NEXGEN TECHNOLOGY
www.nexgenproject.com POWERELECTRONICS 2015-16
1. A Novel Multi agent Control Scheme for Voltage Regulat...
Próximos SlideShares
Carregando em…5
×

A novel multi agent control scheme for voltage regulation in dc distribution systems

65 visualizações

Publicada em

Nexgen Technology Address:
Nexgen Technology
No :66,4th cross,Venkata nagar,
Near SBI ATM,
Puducherry.
Email Id: praveen@nexgenproject.com.
www.nexgenproject.com
Mobile: 9751442511,9791938249
Telephone: 0413-2211159.
NEXGEN TECHNOLOGY as an efficient Software Training Center located at Pondicherry with IT Training on IEEE Projects in Android,IEEE IT B.Tech Student Projects, Android Projects Training with Placements Pondicherry, IEEE projects in pondicherry, final IEEE Projects in Pondicherry , MCA, BTech, BCA Projects in Pondicherry, Bulk IEEE PROJECTS IN Pondicherry.So far we have reached almost all engineering colleges located in Pondicherry and around 90km

Publicada em: Educação
  • Seja o primeiro a comentar

  • Seja a primeira pessoa a gostar disto

A novel multi agent control scheme for voltage regulation in dc distribution systems

  1. 1. NEXGEN TECHNOLOGY www.nexgenproject.com POWERELECTRONICS 2015-16 1. A Novel Multi agent Control Scheme for Voltage Regulation in DC Distribution Systems This paper proposes a novel multiagent control scheme to mitigate the voltage regulation challenges of dc distribution systems (DCDSs) with high penetration of distributed and renewable generation (DG). The proposed control scheme consists of two sequential stages. In the first stage, a distributed state estimation algorithm is implemented to estimate the voltage profile in a DCDS, thus enhancing the ac/dc converter operation to keep the system voltages within specified limits. The second stage is activated only when the ac/dc fails to regulate the system voltages. Two distributed power management control strategies are proposed in the second stage. The first is based on a distributed equal curtailment, at which all DG units responsible for the voltage violation are equally curtailed. The second strategy aims to optimize the output power in order to maximize the revenue of DG units. The formulated problem in the second strategy is classified as a convex optimization problem under global constraints. A distributed Lagrangian primal-dual subgradient (DLPDS) algorithm is proposed in order to obtain the global optimal solution of the formulated problem. Various case studies are performed to prove the effectiveness, robustness, and convergence characteristics of the proposed control schemes.

×