farm (CA, USA)
Cahen-Hodes Weizmann Inst. of Science 1-2015
Thanking-You


More Related Content

What's hot

Radiation technologies
Radiation technologiesRadiation technologies
Radiation technologiesSergey Korenev
 
Interband and intraband electronic transition in quantum nanostructures
Interband and intraband  electronic transition in quantum nanostructuresInterband and intraband  electronic transition in quantum nanostructures
Interband and intraband electronic transition in quantum nanostructuresGandhimathi Muthuselvam
 
Semiconductor nanodevices
Semiconductor nanodevicesSemiconductor nanodevices
Semiconductor nanodevicesAtif Syed
 
Introduction to Photoelectrochemical (PEC) Water Splitting
Introduction to Photoelectrochemical (PEC) Water SplittingIntroduction to Photoelectrochemical (PEC) Water Splitting
Introduction to Photoelectrochemical (PEC) Water SplittingAnamika Banerjee
 
Semiconductor part-2
Semiconductor part-2Semiconductor part-2
Semiconductor part-2Santanu Paria
 
Organic Photovoltaic Devices (OPVs)
Organic Photovoltaic Devices (OPVs)Organic Photovoltaic Devices (OPVs)
Organic Photovoltaic Devices (OPVs)cdtpv
 
Optical properties of nanomaterials
Optical properties of nanomaterialsOptical properties of nanomaterials
Optical properties of nanomaterialsudhay roopavath
 
Semiconductor Nanomaterials
Semiconductor NanomaterialsSemiconductor Nanomaterials
Semiconductor NanomaterialsSantanu Paria
 
Adiabatic technologies
Adiabatic technologiesAdiabatic technologies
Adiabatic technologiesSergey Korenev
 
Scanning electron microscopy
Scanning electron microscopy Scanning electron microscopy
Scanning electron microscopy Shivaji Burungale
 
ELECTRON ENERGY LOSE SPECTROSCOPY (EELS)
	ELECTRON ENERGY LOSE  SPECTROSCOPY (EELS)	ELECTRON ENERGY LOSE  SPECTROSCOPY (EELS)
ELECTRON ENERGY LOSE SPECTROSCOPY (EELS)khushbakhat nida
 
2018 ELECTRON DIFFRACTION AND APPLICATIONS
2018 ELECTRON DIFFRACTION AND APPLICATIONS2018 ELECTRON DIFFRACTION AND APPLICATIONS
2018 ELECTRON DIFFRACTION AND APPLICATIONSHarsh Mohan
 
properties of nanomaterials
properties of nanomaterialsproperties of nanomaterials
properties of nanomaterialsprasad addanki
 
Electron beam technology
Electron beam technologyElectron beam technology
Electron beam technologyAdarsh M.kalla
 
Nuclear magnetic resonance
Nuclear magnetic resonanceNuclear magnetic resonance
Nuclear magnetic resonanceTakeen Khurshid
 
The Physics of Transparent Conducting Oxides
The Physics of Transparent Conducting OxidesThe Physics of Transparent Conducting Oxides
The Physics of Transparent Conducting OxidesUniversity of Liverpool
 

What's hot (20)

Radiation technologies
Radiation technologiesRadiation technologies
Radiation technologies
 
Interband and intraband electronic transition in quantum nanostructures
Interband and intraband  electronic transition in quantum nanostructuresInterband and intraband  electronic transition in quantum nanostructures
Interband and intraband electronic transition in quantum nanostructures
 
Semiconductor nanodevices
Semiconductor nanodevicesSemiconductor nanodevices
Semiconductor nanodevices
 
Introduction to Photoelectrochemical (PEC) Water Splitting
Introduction to Photoelectrochemical (PEC) Water SplittingIntroduction to Photoelectrochemical (PEC) Water Splitting
Introduction to Photoelectrochemical (PEC) Water Splitting
 
Electron spectroscopy
Electron spectroscopyElectron spectroscopy
Electron spectroscopy
 
quantum dots
quantum dotsquantum dots
quantum dots
 
Semiconductor part-2
Semiconductor part-2Semiconductor part-2
Semiconductor part-2
 
Ntc 2-new-cnt-43
Ntc 2-new-cnt-43Ntc 2-new-cnt-43
Ntc 2-new-cnt-43
 
Organic Photovoltaic Devices (OPVs)
Organic Photovoltaic Devices (OPVs)Organic Photovoltaic Devices (OPVs)
Organic Photovoltaic Devices (OPVs)
 
Optical properties of nanomaterials
Optical properties of nanomaterialsOptical properties of nanomaterials
Optical properties of nanomaterials
 
Semiconductor Nanomaterials
Semiconductor NanomaterialsSemiconductor Nanomaterials
Semiconductor Nanomaterials
 
Adiabatic technologies
Adiabatic technologiesAdiabatic technologies
Adiabatic technologies
 
Scanning electron microscopy
Scanning electron microscopy Scanning electron microscopy
Scanning electron microscopy
 
ELECTRON ENERGY LOSE SPECTROSCOPY (EELS)
	ELECTRON ENERGY LOSE  SPECTROSCOPY (EELS)	ELECTRON ENERGY LOSE  SPECTROSCOPY (EELS)
ELECTRON ENERGY LOSE SPECTROSCOPY (EELS)
 
2018 ELECTRON DIFFRACTION AND APPLICATIONS
2018 ELECTRON DIFFRACTION AND APPLICATIONS2018 ELECTRON DIFFRACTION AND APPLICATIONS
2018 ELECTRON DIFFRACTION AND APPLICATIONS
 
properties of nanomaterials
properties of nanomaterialsproperties of nanomaterials
properties of nanomaterials
 
Electron beam technology
Electron beam technologyElectron beam technology
Electron beam technology
 
Nuclear magnetic resonance
Nuclear magnetic resonanceNuclear magnetic resonance
Nuclear magnetic resonance
 
Hebatalrahman nanotreatment
Hebatalrahman nanotreatmentHebatalrahman nanotreatment
Hebatalrahman nanotreatment
 
The Physics of Transparent Conducting Oxides
The Physics of Transparent Conducting OxidesThe Physics of Transparent Conducting Oxides
The Physics of Transparent Conducting Oxides
 

Similar to Photovoltaic cell

1-2015_pv_principles2.pptx
1-2015_pv_principles2.pptx1-2015_pv_principles2.pptx
1-2015_pv_principles2.pptxHengkiR
 
Ch1 lecture slides Chenming Hu Device for IC
Ch1 lecture slides Chenming Hu Device for IC Ch1 lecture slides Chenming Hu Device for IC
Ch1 lecture slides Chenming Hu Device for IC Chenming Hu
 
Dielectrics 2015
Dielectrics 2015Dielectrics 2015
Dielectrics 2015Chris Bowen
 
xpspresentation-180225211042 (1).pptx
xpspresentation-180225211042 (1).pptxxpspresentation-180225211042 (1).pptx
xpspresentation-180225211042 (1).pptxAshikBabu10
 
The Science Behind Dye-Sensitized Solar Cells
The Science Behind Dye-Sensitized Solar CellsThe Science Behind Dye-Sensitized Solar Cells
The Science Behind Dye-Sensitized Solar Cellsswissnex San Francisco
 
X-ray Photoelecctron Spectroscopy (XPS)
X-ray Photoelecctron Spectroscopy (XPS)X-ray Photoelecctron Spectroscopy (XPS)
X-ray Photoelecctron Spectroscopy (XPS)faheem maqsood
 
Short note on Semiconductors
Short note on SemiconductorsShort note on Semiconductors
Short note on SemiconductorsPBhaskar2
 
EDC Lecture Notes.pdf
EDC Lecture Notes.pdfEDC Lecture Notes.pdf
EDC Lecture Notes.pdfGunaG14
 
Fundamentals of Photovoltaics: Lecture 1
Fundamentals of Photovoltaics: Lecture 1Fundamentals of Photovoltaics: Lecture 1
Fundamentals of Photovoltaics: Lecture 1University of Liverpool
 
Basics of Solar Cell.pptx
Basics of Solar Cell.pptxBasics of Solar Cell.pptx
Basics of Solar Cell.pptxFahimFaisalAmio
 
Solar Energy Presentation.ppt
Solar Energy Presentation.pptSolar Energy Presentation.ppt
Solar Energy Presentation.pptnaveen kumar
 
Opto electronics notes
Opto electronics notesOpto electronics notes
Opto electronics notesSAURAVMAITY
 
SINGLE ELECTRON TRANSISTOR: APPLICATIONS & PROBLEMS
SINGLE ELECTRON TRANSISTOR: APPLICATIONS & PROBLEMSSINGLE ELECTRON TRANSISTOR: APPLICATIONS & PROBLEMS
SINGLE ELECTRON TRANSISTOR: APPLICATIONS & PROBLEMSVLSICS Design
 
Single Electron Transistor: Applications & Problems
Single Electron Transistor: Applications & Problems  Single Electron Transistor: Applications & Problems
Single Electron Transistor: Applications & Problems VLSICS Design
 

Similar to Photovoltaic cell (20)

1-2015_pv_principles2.pptx
1-2015_pv_principles2.pptx1-2015_pv_principles2.pptx
1-2015_pv_principles2.pptx
 
Band structures
Band structures Band structures
Band structures
 
Ch1 slides-1
Ch1 slides-1Ch1 slides-1
Ch1 slides-1
 
Ch1 lecture slides Chenming Hu Device for IC
Ch1 lecture slides Chenming Hu Device for IC Ch1 lecture slides Chenming Hu Device for IC
Ch1 lecture slides Chenming Hu Device for IC
 
THE LIGHT EMITTING DIODE
THE LIGHT EMITTING DIODETHE LIGHT EMITTING DIODE
THE LIGHT EMITTING DIODE
 
Dielectrics 2015
Dielectrics 2015Dielectrics 2015
Dielectrics 2015
 
xpspresentation-180225211042 (1).pptx
xpspresentation-180225211042 (1).pptxxpspresentation-180225211042 (1).pptx
xpspresentation-180225211042 (1).pptx
 
The Science Behind Dye-Sensitized Solar Cells
The Science Behind Dye-Sensitized Solar CellsThe Science Behind Dye-Sensitized Solar Cells
The Science Behind Dye-Sensitized Solar Cells
 
Solar cell
 Solar cell Solar cell
Solar cell
 
X-ray Photoelecctron Spectroscopy (XPS)
X-ray Photoelecctron Spectroscopy (XPS)X-ray Photoelecctron Spectroscopy (XPS)
X-ray Photoelecctron Spectroscopy (XPS)
 
Nanomaterials
NanomaterialsNanomaterials
Nanomaterials
 
Short note on Semiconductors
Short note on SemiconductorsShort note on Semiconductors
Short note on Semiconductors
 
EDC Lecture Notes.pdf
EDC Lecture Notes.pdfEDC Lecture Notes.pdf
EDC Lecture Notes.pdf
 
Fundamentals of Photovoltaics: Lecture 1
Fundamentals of Photovoltaics: Lecture 1Fundamentals of Photovoltaics: Lecture 1
Fundamentals of Photovoltaics: Lecture 1
 
Basics of Solar Cell.pptx
Basics of Solar Cell.pptxBasics of Solar Cell.pptx
Basics of Solar Cell.pptx
 
Solar Energy Presentation.ppt
Solar Energy Presentation.pptSolar Energy Presentation.ppt
Solar Energy Presentation.ppt
 
Lecture Conference Ourzazate ennaoui
Lecture Conference Ourzazate ennaouiLecture Conference Ourzazate ennaoui
Lecture Conference Ourzazate ennaoui
 
Opto electronics notes
Opto electronics notesOpto electronics notes
Opto electronics notes
 
SINGLE ELECTRON TRANSISTOR: APPLICATIONS & PROBLEMS
SINGLE ELECTRON TRANSISTOR: APPLICATIONS & PROBLEMSSINGLE ELECTRON TRANSISTOR: APPLICATIONS & PROBLEMS
SINGLE ELECTRON TRANSISTOR: APPLICATIONS & PROBLEMS
 
Single Electron Transistor: Applications & Problems
Single Electron Transistor: Applications & Problems  Single Electron Transistor: Applications & Problems
Single Electron Transistor: Applications & Problems
 

More from Preeti Choudhary

More from Preeti Choudhary (20)

Basic Quantum Theory
Basic Quantum TheoryBasic Quantum Theory
Basic Quantum Theory
 
Organic Semiconductor
Organic Semiconductor Organic Semiconductor
Organic Semiconductor
 
Nanomaterial and their application
Nanomaterial and their applicationNanomaterial and their application
Nanomaterial and their application
 
High performance liquid chromatography (HPLC)
High performance liquid chromatography (HPLC)High performance liquid chromatography (HPLC)
High performance liquid chromatography (HPLC)
 
Gas Chromatography
Gas Chromatography Gas Chromatography
Gas Chromatography
 
FTIR(Fourier transform infrared) spectroscopy
 FTIR(Fourier transform infrared) spectroscopy  FTIR(Fourier transform infrared) spectroscopy
FTIR(Fourier transform infrared) spectroscopy
 
Nano-lithography
Nano-lithographyNano-lithography
Nano-lithography
 
AFM and STM (Scanning probe microscopy)
AFM and STM (Scanning probe microscopy)AFM and STM (Scanning probe microscopy)
AFM and STM (Scanning probe microscopy)
 
X-Ray Diffraction
 X-Ray Diffraction X-Ray Diffraction
X-Ray Diffraction
 
Automobile
 Automobile Automobile
Automobile
 
Nanoimprint lithography (NIL)
 Nanoimprint lithography (NIL) Nanoimprint lithography (NIL)
Nanoimprint lithography (NIL)
 
Differentiator
DifferentiatorDifferentiator
Differentiator
 
Nanoscience and Nanotechnology
 Nanoscience and Nanotechnology  Nanoscience and Nanotechnology
Nanoscience and Nanotechnology
 
Nanoscience: Top down and bottom-up Method
Nanoscience: Top down and bottom-up MethodNanoscience: Top down and bottom-up Method
Nanoscience: Top down and bottom-up Method
 
Nanolithography
NanolithographyNanolithography
Nanolithography
 
Infrared Spectroscopy and UV-Visible spectroscopy
 Infrared Spectroscopy and UV-Visible spectroscopy Infrared Spectroscopy and UV-Visible spectroscopy
Infrared Spectroscopy and UV-Visible spectroscopy
 
Detectors
DetectorsDetectors
Detectors
 
Column chromatography
Column chromatographyColumn chromatography
Column chromatography
 
Chromatography
Chromatography Chromatography
Chromatography
 
Operational amplifiers
Operational amplifiers Operational amplifiers
Operational amplifiers
 

Recently uploaded

User Guide: Pulsar™ Weather Station (Columbia Weather Systems)
User Guide: Pulsar™ Weather Station (Columbia Weather Systems)User Guide: Pulsar™ Weather Station (Columbia Weather Systems)
User Guide: Pulsar™ Weather Station (Columbia Weather Systems)Columbia Weather Systems
 
ALL ABOUT MIXTURES IN GRADE 7 CLASS PPTX
ALL ABOUT MIXTURES IN GRADE 7 CLASS PPTXALL ABOUT MIXTURES IN GRADE 7 CLASS PPTX
ALL ABOUT MIXTURES IN GRADE 7 CLASS PPTXDole Philippines School
 
Environmental Biotechnology Topic:- Microbial Biosensor
Environmental Biotechnology Topic:- Microbial BiosensorEnvironmental Biotechnology Topic:- Microbial Biosensor
Environmental Biotechnology Topic:- Microbial Biosensorsonawaneprad
 
basic entomology with insect anatomy and taxonomy
basic entomology with insect anatomy and taxonomybasic entomology with insect anatomy and taxonomy
basic entomology with insect anatomy and taxonomyDrAnita Sharma
 
Pests of soyabean_Binomics_IdentificationDr.UPR.pdf
Pests of soyabean_Binomics_IdentificationDr.UPR.pdfPests of soyabean_Binomics_IdentificationDr.UPR.pdf
Pests of soyabean_Binomics_IdentificationDr.UPR.pdfPirithiRaju
 
Call Girls in Majnu Ka Tilla Delhi 🔝9711014705🔝 Genuine
Call Girls in Majnu Ka Tilla Delhi 🔝9711014705🔝 GenuineCall Girls in Majnu Ka Tilla Delhi 🔝9711014705🔝 Genuine
Call Girls in Majnu Ka Tilla Delhi 🔝9711014705🔝 Genuinethapagita
 
User Guide: Orion™ Weather Station (Columbia Weather Systems)
User Guide: Orion™ Weather Station (Columbia Weather Systems)User Guide: Orion™ Weather Station (Columbia Weather Systems)
User Guide: Orion™ Weather Station (Columbia Weather Systems)Columbia Weather Systems
 
Neurodevelopmental disorders according to the dsm 5 tr
Neurodevelopmental disorders according to the dsm 5 trNeurodevelopmental disorders according to the dsm 5 tr
Neurodevelopmental disorders according to the dsm 5 trssuser06f238
 
User Guide: Capricorn FLX™ Weather Station
User Guide: Capricorn FLX™ Weather StationUser Guide: Capricorn FLX™ Weather Station
User Guide: Capricorn FLX™ Weather StationColumbia Weather Systems
 
Pests of jatropha_Bionomics_identification_Dr.UPR.pdf
Pests of jatropha_Bionomics_identification_Dr.UPR.pdfPests of jatropha_Bionomics_identification_Dr.UPR.pdf
Pests of jatropha_Bionomics_identification_Dr.UPR.pdfPirithiRaju
 
(9818099198) Call Girls In Noida Sector 14 (NOIDA ESCORTS)
(9818099198) Call Girls In Noida Sector 14 (NOIDA ESCORTS)(9818099198) Call Girls In Noida Sector 14 (NOIDA ESCORTS)
(9818099198) Call Girls In Noida Sector 14 (NOIDA ESCORTS)riyaescorts54
 
Four Spheres of the Earth Presentation.ppt
Four Spheres of the Earth Presentation.pptFour Spheres of the Earth Presentation.ppt
Four Spheres of the Earth Presentation.pptJoemSTuliba
 
STOPPED FLOW METHOD & APPLICATION MURUGAVENI B.pptx
STOPPED FLOW METHOD & APPLICATION MURUGAVENI B.pptxSTOPPED FLOW METHOD & APPLICATION MURUGAVENI B.pptx
STOPPED FLOW METHOD & APPLICATION MURUGAVENI B.pptxMurugaveni B
 
Base editing, prime editing, Cas13 & RNA editing and organelle base editing
Base editing, prime editing, Cas13 & RNA editing and organelle base editingBase editing, prime editing, Cas13 & RNA editing and organelle base editing
Base editing, prime editing, Cas13 & RNA editing and organelle base editingNetHelix
 
Forensic limnology of diatoms by Sanjai.pptx
Forensic limnology of diatoms by Sanjai.pptxForensic limnology of diatoms by Sanjai.pptx
Forensic limnology of diatoms by Sanjai.pptxkumarsanjai28051
 
The dark energy paradox leads to a new structure of spacetime.pptx
The dark energy paradox leads to a new structure of spacetime.pptxThe dark energy paradox leads to a new structure of spacetime.pptx
The dark energy paradox leads to a new structure of spacetime.pptxEran Akiva Sinbar
 
Citronella presentation SlideShare mani upadhyay
Citronella presentation SlideShare mani upadhyayCitronella presentation SlideShare mani upadhyay
Citronella presentation SlideShare mani upadhyayupadhyaymani499
 
Radiation physics in Dental Radiology...
Radiation physics in Dental Radiology...Radiation physics in Dental Radiology...
Radiation physics in Dental Radiology...navyadasi1992
 
ECG Graph Monitoring with AD8232 ECG Sensor & Arduino.pptx
ECG Graph Monitoring with AD8232 ECG Sensor & Arduino.pptxECG Graph Monitoring with AD8232 ECG Sensor & Arduino.pptx
ECG Graph Monitoring with AD8232 ECG Sensor & Arduino.pptxmaryFF1
 

Recently uploaded (20)

User Guide: Pulsar™ Weather Station (Columbia Weather Systems)
User Guide: Pulsar™ Weather Station (Columbia Weather Systems)User Guide: Pulsar™ Weather Station (Columbia Weather Systems)
User Guide: Pulsar™ Weather Station (Columbia Weather Systems)
 
ALL ABOUT MIXTURES IN GRADE 7 CLASS PPTX
ALL ABOUT MIXTURES IN GRADE 7 CLASS PPTXALL ABOUT MIXTURES IN GRADE 7 CLASS PPTX
ALL ABOUT MIXTURES IN GRADE 7 CLASS PPTX
 
Environmental Biotechnology Topic:- Microbial Biosensor
Environmental Biotechnology Topic:- Microbial BiosensorEnvironmental Biotechnology Topic:- Microbial Biosensor
Environmental Biotechnology Topic:- Microbial Biosensor
 
basic entomology with insect anatomy and taxonomy
basic entomology with insect anatomy and taxonomybasic entomology with insect anatomy and taxonomy
basic entomology with insect anatomy and taxonomy
 
Hot Sexy call girls in Moti Nagar,🔝 9953056974 🔝 escort Service
Hot Sexy call girls in  Moti Nagar,🔝 9953056974 🔝 escort ServiceHot Sexy call girls in  Moti Nagar,🔝 9953056974 🔝 escort Service
Hot Sexy call girls in Moti Nagar,🔝 9953056974 🔝 escort Service
 
Pests of soyabean_Binomics_IdentificationDr.UPR.pdf
Pests of soyabean_Binomics_IdentificationDr.UPR.pdfPests of soyabean_Binomics_IdentificationDr.UPR.pdf
Pests of soyabean_Binomics_IdentificationDr.UPR.pdf
 
Call Girls in Majnu Ka Tilla Delhi 🔝9711014705🔝 Genuine
Call Girls in Majnu Ka Tilla Delhi 🔝9711014705🔝 GenuineCall Girls in Majnu Ka Tilla Delhi 🔝9711014705🔝 Genuine
Call Girls in Majnu Ka Tilla Delhi 🔝9711014705🔝 Genuine
 
User Guide: Orion™ Weather Station (Columbia Weather Systems)
User Guide: Orion™ Weather Station (Columbia Weather Systems)User Guide: Orion™ Weather Station (Columbia Weather Systems)
User Guide: Orion™ Weather Station (Columbia Weather Systems)
 
Neurodevelopmental disorders according to the dsm 5 tr
Neurodevelopmental disorders according to the dsm 5 trNeurodevelopmental disorders according to the dsm 5 tr
Neurodevelopmental disorders according to the dsm 5 tr
 
User Guide: Capricorn FLX™ Weather Station
User Guide: Capricorn FLX™ Weather StationUser Guide: Capricorn FLX™ Weather Station
User Guide: Capricorn FLX™ Weather Station
 
Pests of jatropha_Bionomics_identification_Dr.UPR.pdf
Pests of jatropha_Bionomics_identification_Dr.UPR.pdfPests of jatropha_Bionomics_identification_Dr.UPR.pdf
Pests of jatropha_Bionomics_identification_Dr.UPR.pdf
 
(9818099198) Call Girls In Noida Sector 14 (NOIDA ESCORTS)
(9818099198) Call Girls In Noida Sector 14 (NOIDA ESCORTS)(9818099198) Call Girls In Noida Sector 14 (NOIDA ESCORTS)
(9818099198) Call Girls In Noida Sector 14 (NOIDA ESCORTS)
 
Four Spheres of the Earth Presentation.ppt
Four Spheres of the Earth Presentation.pptFour Spheres of the Earth Presentation.ppt
Four Spheres of the Earth Presentation.ppt
 
STOPPED FLOW METHOD & APPLICATION MURUGAVENI B.pptx
STOPPED FLOW METHOD & APPLICATION MURUGAVENI B.pptxSTOPPED FLOW METHOD & APPLICATION MURUGAVENI B.pptx
STOPPED FLOW METHOD & APPLICATION MURUGAVENI B.pptx
 
Base editing, prime editing, Cas13 & RNA editing and organelle base editing
Base editing, prime editing, Cas13 & RNA editing and organelle base editingBase editing, prime editing, Cas13 & RNA editing and organelle base editing
Base editing, prime editing, Cas13 & RNA editing and organelle base editing
 
Forensic limnology of diatoms by Sanjai.pptx
Forensic limnology of diatoms by Sanjai.pptxForensic limnology of diatoms by Sanjai.pptx
Forensic limnology of diatoms by Sanjai.pptx
 
The dark energy paradox leads to a new structure of spacetime.pptx
The dark energy paradox leads to a new structure of spacetime.pptxThe dark energy paradox leads to a new structure of spacetime.pptx
The dark energy paradox leads to a new structure of spacetime.pptx
 
Citronella presentation SlideShare mani upadhyay
Citronella presentation SlideShare mani upadhyayCitronella presentation SlideShare mani upadhyay
Citronella presentation SlideShare mani upadhyay
 
Radiation physics in Dental Radiology...
Radiation physics in Dental Radiology...Radiation physics in Dental Radiology...
Radiation physics in Dental Radiology...
 
ECG Graph Monitoring with AD8232 ECG Sensor & Arduino.pptx
ECG Graph Monitoring with AD8232 ECG Sensor & Arduino.pptxECG Graph Monitoring with AD8232 ECG Sensor & Arduino.pptx
ECG Graph Monitoring with AD8232 ECG Sensor & Arduino.pptx
 

Photovoltaic cell

  • 1. Cahen-Hodes Weizmann Inst. of Science 1-2015 Photovoltaics: Fundamental concepts and novel systems Preeti Choudhary chaudharypreeti1997@gmail.com MSc (Applied Physics)
  • 2. Cahen-Hodes Weizmann Inst. of Science 1-2015 Photovoltaics: Fundamental concepts and novel systems First practical photovoltaic cell: Chapin, Fuller, Pearson, Bell Labs, 1954: 6% efficiency
  • 3. Cahen-Hodes Weizmann Inst. of Science 1-2015 Outline • Energy levels  bands • Doping of semiconductors • Energy band alignments between different phases • Space charge layers • p-n junctions, Schottky barriers • p-n cells, Si cells, thin film cells • Schottky cells (solid and liquid junction) • p-i-n cells • Fundamental limits of photovoltaic cells • How to overcome/ bypass these limits • New generation cells (brief survey) • PV stability, efficiencies and economics
  • 4. Cahen-Hodes Weizmann Inst. of Science 1-2015 From energy levels to bands E If EG < ~100-150x kTB  semiconductor 1 e - energy EG EV EC CB VB HOMO LUMO
  • 5. Cahen-Hodes Weizmann Inst. of Science 1-2015 Doping of semiconductors Si Si Si Si Si Si Si Si Si Si Si Si Si Si Si Si Si Si Si Si Si Si Si Si Si Si Si Si Si Si Si As B C N Al Si P Ga Ge As EC E EV EG 1.1 eV n-type As5+ ---> 4e-+ e- donors (ND) EF = Fermi level (~electrochemical potential of electrons + + + + + + + + + + + +            Free electrons in CB
  • 6. Cahen-Hodes Weizmann Inst. of Science 1-2015 Si Si Si Si Si Si Si Si Si Si Si Si Si Si Si Si B C N Al Si P Ga Ge As Si Si Si Si Si Si Si Si Si Si Si Si Si Si Si B 1018 1016 DE = kTln(ND/NC) 0 or ND=NA 1010 1 e - energy Doping of semiconductors -2 p-type B3+ ---> 3e- - e- Acceptors (NA) EC EV EF          Free holes in VB
  • 7. Cahen-Hodes Weizmann Inst. of Science 1-2015 Energy band alignments between different phases n-type semiconductor Evac metal EF work function electron affinity e- space charge layer  Formation of a metal - semiconductor junction n-type p-type space charge layer  Formation of a p-n homojunction 1 e - energy 1 e - energy space coordinate
  • 8. Cahen-Hodes Weizmann Inst. of Science 1-2015 Space Charge layers Width of space charge layer inversely proportional to [doping density]1/2 2ee0V qND(A) 1/2 W = Typical widths of space charge layer: N = 1022/cc (metallic) Ångstroms (~ 1-2 atomic layers) N = 1018/cc (heavily doped semiconductor) 10s of nm N = 1016/cc (medium doped semiconductor) 100s of nm N = 1014/cc (low doped semiconductor) few µm In a photovoltaic cell, the width of the space charge layer should be wide enough to absorb most of the light in the E-field region –a few 100 nm in a typical cell. Light absorption I = I0e-ad space charge layer
  • 9. Cahen-Hodes Weizmann Inst. of Science 1-2015 Basics of photovoltaic cells EC EV EF e- h+ hn Charge separation in energy Charge separation in space e- hn h+ space coordinate 1 e - energy 1 e - energy
  • 10. Cahen-Hodes Weizmann Inst. of Science 1-2015 e- hn h+ Amps @ short circuit VOC Volts @ open-circuit V load @maximum power Basics of photovoltaic cells
  • 11. Cahen-Hodes Weizmann Inst. of Science 1-2015 ISC VOC max power fill factor = (I mp . Vmp) / (I SC . VOC) mp : max power Voltage Current Dark- and Photo- I-V (current-voltage) characteristics of a PV cell
  • 12. Cahen-Hodes Weizmann Inst. of Science 1-2015 Other ways of creating a built-in field to separate charges p-n heterojunction CdTe/CdS CdS CdTe back contact (Cu/Cu2Te) TCO front contact CdTe CdS e- h+ Silicon homojunction
  • 13. Cahen-Hodes Weizmann Inst. of Science 1-2015 Ginley, Collins & Cahen in Ginley & Cahen, Fundamentals of Materials for Energy… space 1 e - energy •Absorb light •Absorbed light creates carriers •Carrier collection, by diffusion, drift Summary of how p-n junction PV cell works
  • 14. Cahen-Hodes Weizmann Inst. of Science 1-2015 n-type semiconductor E0 metal EF work function electron affinity space charge layer Metal-semiconductor junction (with semiconductor/ liquid electrolyte junction  photoelectrochemical cell [PEC], where EF ≅ ERedox Other ways of creating a built-in field to separate charges -2
  • 15. Cahen-Hodes Weizmann Inst. of Science 1-2015 p-i-n (I = insulator) cell EO EC EV N = 1018/cc (heavily doped semiconductor) 10s of nm N = 1016/cc (medium doped semiconductor) 100s of nm N = 1014/cc (low doped semiconductor) few µm Reminder of typical space charge layer widths Other ways of creating a built-in field to separate charges -3
  • 16. Cahen-Hodes Weizmann Inst. of Science 1-2015 Chapin Fuller Pearson 1954 2014
  • 17. Cahen-Hodes Weizmann Inst. of Science 1-2015 Si (crystalline) cells : 1st generation cells (thin film) CdTe, CIGS, α-Si : 2nd generation cells Dye cells, organic cells and related ones : 3rd generation cells There are newer ones and ‘generation number’ becomes fuzzy at this stage Solar cell generations
  • 18. Cahen-Hodes Weizmann Inst. of Science 1-2015 Organic CdTe GaAs “the single crystal divide”
  • 19. Cahen-Hodes Weizmann Inst. of Science 1-2015 one electron energy space Generalized picture •Metastable high and low energy states •Absorber transfers charges into high and low energy state •Driving force brings charges to contacts •Selective contacts (1) cf. e.g., Green, M.A., Photovoltaic principles. Physica E, 14 (2002) 11-17 The Photovoltaic (PV) effect: High energy state Low energy state Absorber e- p+ contact contact
  • 20. Cahen-Hodes Weizmann Inst. of Science 1-2015 e - - voltage ( qV) e - n-type p-type hn h + e - useable photo - voltage ( qV) Energy e - n-type p-type hn h + Fundamental losses in single junction solar cell O. Niitsoo space high energy photon – partial loss low energy photon – total loss
  • 21. Cahen-Hodes Weizmann Inst. of Science 1-2015 >Eg thermalized < Eg not absorbed Etendu; Photon entropy –TD ~0.3eV @RT, lack of concentration Carnot factor –TD Emission loss- (current) Electrical power out Current – Voltage Characteristics After Hirst & Ekins-Daukes Prog.Photovolt:Res:Appl. (2010) All fundamental losses in PV cell 0 1 2 3 4 0 10 20 30 40 50 60 70 80 Current (mA/cm 2 ) Energy (eV) Eg Nayak, ……, Cahen., Energy Environ. Sci., 2012
  • 22. Cahen-Hodes Weizmann Inst. of Science 1-2015 Shockley-Queisser* (SQ) Limit 0.5 1.0 1.5 2.0 2.5 5 10 15 20 25 30 OPV CIGS c-Si Efficiency (%) Band Gap (eV) GaAs InP CdTe DSC a-Si SQ Limit detailed balance, photons-in = electrons-out + photons- out; on earth, @ RT, for single absorber / junction; cf. also Duysens (1958) “The path of light in photosynthesis”; Brookhaven Symp. Biol. Prince, JAP 26 (1955) 534 Loferski, JAP 27 (1956) 777 Shockley & Queisser JAP (1961)
  • 23. Cahen-Hodes Weizmann Inst. of Science 1-2015 How to circumvent SQ and other losses? Better utilization of sunlight: Photon management: Multi-bandgap, multi-junction photovoltaics GaInP2 Eg = 1.8-1.9 eV up to 1.45 V VOC
  • 24. Cahen-Hodes Weizmann Inst. of Science 1-2015 Up-conversion for a single junction 2 photons of energy 0.5 Eg< hν< Eg are converted to 1 photon of hν> Eg How to circumvent these losses?
  • 25. Cahen-Hodes Weizmann Inst. of Science 1-2015 Down-conversion for a single junction 1 photon of energy hν > 2Eg is converted into 2 photons of hν > Eg How to circumvent these losses?
  • 26. Cahen-Hodes Weizmann Inst. of Science 1-2015 Other ways to beat the SQ limit e- h+ e- e- h+ h+ Multiple exciton generation Hot electrons Intermediate bandgap EG EV EC EC *
  • 27. Cahen-Hodes Weizmann Inst. of Science 1-2015 e- h+ Multiple exciton generation Hot electrons Intermediate bandgap EG EV EC EC * e- EF EF Other ways to beat the SQ limit
  • 28. Cahen-Hodes Weizmann Inst. of Science 1-2015 e- h+ Multiple exciton generation Hot electrons Intermediate bandgap EG EV Ei EC e- Other ways to beat the SQ limit
  • 29. Cahen-Hodes Weizmann Inst. of Science 1-2015 The principle of nanostructured cells contact contact electron conductor hole conductor absorber light absorption depth e- h+ light-absorbing semiconductor e- h+ Advantage of high surface area: Allows the use of locally thin absorber and therefore poor quality (wider range of) absorbers e- h+ hole selective contact electron selective contact EC EV electron (hole) selective contact; conductor; transport medium
  • 30. Cahen-Hodes Weizmann Inst. of Science 1-2015 Organic photovoltaic cells OPV Two problems of OPV: 1. Low diffusion lengths of electron/hole 2. Low dielectric constant – high binding energy e- h+
  • 31. Cahen-Hodes Weizmann Inst. of Science 1-2015 e- h+ Wannier-Mott excitons – extended; low BE few/tens meV Frenkel excitons – localized; high BE hundreds meV Binding energy of H atom = me4 2h2ε2 = 13.6 eV e- e- h+ h+ e- e- h+ Two problems of OPV: 1. Low diffusion lengths of electron/hole 2. Low dielectric constant and high effective mass – high binding energy Binding energy of exciton ? effective mass of electrons and holes dielectric constant of material
  • 32. Cahen-Hodes Weizmann Inst. of Science 1-2015 Notwithstanding these problems, OPV is now at ~ 11% conversion efficiency Stability still not good enough for practical use, but improving Advantages: Cheap (in capital and in energy) Roll-to-roll manufacturing (large scale possible)
  • 33. Cahen-Hodes Weizmann Inst. of Science 1-2015 Dye sensitized solar cell (DSC or DSSC) HOMO LUMO e- e- h+ light e- I- + h+ ---> I 2I + I- ---> I3 - (I is soluble in I-) At counter electrode, I is reduced back to I- Important difference between this cell and “standard’ photovoltaic cells or previous nanocrystalline cell: Charge generation and charge separation occur in different phases: recombination is inherently low. semiconductor dye TiO2 EC EV TiO2 Need single monolayer dye on TiO2 But then low absorption
  • 34. Cahen-Hodes Weizmann Inst. of Science 1-2015 Solution - use high surface area semiconductor Early attempts increased surface area by roughening electrode - several times increase Breakthrough: porous, nanocrystalline TiO2 Made by sintering a colloid or suspension of TiO2 O’Regan, B.; Grätzel, M. Nature 1991, 353, 737. Dye molecule bonded to TiO2 Only a monolayer of dye at most on each TiO2
  • 35. Cahen-Hodes Weizmann Inst. of Science 1-2015 The most common dye: Ru(dcbpyH2)2(NCS)2 or RuL2(NCS)2 cis-bis(4,4’-dicarboxy-2,2’-bipyridine)-bis(isothiocyanato)ruthenium(II) Ti N Ru N C -O O C -O O e- Excitation of dye is a metal-to-ligand charge transfer Ru d-orbitals ligand p* orbital Ti4+/3+ ca. 1.7 eV N=C=S N=C=S h+
  • 36. Cahen-Hodes Weizmann Inst. of Science 1-2015 Change the dye in a DSC to a semiconductor • Semiconductor-sensitized solar cells (quantum dot cells) • ETA (extremely thin absorber) solar cells Variations: Hole conductor – liquid or solid (if solid, commonly called ETA cell) Semiconductor may be in the form of quantum dots – increase in Eg Semiconductor does not have to be a single monolayer – typically few nm to few tens nm
  • 37. Cahen-Hodes Weizmann Inst. of Science 1-2015 Hybrid Organic-Inorganic Perovskites most common one- CH3NH3PbI3 Preparation CH3NH2+HI  CH3NH3I(solid) in methanol, at 0˚C CH3NH3X + PbI2  CH3NH3PbI3 in organic solvent Solution processable, easy to scale Heat at ca. 100ºC Another +: very high VOC for CH3NH3PbI3 EG = 1.55 eV, VOC up to 1.2 V
  • 38. Cahen-Hodes Weizmann Inst. of Science 1-2015 Evolution of hybrid I-O perovskite solar cells
  • 39. Cahen-Hodes Weizmann Inst. of Science 1-2015 The three important parameters for commercial cells 1. Efficiency
  • 40. Cahen-Hodes Weizmann Inst. of Science 1-2015  Shockley-Queisser* (SQ) Limit 0.5 1.0 1.5 2.0 2.5 5 10 15 20 25 30 CH3 NH3 SnI3 CZTS CZTSS PbS Sb2 S3 GaInP CdTe OPV CIGS c-Si Efficiency (%) Band Gap (eV) GaAs InP CH3 NH3 PbClx I3-x DSC a-Si SQ Limit
  • 41. Cahen-Hodes Weizmann Inst. of Science 1-2015 2. Stability Long term stability of PV modules/systems Jordan & Kurtz, 2011 (August), National Renewable Energy Laboratory (NREL) Photovoltaic degradation rates – An analytical review <2000 >2000 <2000 >2000 <2000 >2000 <2000 >2000 <2000 >2000 mean
  • 42. Cahen-Hodes Weizmann Inst. of Science 1-2015 3. Cost (money and energy) $/WP Energy payback time $0.6/WP in 2030 Predicted cost
  • 43. Cahen-Hodes Weizmann Inst. of Science 1-2015 (US)
  • 44. Cahen-Hodes Weizmann Inst. of Science 1-2015 Solar PV Costs in the USA and Germany (2013) A C O L D S H O W E R
  • 45. Cahen-Hodes Weizmann Inst. of Science 1-2015 from First Solar website… Peng, Lu, Yang, Renew. Sustain. Energy Rev. 19 (2013) 255–274 Estimated Solar Cell Energy Payback Times 2013
  • 46. Cahen-Hodes Weizmann Inst. of Science 1-2015 Wikipedia And finally, PV production history and forecast Cumulative PV
  • 47. Cahen-Hodes Weizmann Inst. of Science 1-2015 World’s Largest Solar-Electric Plant 30 TWp (~ 6 TWC) requires 1 such plant, every HOUR, for ~ 12 years(+ storage…) Solar Cell Power Stations TODAY In 12/2014 Global Cumulative Installed PV Power ~ 0.15 TWp PRC goal >2012 ≥ 0.01 TWp/yr 0.55 GWp ( ~100 MWc) Topaz Solar farm (CA, USA)
  • 48. Cahen-Hodes Weizmann Inst. of Science 1-2015 Thanking-You 