Chapter3 laplace

King Mongkut's University of Technology Thonburi
King Mongkut's University of Technology ThonburiKing Mongkut's University of Technology Thonburi
Signals & Systems
                            Chapter 3

                  The Laplace Transform


INC212 Signals and Systems : 2 / 2554
Laplace Transform of
    unit-step Function
                                                                 ∞
                    ∞                         X (σ + jω ) = ∫ e −(σ + jω ) t dt
     X (ω ) = ∫ x(t )e          − j ωt
                                         dt                     0
                   −∞                                            1
                    ∞
                                              X (σ + jω ) = −        [e −(σ + jω ) t ]tt =∞
                                                                                         =0
                                                              σ + jω
     X (ω ) = ∫ 1⋅ e − jωt dt
                   0                                             1
                                              X (σ + jω ) = −        [ 0 − e − (σ + j ω ) 0 ]
                                                              σ + jω
                    ∞
     X (ω ) = ∫ e e     −σt − jωt
                                    dt        X (σ + jω ) =
                                                               1
                   −∞
                                                            σ + jω
                    ∞
     X (ω ) = ∫ e −(σ + jω ) t dt             σ + jω → s
                   0
                                                       1
                                              X ( s) =
                                                       s

INC212 Signals and Systems : 2 / 2554                          Chapter 3 The Laplace Transform
Laplace Transform of Signals
                                  ∞
                X ( s ) = ∫ x(t )e dt ; s = σ + jω
                                            − st
                                 −∞


    One-side transform                             x(t ) = 0; t < 0

                                        ∞
                       X ( s ) = ∫ x(t )e dt       − st
                                        0


INC212 Signals and Systems : 2 / 2554                     Chapter 3 The Laplace Transform
Laplace Transform of Signals
                           ∞                                                   1, t ≥ 0
             X ( s ) = ∫ x(t )e dt          − st
                                                              x(t ) = u (t ) = 
                           0                                                   0, t < 0
                                        ∞                            ∞
                  L[u (t )] = ∫ u (t )e dt             − st
                                                                 = ∫ (1)e − st dt
                                    −∞                              0
                                             − st ∞
                                        e                                 1
                                =−                               = −0 − (− ), s > 0
                                             s     0
                                                                          s
                              1
                 ∴ L[u (t )] = , s > 0
                              s

INC212 Signals and Systems : 2 / 2554                                   Chapter 3 The Laplace Transform
Relationship between the FT and ℒ T
    One-side transform or Forward transform
         x(t ) = 0; t < 0 ∴ s = jω ; σ = 0

                          ∞                                      ∞
           X (ω ) = ∫ x(t )e            − jω t
                                                 dt   X ( s ) = ∫ x(t )e − st dt
                          0                                      0

                                           X (ω ) = X ( s ) s = jω
                          x(t ) ↔ X ( s )
                          X ( s) = L[ x(t )] ; x(t ) = L−1[ X ( s )]

INC212 Signals and Systems : 2 / 2554                        Chapter 3 The Laplace Transform
Common ℒ T Pairs




INC212 Signals and Systems : 2 / 2554   Chapter 3 The Laplace Transform
Region of Convergence (ROC)
            g1 (t ) = Aeαt u (t ); α > 0



                     ∞                           ∞                    ∞
        G1 ( s ) =   ∫
                     −∞
                       Aeαt u (t )e − st dt = A∫ e −( s −α )t dt = A∫ e (α −σ )t e − jωt dt
                                                 0                    0



                        A
         ∴ G1 ( s ) =            σ = Re( s ) > α
                      s −α


INC212 Signals and Systems : 2 / 2554                                Chapter 3 The Laplace Transform
Region of Convergence (ROC)
        g 2 (t ) = Ae −αt u (−t ) = g1 (−t ); α > 0




                     ∞                               0                     0
        G2 ( s ) =   ∫
                     −∞
                       Ae −αt u (−t )e − st dt = A ∫ e −( s +α )t dt = A ∫ e −(σ +α )t e − jωt dt
                                                    −∞                    −∞




                      A
        ∴ G2 ( s) =      = G1 (− s ) σ = Re( s ) < −α
                    s +α


INC212 Signals and Systems : 2 / 2554                                    Chapter 3 The Laplace Transform
Region of Convergence (ROC)
       Example:
             x(t ) = e − t u (t ) + e −2t u (t )


               L            ∞                                     ∞
         x(t ) ↔ X ( s ) = ∫ [e u (t ) + e u (t )]e dt = A∫ [e −( s +1) t + e −( s + 2) t ]dt
                                 −t         − 2t       − st

                            −∞                                     0




                       1    1
           ∴ X (s) =     +      σ > −1
                     s +1 s + 2


INC212 Signals and Systems : 2 / 2554                                  Chapter 3 The Laplace Transform
Region of Convergence (ROC)
       Example:
             x(t ) = e −t u (t ) + e 2t u (−t )

                            L1                             L       1
                 −t
                e u (t ) ↔      σ > −1            e u (−t ) ↔ −
                                                   2t
                                                                      σ <2
                           s +1                                   s−2


                                             L 1    1
                       −t
                   ∴ e u (t ) + e u ( −t ) ↔
                                   2t
                                                 −             −1 < σ < 2
                                             s +1 s − 2



INC212 Signals and Systems : 2 / 2554                          Chapter 3 The Laplace Transform
Properties of the                       ℒT
       Linearity

                            L                  L
                   x(t ) ↔ X ( s ) and v(t ) ↔ V ( s )

                                        L
                   ax(t ) + bv(t ) ↔ aX ( s ) + bV ( s )


INC212 Signals and Systems : 2 / 2554          Chapter 3 The Laplace Transform
Properties of the                      ℒT
       Example: Linearity                   L[u (t ) + e − t u (t )]

                                   1            −t       1
                        u (t ) ↔       and e u (t ) ↔
                                   s                   s +1
                                  −t        1       1
                        u (t ) + e u (t ) ↔ +
                                            s s +1
                                  −t         2s + 1
                        u (t ) + e u (t ) ↔
                                            s ( s + 1)

INC212 Signals and Systems : 2 / 2554            Chapter 3 The Laplace Transform
Properties of the                        ℒT
       Right Shift in Time

                              x(t ) ↔ X ( s )
                                                        − cs
                                x(t − c)u (t − c) ↔ e          X (s)



INC212 Signals and Systems : 2 / 2554           Chapter 3 The Laplace Transform
Properties of the                           ℒT
       Example: Right Shift in Time
                                     1, 0 ≤ t < c
                             x(t ) = 
                                     0, all other t

                            x(t ) = u (t ) − u (t − c)
                                               − cs             − cs
                                  1 e     1− e
              u (t ) − u (t − c) ↔ −    =
                                  s   s      s

INC212 Signals and Systems : 2 / 2554                  Chapter 3 The Laplace Transform
Properties of the ℒ T




INC212 Signals and Systems : 2 / 2554   Chapter 3 The Laplace Transform
Computation of the Inverse ℒ T

                                   1 c + j∞
                                  2π j ∫c − j∞
                          x(t ) =              X ( s )e st ds




INC212 Signals and Systems : 2 / 2554                  Chapter 3 The Laplace Transform
The Inverse ℒ T using
    Partial-Fraction Expansion
               B( s)
      X ( s) =
               A( s )
                                                        Let p1, p2, …, pN
     B ( s ) = bM s M + bM −1s M −1 +  + b1s + b0      denote the roots
      A( s ) = a N s N + a N −1s N −1 +  + a1s + a0    of the equation
                                              A( s ) = 0
     The pi for i = 1, 2,
                                              A( s ) = a N ( s − p1 )( s − p2 )  ( s − p N )
     …,N are called the                                                B( s)
                                              X (s) =
     poles of X(s)                                    a N ( s − p1 )( s − p2 )  ( s − p N )


INC212 Signals and Systems : 2 / 2554                         Chapter 3 The Laplace Transform
Distinct Poles
                            c1     c2         cN
                 X ( s) =       +       ++
                          s − p1 s − p2     s − pN
                 ci = [( s − pi ) X ( s )]s = pi , i = 1,2, , N



            x(t ) = c1e       p1t
                                    + c2 e   p2t
                                                   +  + cN e   pN t
                                                                       , t≥0


INC212 Signals and Systems : 2 / 2554                    Chapter 3 The Laplace Transform
Example: Distinct Poles
                s+2                          ci = [( s − pi ) X ( s )]s = pi , i = 1,2, , N
  X ( s) = 3
            s + 4 s 2 + 3s                                                 s+2               2
  A( s ) = s + 4 s + 3s = s ( s + 1)( s + 3) c1 = [ sX ( s )]s =0 = ( s + 1)( s + 3)
            3       2                                                                      =
                                                                                             3
                                                                                      s =0
  A( s ) = 0 = s ( s + 1)( s + 3)
                                                                                s+2              1
  p1 = 0, p2 = −1, p3 = −3                    c2 = [( s + 1) X ( s )]s = −1 =                  =
                                                                              s ( s + 3) s = −1 − 2
            c1     c2       c3
  X ( s) =     +        +                                           s+2              −1
          s − 0 s − (−1) s − (−3) c3 = [( s + 3) X ( s )]s = −3 =                  =
                                                                  s ( s + 1) s = −3 6
          c    c      c
  X ( s) = 1 + 2 + 3                           2 1 − t 1 − 3t
           s s +1 s + 3              x(t ) = − e − e , t ≥ 0
                                                            3     2          6

INC212 Signals and Systems : 2 / 2554                             Chapter 3 The Laplace Transform
Distinct Poles with 2 or More
    Poles Complex
                        c1     c1     c3         cN
              X (s) =       +      +       ++
                      s − p1 s − p1 s − p3     s − pN


       x(t ) = c1e      p1t
                              + c1e     p1t
                                              + c3e p3t +  + c N e p N t
                                              σt
      c1e   p1t
                  + c1e   p1t
                                   = 2 c1 e cos(ωt + ∠c1 )
                              σt
       x(t ) = 2 c1 e cos(ωt + ∠c1 ) + c3e                      p3 t
                                                                       +  + cN e    pN t




INC212 Signals and Systems : 2 / 2554                         Chapter 3 The Laplace Transform
Example: Distinct Poles with 2 or
    More Poles Complex
                                                   ci = [( s − pi ) X ( s)]s = p , i = 1,2,, N
               s − 2s + 1
                  2                                                             i


   X (s) = 3                                                                                    s 2 − 2s + 1
           s + 3s 2 + 4 s + 2                      c1 = [( s + 1 − j ) X ( s )]s =−1+ j   =
                                                                                            ( s + 1 + j )( s + 1) s =−1+ j
   A( s ) = s 3 + 3s 2 + 4 s + 2
          = ( s + 1 − j )( s + 1 + j )( s + 1)        −3
                                                   c1 =     + j2
                                                       2
   p1 = −1 + j , p2 = −1 − j , p3 = −1
                                                          9         5
                                                 c1 =       +4 =            ;
   X ( s) =
                 c1
                         +
                               c1
                                       +
                                           c3             4         2
            s − (−1 + j ) s − (−1 − j ) s − (−1)                           −4
                                                 ∠c1 = 180° + tan −1            = 126.87°
               c1          c1      c3                                         3
   X ( s) =          +          +
            s +1− j s +1+ j s +1                                                 s 2 − 2s + 1
                                                 c3 = [( s + 1) X ( s )]s = −1 = 2                 =4
                                                                                s + 2 s + 2 s = −1

  x(t ) = 5e −t cos(t + 126.87°) + 4e − t , t ≥ 0

INC212 Signals and Systems : 2 / 2554                                        Chapter 3 The Laplace Transform
Repeated Poles
                B( s)            c         c2               cr        c           cN
    X (s) =            X ( s) = 1 +                ++             + r +1 +  +
                A( s )         s − p1 ( s − p1 ) 2     ( s − p1 ) r s − pr +1   s − pN
   ci = [( s − pi ) X ( s )]s = pi , i = r + 1, r + 2, , N
   cr = [( s − p1 ) r X ( s )]s = p1
                                                                 1d                           
   i = 1,2,  , r − 1                           i = 1; cr −1 =           [( s − p1 ) r X ( s )]
                                                                 1!  ds
                                                                                               s = p1
             1  di                   
   cr − i   =  i [( s − p1 ) X ( s )]
                             r
                                                              1  d2                     
             i!  ds                   s = p1 i = 2; cr − 2 =  2 [( s − p1 ) r X ( s )]
                                                              2!  ds                     s= p           1



       x(t ) = c1e p1t + c2te p1t +  + cr t r −1e p1t + cr +1e pr +1t +  + c N e p N t , t ≥ 0

INC212 Signals and Systems : 2 / 2554                              Chapter 3 The Laplace Transform
Example: Repeated Poles
                        5s − 1                                           c1       c2      c
              X (s) = 3                                       X (s) =        +          + 3
                     s − 3s − 2                                         s + 1 ( s + 1) 2 s − 2

                1d                                  d 5s − 1             −9
         c1 =           [( s + 1) 2 X ( s )]       = [       ]       =                         = −1
                1!  ds
                                            s = −1  ds s − 2  s = −1 ( s − 2)
                                                                                  2
                                                                                         s = −1

                                             5s − 1
         c2 = [( s + 1) 2 X ( s )]s = −1 =                =2
                                             s − 2 s = −1
                                           5s − 1
         c3 = [( s − 2) X ( s )]s = 2 =                       =1
                                          ( s + 1) 2   s =2



                               x(t ) = −e − t + 2te − t + e 2t , t ≥ 0

INC212 Signals and Systems : 2 / 2554                                       Chapter 3 The Laplace Transform
Case when M ≥ N
              B(s)
    X (s) =
              A( s )                                                           R( s)
                                                              X ( s) = Q( s) +
    B( s ) = bM s M + bM −1s M −1 +  + b1s + b0                               A( s )
    A( s ) = a N s N + a N −1s N −1 +  + a1s + a0
                                                                                             R( s)
                                                     X ( s ) = Q( s ) + V ( s ), V ( s ) =
                                                                                             A( s )
                          Q(s)
          A( s ) B( s )                              x(t ) = q (t ) + v(t )
                 A( s ) * Q ( s )                             dN
                                                     q(t );        δ (t ) ↔ s N
                 R( s)                                        dt N
                                                     v(t ); v(t ) ↔ V ( s )

INC212 Signals and Systems : 2 / 2554                              Chapter 3 The Laplace Transform
Example: Case when M ≥ N
                          s 3 + 2s − 4            20 s − 12
                X (s) = 2              = s−4+ 2
                          s + 4s − 2             s + 4s − 2
                X ( s) = Q( s) + V ( s)
                Q( s) = s − 4
                         d
                q(t ) = δ (t ) − 4δ (t )
                        dt
                           20s − 12        20.6145        0.6145
                V ( s) = 2             =            −
                         s + 4 s − 2 s + 4.4495 s − 0.4495
                v(t ) = 20.6145e − 4.4495t − 0.6145e 0.4495t , t ≥ 0
                         d
                x(t ) = δ (t ) − 4δ (t ) + 20.6145e − 4.4495t − 0.6145e 0.4495t , t ≥ 0
                        dt

INC212 Signals and Systems : 2 / 2554                           Chapter 3 The Laplace Transform
Transform of the I/O
    Differential Equation
       First-Order Case
                                                           y (0 − )      b
                                                  Y ( s) =          +      X (s)
      dy (t )                                              s+a s+a
               + ay (t ) = bx(t )                            b
       dt                                         Y ( s) =         X (s)
      sY ( s ) − y (0 − ) + aY ( s ) = bX ( s )            s+a
                                                              b
      ( s + a )Y ( s ) = y (0 − ) + bX ( s )      H (s) =
                                                           s+a
                                                  Y ( s) = H ( s) X ( s)

        H(s)          Transfer Function (TF) of the system

INC212 Signals and Systems : 2 / 2554                   Chapter 3 The Laplace Transform
Transform of the I/O
    Differential Equation
       Example: First-Order Case

                                                   dy (t ) 1             1
                                                          +    y (t ) =    x(t )
                                                    dt      RC          RC

                                                   y (0 − )   1 RC
                                        Y ( s) =            +
                                                 s + 1 RC ( s + 1 RC ) s
               y (0 − )   1 RC
     Y (s) =            +      X (s)               y (0 − )  1  1 RC
             s + 1 RC s + 1 RC          Y ( s) =            + −
                                                 s + 1 RC s s + 1 RC
                                        y (t ) = y (0 − )e −(1 RC ) t + 1 − e −(1 RC ) t , t ≥ 0
INC212 Signals and Systems : 2 / 2554                      Chapter 3 The Laplace Transform
Transform of the I/O
    Differential Equation
       Second-Order Case
  d 2 y (t )       dy (t )                  dx(t )
        2
             + a1          + a0 y (t ) = b1         + b0 x(t )
     dt              dt                       dt
                                        [                  ]
  s 2Y ( s ) − y (0 − ) s − y (0 − ) + a1 sY ( s ) − y (0 − ) + a0Y ( s ) = b1sX ( s ) + b0 X ( s )
                            
          y (0 − ) s + y (0 − ) + a1 y (0 − )
                                                 b1s + b0
  Y (s) =                                     + 2           X ( s)
                    s + a1s + a0
                     2
                                               s + a1s + a0

         If initial condition = 0 :
                       b1s + b0                      b1s + b0
             Y (s) = 2           X ( s) ; H ( s) = 2
                    s + a1s + a0                  s + a1s + a0

INC212 Signals and Systems : 2 / 2554                             Chapter 3 The Laplace Transform
Transform of the I/O
    Differential Equation
       Example: Second-Order Case
        x(t) = u(t) so that X(s) = 1/s; initial cond. = 0
      d 2 y (t )    dy (t )
           2
                 +6         + 8 y (t ) = 2 x(t )
        dt           dt
                     2
      H (s) = 2                                                               2       1
                 s + 6s + 8                      Y (s) = H (s) X (s) =
                                                                        s 2 + 6s + 8 s
                                                        0.25 0.5 0.25
                                              Y (s) =        −         +
                                                          s    s+2 s+4
                                              y (t ) = 0.25 − 0.5e − 2t + 0.25e − 4t , t ≥ 0

INC212 Signals and Systems : 2 / 2554                         Chapter 3 The Laplace Transform
Transform of the I/O
    Differential Equation
       Example: Second-Order Case                                   y (0 − ) = 1
        x(t) = u(t) with the initial condition
                                                                     y (0 − ) = 2
                                                                     
                                   s +8           2        1
                  Y ( s) = 2                 + 2
                              s + 6s + 8 s + 6s + 8 s
                                s 2 + 8s + 2
                           =
                              s ( s 2 + 6 s + 8)
                            0.25 2.5 1.75
                  Y ( s) =          +        −
                              s       s+2 s+4
                  y (t ) = 0.25 + 2.5e − 2t − 1.75e − 4t , t ≥ 0

INC212 Signals and Systems : 2 / 2554                    Chapter 3 The Laplace Transform
Transform of the I/O
    Differential Equation
        Nth-Order Case
  d N y (t ) N −1 d i y (t ) M d i x(t )            C (s) B(s)
       N
            + ∑ ai      i
                            = ∑ bi    i
                                         ; Y ( s) =       +       X (s)
    dt        i =0  dt        i =0 dt               A( s ) A( s )
  B ( s ) = bM s M + bM −1s M −1 +  + b1s + b0 ;    A( s ) = s N + a N −1s N −1 +  + a1s + a0
  C ( s ) = y ( 0 − ) s + y ( 0 − ) + a1 y ( 0 − )
                          

                         B( s)            bM s M +  + b1s + b0
                 Y (s) =        X (s) = N         N −1
                                                                  X (s)
                         A( s )        s + a N −1s +  + a1s + a0
                            bM s M +  + b1s + b0
                  H (s) = N
                         s + a N −1s N −1 +  + a1s + a0

INC212 Signals and Systems : 2 / 2554                           Chapter 3 The Laplace Transform
Transform of the I/O
    Convolution Integral
                                        t
         y (t ) = h(t ) ∗ x(t ) = ∫ h(λ ) x(t − λ )dλ , t ≥ 0
                                        0

         Y ( s) = H ( s) X ( s)
         h(t ) ↔ H ( s )
                 Y (s)
         H (s) =
                 X (s)


INC212 Signals and Systems : 2 / 2554       Chapter 3 The Laplace Transform
Transform of the I/O
    Convolution Integral
       Example: Determining the TF
  y (t ) = 2 − 3e −t + e −2t cos 2t , t ≥ 0         2      3           s+2
                                                       −       +
            2     3           s+2                    s s + 1 ( s + 2) 2 + 4
  Y (s) = −           +                     H (s) =
            s s + 1 ( s + 2) + 4 2                                1
                                                                s +1
               1                                    2( s + 1)        ( s + 1)( s + 2)
  X (s) =                                         =           −3+
             s +1                                        s            ( s + 2) 2 + 4
                                                    [2( s + 1) − 3s ][( s + 2) 2 + 4] + s ( s + 1)( s + 2)
                                                  =
                                                                      s[( s + 2) 2 + 4]
                                                     s 2 + 2s + 16
                                                  = 3
                                                    s + 4 s 2 + 8s



INC212 Signals and Systems : 2 / 2554                                 Chapter 3 The Laplace Transform
Transform of the I/O
    Convolution Integral
       Finite-Dimensional Systems

           bM s M + bM −1s M −1 +  + b1s + b0
   H ( s) = N
            s + a N −1s N −1 +  + a1s + a0
   ( s N + a N −1s N −1 +  + a1s + a0 )Y ( s ) = (bM s M + bM −1s M −1 +  + b1s + b0 ) X ( s )
   d N y (t ) N −1 d i y (t ) M d i x(t )
        N
             + ∑ ai      i
                             = ∑ bi
     dt        i =0  dt        i =0 dt i




INC212 Signals and Systems : 2 / 2554                           Chapter 3 The Laplace Transform
Transform of the I/O
    Convolution Integral
       Poles and zeros of a Systems
                         bM s M + bM −1s M −1 +  + b1s + b0
                 H ( s) = N
                          s + a N −1s N −1 +  + a1s + a0
                          bM ( s − z1 )( s − z 2 )  ( s − z M )
                 H ( s) =
                           ( s − p1 )( s − p2 )  ( s − p N )
      zi : “zeros of H (s)” or “zeros of system”
      pi : “poles of H (s)” or “poles of system”
      N : “number of poles of system” or “order N of system”

INC212 Signals and Systems : 2 / 2554                 Chapter 3 The Laplace Transform
Transform of the I/O
    Convolution Integral
       Example: Third-Order System
              2 s 2 + 12 s + 20
  H ( s) = 3
           s + 6 s 2 + 10s + 8
               2( s + 3 − j )( s + 3 + j )
  H ( s) =
           ( s + 4)( s + 1 − j )( s + 1 + j )
  z1 = −3 + j and z1 = −3 − j
   p1 = −4,      p 2 = −1 + j ,     p3 = −1 − j




INC212 Signals and Systems : 2 / 2554             Chapter 3 The Laplace Transform
Exercises
       Sketch the pole-zero plot and ROC for
        these signals.
                 x(t ) = e −8t u (t )
                 x(t ) = e 3t cos(20πt )u (−t )
                x(t ) = e 2t u (−t ) − e −5t u (t )




INC212 Signals and Systems : 2 / 2554                  Chapter 3 The Laplace Transform
Exercises
       Using the time-shifting property, find
        the LT of these signals.
                 x(t ) = u (t ) − u (t − 1)

                 x(t ) = 3e −3(t − 2)u (t − 2)
                 x(t ) = 3e −3t u (t − 2)
                 x(t ) = 5 sin(π (t − 1))u (t − 1)



INC212 Signals and Systems : 2 / 2554                 Chapter 3 The Laplace Transform
Exercises
       Find the inverse LT of these functions.
                           24                            20
               X ( s) =                     X (s) =
                        s ( s + 8)                    s 2 + 4s + 3

                         s2                           s
               X ( s) = 2                   X ( s) = 2
                       s − 4s + 4                   s + 4s + 4

                           5                          2s
               X ( s) = 2                   X ( s) = 2
                       s + 6 s + 73                 s + 2 s + 13


INC212 Signals and Systems : 2 / 2554         Chapter 3 The Laplace Transform
INC212 Signals and Systems : 2 / 2554   Chapter 3 The Laplace Transform
Direct Construction of the TF
       RLC Circuits




                                        dv(t ) 1
                                              = i (t )
                                         dt    C
           v(t ) = Ri (t )                                                       di (t )
                                                             1        v(t ) = L
                                        sV ( s ) − v(0) = I ( s )                 dt
           V ( s ) = RI ( s )                                C
                                                   1           1      V ( s ) = LsI ( s ) − Li (0)
                                        V (s) =      I ( s ) + v(0)
                                                  Cs           s

INC212 Signals and Systems : 2 / 2554                             Chapter 3 The Laplace Transform
Direct Construction of the TF
       Series and Parallel Connection




                             Z1 ( s )                                  Z 2 (s)
          V1 ( s ) =                        V ( s)   I1 ( s ) =                        I ( s)
                       Z1 ( s ) + Z 2 ( s )                       Z1 ( s ) + Z 2 ( s )
                            Z 2 (s)                                     Z1 ( s )
          V2 ( s ) =                        V ( s)   I 2 (s) =                         I ( s)
                       Z1 ( s ) + Z 2 ( s )                       Z1 ( s ) + Z 2 ( s )

INC212 Signals and Systems : 2 / 2554                        Chapter 3 The Laplace Transform
Direct Construction of the TF
       Example: Series RLC Circuit




   Output = VC(s)                                     Output = VR(s)
                          1 Cs                                                R
           Vc ( s ) =                 X ( s)               VR ( s ) =                  X (s)
                     Ls + R + (1 Cs )                                 Ls + R + (1 Cs )
                             1 LC                                             ( R L) s
                   = 2                       X ( s)                = 2                       X ( s)
                     s + ( R L) s + (1 LC )                           s + ( R L) s + (1 LC )
                           1 LC                                            ( R L) s
           H ( s) = 2                                      H ( s) = 2
                   s + ( R L) s + (1 LC )                          s + ( R L) s + (1 LC )


INC212 Signals and Systems : 2 / 2554                            Chapter 3 The Laplace Transform
Direct Construction of the TF
       Interconnections of Integrators




INC212 Signals and Systems : 2 / 2554   Chapter 3 The Laplace Transform
Direct Construction of the TF
                                         sQ1 ( s) = −4Q1 ( s ) + X ( s)
       Example:                         Q1 ( s) =
                                                     1
                                                    s+4
                                                           X (s)

                                         sQ2 ( s ) = Q1 ( s) − 3Q2 ( s) + X ( s )
                                                        1
                                         Q2 ( s ) =         [Q1 ( s ) + X ( s )]
                                                     s+3
                                                        1  1            
                                                  =                  + 1 X ( s )
                                                     s +3 s +4 
                                                           s+5
                                                  =                     X ( s)
                                                     ( s + 3)( s + 4)
                                         Y ( s ) = Q2 ( s ) + X ( s )
                                                          s+5
                                                 =                     X ( s) + X ( s)
                                                   ( s + 3)( s + 4)
                                                    s 2 + 8s + 17
                                                 =                     X ( s)
                                                   ( s + 3)( s + 4)
                                                   s 2 + 8s + 17 s 2 + 8s + 17
                                         H ( s) =                 =
                                                  ( s + 3)( s + 4) s 2 + 7 s + 12


INC212 Signals and Systems : 2 / 2554   Chapter 3 The Laplace Transform
TF of Block Diagrams
       Parallel Interconnection

                                        Y ( s ) = Y1 ( s ) + Y2 ( s )
                                        Y1 ( s ) = H1 ( s ) X ( s )
                                        Y2 ( s ) = H 2 ( s ) X ( s )


                                        Y ( s ) = H1 ( s ) X ( s ) + H 2 ( s) X ( s)
                                                = ( H1 ( s ) + H 2 ( s )) X ( s )
                                        H ( s) = H1 ( s) + H 2 ( s )


INC212 Signals and Systems : 2 / 2554                 Chapter 3 The Laplace Transform
TF of Block Diagrams
       Series Connection



                      Y1 ( s ) = H1 ( s ) X ( s )
                      Y2 ( s ) = H 2 ( s )Y1 ( s )
                      Y ( s ) = Y2 ( s ) = H 2 ( s ) H1 ( s ) X ( s )
                       H ( s ) = H 2 ( s ) H1 ( s ) = H1 ( s ) H 2 ( s )

INC212 Signals and Systems : 2 / 2554                    Chapter 3 The Laplace Transform
TF of Block Diagrams
       Feedback Connection                     Y ( s) = H1 ( s) X 1 ( s)
                                                X 1 ( s ) = X ( s ) − Y2 ( s )
                                                          = X ( s ) − H 2 ( s )Y ( s )
                                                Y ( s ) = H1 ( s )[ X ( s ) − H 2 ( s )Y ( s )]
                                                               H1 ( s )
                                                Y (s) =                        X (s)
                                                          1 + H1 ( s) H 2 ( s)
                                                             H1 ( s)
                                                H (s) =
                                                        1 + H1 ( s) H 2 ( s)
                            H1 ( s)
             H (s) =
                       1 − H1 ( s ) H 2 ( s )


INC212 Signals and Systems : 2 / 2554                       Chapter 3 The Laplace Transform
INC212 Signals and Systems : 2 / 2554   Chapter 3 The Laplace Transform
1 de 49

Recomendados

Laplace problems por
Laplace problemsLaplace problems
Laplace problemsArianne Banglos
243 visualizações41 slides
Applications laplace transform por
Applications laplace transformApplications laplace transform
Applications laplace transformMuhammad Fadli
2.4K visualizações56 slides
Laplace transformation por
Laplace transformationLaplace transformation
Laplace transformationAkanksha Diwadi
4.2K visualizações29 slides
Laplace transform & fourier series por
Laplace transform & fourier seriesLaplace transform & fourier series
Laplace transform & fourier seriesvaibhav tailor
2.7K visualizações33 slides
Differential equation & laplace transformation with matlab por
Differential equation & laplace transformation with matlabDifferential equation & laplace transformation with matlab
Differential equation & laplace transformation with matlabRavi Jindal
11K visualizações25 slides
Unit step function por
Unit step functionUnit step function
Unit step functionKifaru Malale
145.7K visualizações10 slides

Mais conteúdo relacionado

Mais procurados

Laplace equation por
Laplace equationLaplace equation
Laplace equationalexkhan129
8.3K visualizações41 slides
M1 unit viii-jntuworld por
M1 unit viii-jntuworldM1 unit viii-jntuworld
M1 unit viii-jntuworldmrecedu
1.1K visualizações19 slides
Lecture10 Signal and Systems por
Lecture10 Signal and SystemsLecture10 Signal and Systems
Lecture10 Signal and Systemsbabak danyal
2.5K visualizações13 slides
Laplace Transforms por
Laplace TransformsLaplace Transforms
Laplace TransformsDr. Nirav Vyas
10.3K visualizações172 slides
Concept of-complex-frequency por
Concept of-complex-frequencyConcept of-complex-frequency
Concept of-complex-frequencyVishal Thakur
26.5K visualizações17 slides
Control chap10 por
Control chap10Control chap10
Control chap10Mohd Ashraf Shabarshah
8.5K visualizações42 slides

Mais procurados(20)

Laplace equation por alexkhan129
Laplace equationLaplace equation
Laplace equation
alexkhan1298.3K visualizações
M1 unit viii-jntuworld por mrecedu
M1 unit viii-jntuworldM1 unit viii-jntuworld
M1 unit viii-jntuworld
mrecedu1.1K visualizações
Lecture10 Signal and Systems por babak danyal
Lecture10 Signal and SystemsLecture10 Signal and Systems
Lecture10 Signal and Systems
babak danyal2.5K visualizações
Laplace Transforms por Dr. Nirav Vyas
Laplace TransformsLaplace Transforms
Laplace Transforms
Dr. Nirav Vyas10.3K visualizações
Concept of-complex-frequency por Vishal Thakur
Concept of-complex-frequencyConcept of-complex-frequency
Concept of-complex-frequency
Vishal Thakur26.5K visualizações
Laplace Transform of Periodic Function por Dhaval Shukla
Laplace Transform of Periodic FunctionLaplace Transform of Periodic Function
Laplace Transform of Periodic Function
Dhaval Shukla16.8K visualizações
Fourier Series for Continuous Time & Discrete Time Signals por Jayanshu Gundaniya
Fourier Series for Continuous Time & Discrete Time SignalsFourier Series for Continuous Time & Discrete Time Signals
Fourier Series for Continuous Time & Discrete Time Signals
Jayanshu Gundaniya15.3K visualizações
Unit v laplace transform(formula) por Babu Rao
Unit v laplace transform(formula)Unit v laplace transform(formula)
Unit v laplace transform(formula)
Babu Rao23K visualizações
laplace transform and inverse laplace, properties, Inverse Laplace Calculatio... por Waqas Afzal
laplace transform and inverse laplace, properties, Inverse Laplace Calculatio...laplace transform and inverse laplace, properties, Inverse Laplace Calculatio...
laplace transform and inverse laplace, properties, Inverse Laplace Calculatio...
Waqas Afzal166 visualizações
signal and system Dirac delta functions (1) por iqbal ahmad
signal and system Dirac delta functions (1)signal and system Dirac delta functions (1)
signal and system Dirac delta functions (1)
iqbal ahmad3.3K visualizações
Tf por Irwan Rahman
TfTf
Tf
Irwan Rahman704 visualizações
Circuit Network Analysis - [Chapter4] Laplace Transform por Simen Li
Circuit Network Analysis - [Chapter4] Laplace TransformCircuit Network Analysis - [Chapter4] Laplace Transform
Circuit Network Analysis - [Chapter4] Laplace Transform
Simen Li14.7K visualizações
Toward an Improved Computational Strategy for Vibration-Proof Structures Equi... por Alessandro Palmeri
Toward an Improved Computational Strategy for Vibration-Proof Structures Equi...Toward an Improved Computational Strategy for Vibration-Proof Structures Equi...
Toward an Improved Computational Strategy for Vibration-Proof Structures Equi...
Alessandro Palmeri723 visualizações
residue por Rob Arnold
residueresidue
residue
Rob Arnold680 visualizações
Introduction to Fourier transform and signal analysis por 宗翰 謝
Introduction to Fourier transform and signal analysisIntroduction to Fourier transform and signal analysis
Introduction to Fourier transform and signal analysis
宗翰 謝7.1K visualizações
Vcla.ppt COMPOSITION OF LINEAR TRANSFORMATION KERNEL AND RANGE OF LINEAR TR... por Sukhvinder Singh
Vcla.ppt COMPOSITION OF LINEAR TRANSFORMATION   KERNEL AND RANGE OF LINEAR TR...Vcla.ppt COMPOSITION OF LINEAR TRANSFORMATION   KERNEL AND RANGE OF LINEAR TR...
Vcla.ppt COMPOSITION OF LINEAR TRANSFORMATION KERNEL AND RANGE OF LINEAR TR...
Sukhvinder Singh1K visualizações
Mathematics of nyquist plot [autosaved] [autosaved] por Asafak Husain
Mathematics of nyquist plot [autosaved] [autosaved]Mathematics of nyquist plot [autosaved] [autosaved]
Mathematics of nyquist plot [autosaved] [autosaved]
Asafak Husain839 visualizações
Linear transformation and application por shreyansp
Linear transformation and applicationLinear transformation and application
Linear transformation and application
shreyansp10K visualizações

Destaque

Laplace Transform And Its Applications por
Laplace Transform And Its ApplicationsLaplace Transform And Its Applications
Laplace Transform And Its ApplicationsSmit Shah
2K visualizações38 slides
Dsp U Lec05 The Z Transform por
Dsp U   Lec05 The Z TransformDsp U   Lec05 The Z Transform
Dsp U Lec05 The Z Transformtaha25
10.2K visualizações23 slides
Chapter 2 Laplace Transform por
Chapter 2 Laplace TransformChapter 2 Laplace Transform
Chapter 2 Laplace TransformZakiah Saad
8.8K visualizações50 slides
Laplace Transformation & Its Application por
Laplace Transformation & Its ApplicationLaplace Transformation & Its Application
Laplace Transformation & Its ApplicationChandra Kundu
58.2K visualizações20 slides
Laplace transform and its applications por
Laplace transform and its applicationsLaplace transform and its applications
Laplace transform and its applicationsNisarg Shah
28.5K visualizações30 slides
Signals and systems( chapter 1) por
Signals and systems( chapter 1)Signals and systems( chapter 1)
Signals and systems( chapter 1)Fariza Zahari
47.5K visualizações51 slides

Destaque(20)

Laplace Transform And Its Applications por Smit Shah
Laplace Transform And Its ApplicationsLaplace Transform And Its Applications
Laplace Transform And Its Applications
Smit Shah2K visualizações
Dsp U Lec05 The Z Transform por taha25
Dsp U   Lec05 The Z TransformDsp U   Lec05 The Z Transform
Dsp U Lec05 The Z Transform
taha2510.2K visualizações
Chapter 2 Laplace Transform por Zakiah Saad
Chapter 2 Laplace TransformChapter 2 Laplace Transform
Chapter 2 Laplace Transform
Zakiah Saad8.8K visualizações
Laplace Transformation & Its Application por Chandra Kundu
Laplace Transformation & Its ApplicationLaplace Transformation & Its Application
Laplace Transformation & Its Application
Chandra Kundu58.2K visualizações
Laplace transform and its applications por Nisarg Shah
Laplace transform and its applicationsLaplace transform and its applications
Laplace transform and its applications
Nisarg Shah28.5K visualizações
Signals and systems( chapter 1) por Fariza Zahari
Signals and systems( chapter 1)Signals and systems( chapter 1)
Signals and systems( chapter 1)
Fariza Zahari47.5K visualizações
Btech admission in india por Edhole.com
Btech admission in indiaBtech admission in india
Btech admission in india
Edhole.com566 visualizações
Logics of the laplace transform por Tarun Gehlot
Logics of the laplace transformLogics of the laplace transform
Logics of the laplace transform
Tarun Gehlot1.4K visualizações
sampling theorem | Communication Systems por Learn By Watch
sampling theorem | Communication Systemssampling theorem | Communication Systems
sampling theorem | Communication Systems
Learn By Watch564 visualizações
Dsp U Lec02 Data Converters por taha25
Dsp U   Lec02 Data ConvertersDsp U   Lec02 Data Converters
Dsp U Lec02 Data Converters
taha251.7K visualizações
Dsp U Lec03 Analogue To Digital Converters por taha25
Dsp U   Lec03 Analogue To Digital ConvertersDsp U   Lec03 Analogue To Digital Converters
Dsp U Lec03 Analogue To Digital Converters
taha251.1K visualizações
Laplace por Divyesh Harwani
LaplaceLaplace
Laplace
Divyesh Harwani1.4K visualizações
Dsp U Lec08 Fir Filter Design por taha25
Dsp U   Lec08 Fir Filter DesignDsp U   Lec08 Fir Filter Design
Dsp U Lec08 Fir Filter Design
taha255.3K visualizações
Dsp U Lec01 Real Time Dsp Systems por taha25
Dsp U   Lec01 Real Time Dsp SystemsDsp U   Lec01 Real Time Dsp Systems
Dsp U Lec01 Real Time Dsp Systems
taha253.2K visualizações
Bab 1-kontrak kuliah pte por kartiria sonata
Bab 1-kontrak kuliah pteBab 1-kontrak kuliah pte
Bab 1-kontrak kuliah pte
kartiria sonata311 visualizações
Laplace transform and its application por Jaydrath Sindhav
Laplace transform and its applicationLaplace transform and its application
Laplace transform and its application
Jaydrath Sindhav4.3K visualizações
Dsp U Lec06 The Z Transform And Its Application por taha25
Dsp U   Lec06 The Z Transform And Its ApplicationDsp U   Lec06 The Z Transform And Its Application
Dsp U Lec06 The Z Transform And Its Application
taha256.7K visualizações
Dsp U Lec10 DFT And FFT por taha25
Dsp U   Lec10  DFT And  FFTDsp U   Lec10  DFT And  FFT
Dsp U Lec10 DFT And FFT
taha258.7K visualizações

Similar a Chapter3 laplace

Tele3113 wk11wed por
Tele3113 wk11wedTele3113 wk11wed
Tele3113 wk11wedVin Voro
879 visualizações13 slides
Midsem sol 2013 por
Midsem sol 2013Midsem sol 2013
Midsem sol 2013Dharmendra Dixit
205 visualizações10 slides
11.[95 103]solution of telegraph equation by modified of double sumudu transf... por
11.[95 103]solution of telegraph equation by modified of double sumudu transf...11.[95 103]solution of telegraph equation by modified of double sumudu transf...
11.[95 103]solution of telegraph equation by modified of double sumudu transf...Alexander Decker
529 visualizações10 slides
Final Present Pap1on relibility por
Final Present Pap1on relibilityFinal Present Pap1on relibility
Final Present Pap1on relibilityketan gajjar
209 visualizações25 slides
11.[104 111]analytical solution for telegraph equation by modified of sumudu ... por
11.[104 111]analytical solution for telegraph equation by modified of sumudu ...11.[104 111]analytical solution for telegraph equation by modified of sumudu ...
11.[104 111]analytical solution for telegraph equation by modified of sumudu ...Alexander Decker
772 visualizações9 slides

Similar a Chapter3 laplace(20)

Tele3113 wk11wed por Vin Voro
Tele3113 wk11wedTele3113 wk11wed
Tele3113 wk11wed
Vin Voro879 visualizações
Midsem sol 2013 por Dharmendra Dixit
Midsem sol 2013Midsem sol 2013
Midsem sol 2013
Dharmendra Dixit205 visualizações
11.[95 103]solution of telegraph equation by modified of double sumudu transf... por Alexander Decker
11.[95 103]solution of telegraph equation by modified of double sumudu transf...11.[95 103]solution of telegraph equation by modified of double sumudu transf...
11.[95 103]solution of telegraph equation by modified of double sumudu transf...
Alexander Decker529 visualizações
Final Present Pap1on relibility por ketan gajjar
Final Present Pap1on relibilityFinal Present Pap1on relibility
Final Present Pap1on relibility
ketan gajjar209 visualizações
11.[104 111]analytical solution for telegraph equation by modified of sumudu ... por Alexander Decker
11.[104 111]analytical solution for telegraph equation by modified of sumudu ...11.[104 111]analytical solution for telegraph equation by modified of sumudu ...
11.[104 111]analytical solution for telegraph equation by modified of sumudu ...
Alexander Decker772 visualizações
160511 hasegawa lab_seminar por Tomohiro Koana
160511 hasegawa lab_seminar160511 hasegawa lab_seminar
160511 hasegawa lab_seminar
Tomohiro Koana204 visualizações
Seminar Talk: Multilevel Hybrid Split Step Implicit Tau-Leap for Stochastic R... por Chiheb Ben Hammouda
Seminar Talk: Multilevel Hybrid Split Step Implicit Tau-Leap for Stochastic R...Seminar Talk: Multilevel Hybrid Split Step Implicit Tau-Leap for Stochastic R...
Seminar Talk: Multilevel Hybrid Split Step Implicit Tau-Leap for Stochastic R...
Chiheb Ben Hammouda28 visualizações
Solution of linear and nonlinear partial differential equations using mixture... por Alexander Decker
Solution of linear and nonlinear partial differential equations using mixture...Solution of linear and nonlinear partial differential equations using mixture...
Solution of linear and nonlinear partial differential equations using mixture...
Alexander Decker912 visualizações
11.solution of linear and nonlinear partial differential equations using mixt... por Alexander Decker
11.solution of linear and nonlinear partial differential equations using mixt...11.solution of linear and nonlinear partial differential equations using mixt...
11.solution of linear and nonlinear partial differential equations using mixt...
Alexander Decker419 visualizações
501 lecture8 por Vladmir Tavares
501 lecture8501 lecture8
501 lecture8
Vladmir Tavares58 visualizações
Cosmin Crucean: Perturbative QED on de Sitter Universe. por SEENET-MTP
Cosmin Crucean: Perturbative QED on de Sitter Universe.Cosmin Crucean: Perturbative QED on de Sitter Universe.
Cosmin Crucean: Perturbative QED on de Sitter Universe.
SEENET-MTP1.7K visualizações
Balanced homodyne detection por wtyru1989
Balanced homodyne detectionBalanced homodyne detection
Balanced homodyne detection
wtyru19892.3K visualizações
Markov Tutorial CDC Shanghai 2009 por Sean Meyn
Markov Tutorial CDC Shanghai 2009Markov Tutorial CDC Shanghai 2009
Markov Tutorial CDC Shanghai 2009
Sean Meyn5.6K visualizações
Laplace transform por joni joy
Laplace transformLaplace transform
Laplace transform
joni joy634 visualizações
Laplace table por prathsel
Laplace tableLaplace table
Laplace table
prathsel324 visualizações
Laplace table por noori734
Laplace tableLaplace table
Laplace table
noori734245 visualizações
Free Ebooks Download por Edhole.com
Free Ebooks Download Free Ebooks Download
Free Ebooks Download
Edhole.com202 visualizações
Comparison Theorems for SDEs por Ilya Gikhman
Comparison Theorems for SDEs Comparison Theorems for SDEs
Comparison Theorems for SDEs
Ilya Gikhman753 visualizações

Último

UNIDAD 3 6º C.MEDIO.pptx por
UNIDAD 3 6º C.MEDIO.pptxUNIDAD 3 6º C.MEDIO.pptx
UNIDAD 3 6º C.MEDIO.pptxMarcosRodriguezUcedo
139 visualizações32 slides
The basics - information, data, technology and systems.pdf por
The basics - information, data, technology and systems.pdfThe basics - information, data, technology and systems.pdf
The basics - information, data, technology and systems.pdfJonathanCovena1
156 visualizações1 slide
GCSE Music por
GCSE MusicGCSE Music
GCSE MusicWestHatch
47 visualizações50 slides
GCSE Geography por
GCSE GeographyGCSE Geography
GCSE GeographyWestHatch
47 visualizações32 slides
The Value and Role of Media and Information Literacy in the Information Age a... por
The Value and Role of Media and Information Literacy in the Information Age a...The Value and Role of Media and Information Literacy in the Information Age a...
The Value and Role of Media and Information Literacy in the Information Age a...Naseej Academy أكاديمية نسيج
61 visualizações42 slides
Monthly Information Session for MV Asterix (November) por
Monthly Information Session for MV Asterix (November)Monthly Information Session for MV Asterix (November)
Monthly Information Session for MV Asterix (November)Esquimalt MFRC
91 visualizações26 slides

Último(20)

UNIDAD 3 6º C.MEDIO.pptx por MarcosRodriguezUcedo
UNIDAD 3 6º C.MEDIO.pptxUNIDAD 3 6º C.MEDIO.pptx
UNIDAD 3 6º C.MEDIO.pptx
MarcosRodriguezUcedo139 visualizações
The basics - information, data, technology and systems.pdf por JonathanCovena1
The basics - information, data, technology and systems.pdfThe basics - information, data, technology and systems.pdf
The basics - information, data, technology and systems.pdf
JonathanCovena1156 visualizações
GCSE Music por WestHatch
GCSE MusicGCSE Music
GCSE Music
WestHatch47 visualizações
GCSE Geography por WestHatch
GCSE GeographyGCSE Geography
GCSE Geography
WestHatch47 visualizações
Monthly Information Session for MV Asterix (November) por Esquimalt MFRC
Monthly Information Session for MV Asterix (November)Monthly Information Session for MV Asterix (November)
Monthly Information Session for MV Asterix (November)
Esquimalt MFRC91 visualizações
Volf work.pdf por MariaKenney3
Volf work.pdfVolf work.pdf
Volf work.pdf
MariaKenney366 visualizações
Meet the Bible por Steve Thomason
Meet the BibleMeet the Bible
Meet the Bible
Steve Thomason69 visualizações
EIT-Digital_Spohrer_AI_Intro 20231128 v1.pptx por ISSIP
EIT-Digital_Spohrer_AI_Intro 20231128 v1.pptxEIT-Digital_Spohrer_AI_Intro 20231128 v1.pptx
EIT-Digital_Spohrer_AI_Intro 20231128 v1.pptx
ISSIP407 visualizações
STRATEGIC MANAGEMENT MODULE 1_UNIT1 _UNIT2.pdf por Dr Vijay Vishwakarma
STRATEGIC MANAGEMENT MODULE 1_UNIT1 _UNIT2.pdfSTRATEGIC MANAGEMENT MODULE 1_UNIT1 _UNIT2.pdf
STRATEGIC MANAGEMENT MODULE 1_UNIT1 _UNIT2.pdf
Dr Vijay Vishwakarma87 visualizações
CUNY IT Picciano.pptx por apicciano
CUNY IT Picciano.pptxCUNY IT Picciano.pptx
CUNY IT Picciano.pptx
apicciano56 visualizações
Jibachha publishing Textbook.docx por DrJibachhaSahVetphys
Jibachha publishing Textbook.docxJibachha publishing Textbook.docx
Jibachha publishing Textbook.docx
DrJibachhaSahVetphys53 visualizações
Gross Anatomy of the Liver por obaje godwin sunday
Gross Anatomy of the LiverGross Anatomy of the Liver
Gross Anatomy of the Liver
obaje godwin sunday69 visualizações
When Sex Gets Complicated: Porn, Affairs, & Cybersex por Marlene Maheu
When Sex Gets Complicated: Porn, Affairs, & CybersexWhen Sex Gets Complicated: Porn, Affairs, & Cybersex
When Sex Gets Complicated: Porn, Affairs, & Cybersex
Marlene Maheu99 visualizações
EILO EXCURSION PROGRAMME 2023 por info33492
EILO EXCURSION PROGRAMME 2023EILO EXCURSION PROGRAMME 2023
EILO EXCURSION PROGRAMME 2023
info33492124 visualizações
JQUERY.pdf por ArthyR3
JQUERY.pdfJQUERY.pdf
JQUERY.pdf
ArthyR396 visualizações
REPRESENTATION - GAUNTLET.pptx por iammrhaywood
REPRESENTATION - GAUNTLET.pptxREPRESENTATION - GAUNTLET.pptx
REPRESENTATION - GAUNTLET.pptx
iammrhaywood151 visualizações
Class 9 lesson plans por TARIQ KHAN
Class 9 lesson plansClass 9 lesson plans
Class 9 lesson plans
TARIQ KHAN53 visualizações
Recap of our Class por Corinne Weisgerber
Recap of our ClassRecap of our Class
Recap of our Class
Corinne Weisgerber100 visualizações

Chapter3 laplace

  • 1. Signals & Systems Chapter 3 The Laplace Transform INC212 Signals and Systems : 2 / 2554
  • 2. Laplace Transform of unit-step Function ∞ ∞ X (σ + jω ) = ∫ e −(σ + jω ) t dt X (ω ) = ∫ x(t )e − j ωt dt 0 −∞ 1 ∞ X (σ + jω ) = − [e −(σ + jω ) t ]tt =∞ =0 σ + jω X (ω ) = ∫ 1⋅ e − jωt dt 0 1 X (σ + jω ) = − [ 0 − e − (σ + j ω ) 0 ] σ + jω ∞ X (ω ) = ∫ e e −σt − jωt dt X (σ + jω ) = 1 −∞ σ + jω ∞ X (ω ) = ∫ e −(σ + jω ) t dt σ + jω → s 0 1 X ( s) = s INC212 Signals and Systems : 2 / 2554 Chapter 3 The Laplace Transform
  • 3. Laplace Transform of Signals ∞ X ( s ) = ∫ x(t )e dt ; s = σ + jω − st −∞ One-side transform x(t ) = 0; t < 0 ∞ X ( s ) = ∫ x(t )e dt − st 0 INC212 Signals and Systems : 2 / 2554 Chapter 3 The Laplace Transform
  • 4. Laplace Transform of Signals ∞ 1, t ≥ 0 X ( s ) = ∫ x(t )e dt − st x(t ) = u (t ) =  0 0, t < 0 ∞ ∞ L[u (t )] = ∫ u (t )e dt − st = ∫ (1)e − st dt −∞ 0 − st ∞ e 1 =− = −0 − (− ), s > 0 s 0 s 1 ∴ L[u (t )] = , s > 0 s INC212 Signals and Systems : 2 / 2554 Chapter 3 The Laplace Transform
  • 5. Relationship between the FT and ℒ T One-side transform or Forward transform x(t ) = 0; t < 0 ∴ s = jω ; σ = 0 ∞ ∞ X (ω ) = ∫ x(t )e − jω t dt X ( s ) = ∫ x(t )e − st dt 0 0 X (ω ) = X ( s ) s = jω x(t ) ↔ X ( s ) X ( s) = L[ x(t )] ; x(t ) = L−1[ X ( s )] INC212 Signals and Systems : 2 / 2554 Chapter 3 The Laplace Transform
  • 6. Common ℒ T Pairs INC212 Signals and Systems : 2 / 2554 Chapter 3 The Laplace Transform
  • 7. Region of Convergence (ROC)  g1 (t ) = Aeαt u (t ); α > 0 ∞ ∞ ∞ G1 ( s ) = ∫ −∞ Aeαt u (t )e − st dt = A∫ e −( s −α )t dt = A∫ e (α −σ )t e − jωt dt 0 0 A ∴ G1 ( s ) = σ = Re( s ) > α s −α INC212 Signals and Systems : 2 / 2554 Chapter 3 The Laplace Transform
  • 8. Region of Convergence (ROC)  g 2 (t ) = Ae −αt u (−t ) = g1 (−t ); α > 0 ∞ 0 0 G2 ( s ) = ∫ −∞ Ae −αt u (−t )e − st dt = A ∫ e −( s +α )t dt = A ∫ e −(σ +α )t e − jωt dt −∞ −∞ A ∴ G2 ( s) = = G1 (− s ) σ = Re( s ) < −α s +α INC212 Signals and Systems : 2 / 2554 Chapter 3 The Laplace Transform
  • 9. Region of Convergence (ROC)  Example: x(t ) = e − t u (t ) + e −2t u (t ) L ∞ ∞ x(t ) ↔ X ( s ) = ∫ [e u (t ) + e u (t )]e dt = A∫ [e −( s +1) t + e −( s + 2) t ]dt −t − 2t − st −∞ 0 1 1 ∴ X (s) = + σ > −1 s +1 s + 2 INC212 Signals and Systems : 2 / 2554 Chapter 3 The Laplace Transform
  • 10. Region of Convergence (ROC)  Example: x(t ) = e −t u (t ) + e 2t u (−t ) L1 L 1 −t e u (t ) ↔ σ > −1 e u (−t ) ↔ − 2t σ <2 s +1 s−2 L 1 1 −t ∴ e u (t ) + e u ( −t ) ↔ 2t − −1 < σ < 2 s +1 s − 2 INC212 Signals and Systems : 2 / 2554 Chapter 3 The Laplace Transform
  • 11. Properties of the ℒT  Linearity L L x(t ) ↔ X ( s ) and v(t ) ↔ V ( s ) L ax(t ) + bv(t ) ↔ aX ( s ) + bV ( s ) INC212 Signals and Systems : 2 / 2554 Chapter 3 The Laplace Transform
  • 12. Properties of the ℒT  Example: Linearity L[u (t ) + e − t u (t )] 1 −t 1 u (t ) ↔ and e u (t ) ↔ s s +1 −t 1 1 u (t ) + e u (t ) ↔ + s s +1 −t 2s + 1 u (t ) + e u (t ) ↔ s ( s + 1) INC212 Signals and Systems : 2 / 2554 Chapter 3 The Laplace Transform
  • 13. Properties of the ℒT  Right Shift in Time x(t ) ↔ X ( s ) − cs x(t − c)u (t − c) ↔ e X (s) INC212 Signals and Systems : 2 / 2554 Chapter 3 The Laplace Transform
  • 14. Properties of the ℒT  Example: Right Shift in Time 1, 0 ≤ t < c x(t ) =  0, all other t x(t ) = u (t ) − u (t − c) − cs − cs 1 e 1− e u (t ) − u (t − c) ↔ − = s s s INC212 Signals and Systems : 2 / 2554 Chapter 3 The Laplace Transform
  • 15. Properties of the ℒ T INC212 Signals and Systems : 2 / 2554 Chapter 3 The Laplace Transform
  • 16. Computation of the Inverse ℒ T 1 c + j∞ 2π j ∫c − j∞ x(t ) = X ( s )e st ds INC212 Signals and Systems : 2 / 2554 Chapter 3 The Laplace Transform
  • 17. The Inverse ℒ T using Partial-Fraction Expansion B( s) X ( s) = A( s ) Let p1, p2, …, pN B ( s ) = bM s M + bM −1s M −1 +  + b1s + b0 denote the roots A( s ) = a N s N + a N −1s N −1 +  + a1s + a0 of the equation A( s ) = 0 The pi for i = 1, 2, A( s ) = a N ( s − p1 )( s − p2 )  ( s − p N ) …,N are called the B( s) X (s) = poles of X(s) a N ( s − p1 )( s − p2 )  ( s − p N ) INC212 Signals and Systems : 2 / 2554 Chapter 3 The Laplace Transform
  • 18. Distinct Poles c1 c2 cN X ( s) = + ++ s − p1 s − p2 s − pN ci = [( s − pi ) X ( s )]s = pi , i = 1,2, , N x(t ) = c1e p1t + c2 e p2t +  + cN e pN t , t≥0 INC212 Signals and Systems : 2 / 2554 Chapter 3 The Laplace Transform
  • 19. Example: Distinct Poles s+2 ci = [( s − pi ) X ( s )]s = pi , i = 1,2, , N X ( s) = 3 s + 4 s 2 + 3s s+2 2 A( s ) = s + 4 s + 3s = s ( s + 1)( s + 3) c1 = [ sX ( s )]s =0 = ( s + 1)( s + 3) 3 2 = 3 s =0 A( s ) = 0 = s ( s + 1)( s + 3) s+2 1 p1 = 0, p2 = −1, p3 = −3 c2 = [( s + 1) X ( s )]s = −1 = = s ( s + 3) s = −1 − 2 c1 c2 c3 X ( s) = + + s+2 −1 s − 0 s − (−1) s − (−3) c3 = [( s + 3) X ( s )]s = −3 = = s ( s + 1) s = −3 6 c c c X ( s) = 1 + 2 + 3 2 1 − t 1 − 3t s s +1 s + 3 x(t ) = − e − e , t ≥ 0 3 2 6 INC212 Signals and Systems : 2 / 2554 Chapter 3 The Laplace Transform
  • 20. Distinct Poles with 2 or More Poles Complex c1 c1 c3 cN X (s) = + + ++ s − p1 s − p1 s − p3 s − pN x(t ) = c1e p1t + c1e p1t + c3e p3t +  + c N e p N t σt c1e p1t + c1e p1t = 2 c1 e cos(ωt + ∠c1 ) σt x(t ) = 2 c1 e cos(ωt + ∠c1 ) + c3e p3 t +  + cN e pN t INC212 Signals and Systems : 2 / 2554 Chapter 3 The Laplace Transform
  • 21. Example: Distinct Poles with 2 or More Poles Complex ci = [( s − pi ) X ( s)]s = p , i = 1,2,, N s − 2s + 1 2 i X (s) = 3 s 2 − 2s + 1 s + 3s 2 + 4 s + 2 c1 = [( s + 1 − j ) X ( s )]s =−1+ j = ( s + 1 + j )( s + 1) s =−1+ j A( s ) = s 3 + 3s 2 + 4 s + 2 = ( s + 1 − j )( s + 1 + j )( s + 1) −3 c1 = + j2 2 p1 = −1 + j , p2 = −1 − j , p3 = −1 9 5 c1 = +4 = ; X ( s) = c1 + c1 + c3 4 2 s − (−1 + j ) s − (−1 − j ) s − (−1) −4 ∠c1 = 180° + tan −1 = 126.87° c1 c1 c3 3 X ( s) = + + s +1− j s +1+ j s +1 s 2 − 2s + 1 c3 = [( s + 1) X ( s )]s = −1 = 2 =4 s + 2 s + 2 s = −1 x(t ) = 5e −t cos(t + 126.87°) + 4e − t , t ≥ 0 INC212 Signals and Systems : 2 / 2554 Chapter 3 The Laplace Transform
  • 22. Repeated Poles B( s) c c2 cr c cN X (s) = X ( s) = 1 + ++ + r +1 +  + A( s ) s − p1 ( s − p1 ) 2 ( s − p1 ) r s − pr +1 s − pN ci = [( s − pi ) X ( s )]s = pi , i = r + 1, r + 2, , N cr = [( s − p1 ) r X ( s )]s = p1 1d  i = 1,2,  , r − 1 i = 1; cr −1 = [( s − p1 ) r X ( s )] 1!  ds   s = p1 1  di  cr − i =  i [( s − p1 ) X ( s )] r 1  d2  i!  ds  s = p1 i = 2; cr − 2 =  2 [( s − p1 ) r X ( s )] 2!  ds  s= p 1 x(t ) = c1e p1t + c2te p1t +  + cr t r −1e p1t + cr +1e pr +1t +  + c N e p N t , t ≥ 0 INC212 Signals and Systems : 2 / 2554 Chapter 3 The Laplace Transform
  • 23. Example: Repeated Poles 5s − 1 c1 c2 c X (s) = 3 X (s) = + + 3 s − 3s − 2 s + 1 ( s + 1) 2 s − 2 1d   d 5s − 1  −9 c1 = [( s + 1) 2 X ( s )] = [ ] = = −1 1!  ds   s = −1  ds s − 2  s = −1 ( s − 2) 2 s = −1 5s − 1 c2 = [( s + 1) 2 X ( s )]s = −1 = =2 s − 2 s = −1 5s − 1 c3 = [( s − 2) X ( s )]s = 2 = =1 ( s + 1) 2 s =2 x(t ) = −e − t + 2te − t + e 2t , t ≥ 0 INC212 Signals and Systems : 2 / 2554 Chapter 3 The Laplace Transform
  • 24. Case when M ≥ N B(s) X (s) = A( s ) R( s) X ( s) = Q( s) + B( s ) = bM s M + bM −1s M −1 +  + b1s + b0 A( s ) A( s ) = a N s N + a N −1s N −1 +  + a1s + a0 R( s) X ( s ) = Q( s ) + V ( s ), V ( s ) = A( s ) Q(s) A( s ) B( s ) x(t ) = q (t ) + v(t ) A( s ) * Q ( s ) dN q(t ); δ (t ) ↔ s N R( s) dt N v(t ); v(t ) ↔ V ( s ) INC212 Signals and Systems : 2 / 2554 Chapter 3 The Laplace Transform
  • 25. Example: Case when M ≥ N s 3 + 2s − 4 20 s − 12 X (s) = 2 = s−4+ 2 s + 4s − 2 s + 4s − 2 X ( s) = Q( s) + V ( s) Q( s) = s − 4 d q(t ) = δ (t ) − 4δ (t ) dt 20s − 12 20.6145 0.6145 V ( s) = 2 = − s + 4 s − 2 s + 4.4495 s − 0.4495 v(t ) = 20.6145e − 4.4495t − 0.6145e 0.4495t , t ≥ 0 d x(t ) = δ (t ) − 4δ (t ) + 20.6145e − 4.4495t − 0.6145e 0.4495t , t ≥ 0 dt INC212 Signals and Systems : 2 / 2554 Chapter 3 The Laplace Transform
  • 26. Transform of the I/O Differential Equation  First-Order Case y (0 − ) b Y ( s) = + X (s) dy (t ) s+a s+a + ay (t ) = bx(t ) b dt Y ( s) = X (s) sY ( s ) − y (0 − ) + aY ( s ) = bX ( s ) s+a b ( s + a )Y ( s ) = y (0 − ) + bX ( s ) H (s) = s+a Y ( s) = H ( s) X ( s) H(s) Transfer Function (TF) of the system INC212 Signals and Systems : 2 / 2554 Chapter 3 The Laplace Transform
  • 27. Transform of the I/O Differential Equation  Example: First-Order Case dy (t ) 1 1 + y (t ) = x(t ) dt RC RC y (0 − ) 1 RC Y ( s) = + s + 1 RC ( s + 1 RC ) s y (0 − ) 1 RC Y (s) = + X (s) y (0 − ) 1 1 RC s + 1 RC s + 1 RC Y ( s) = + − s + 1 RC s s + 1 RC y (t ) = y (0 − )e −(1 RC ) t + 1 − e −(1 RC ) t , t ≥ 0 INC212 Signals and Systems : 2 / 2554 Chapter 3 The Laplace Transform
  • 28. Transform of the I/O Differential Equation  Second-Order Case d 2 y (t ) dy (t ) dx(t ) 2 + a1 + a0 y (t ) = b1 + b0 x(t ) dt dt dt [ ] s 2Y ( s ) − y (0 − ) s − y (0 − ) + a1 sY ( s ) − y (0 − ) + a0Y ( s ) = b1sX ( s ) + b0 X ( s )  y (0 − ) s + y (0 − ) + a1 y (0 − )  b1s + b0 Y (s) = + 2 X ( s) s + a1s + a0 2 s + a1s + a0 If initial condition = 0 : b1s + b0 b1s + b0 Y (s) = 2 X ( s) ; H ( s) = 2 s + a1s + a0 s + a1s + a0 INC212 Signals and Systems : 2 / 2554 Chapter 3 The Laplace Transform
  • 29. Transform of the I/O Differential Equation  Example: Second-Order Case x(t) = u(t) so that X(s) = 1/s; initial cond. = 0 d 2 y (t ) dy (t ) 2 +6 + 8 y (t ) = 2 x(t ) dt dt 2 H (s) = 2 2 1 s + 6s + 8 Y (s) = H (s) X (s) = s 2 + 6s + 8 s 0.25 0.5 0.25 Y (s) = − + s s+2 s+4 y (t ) = 0.25 − 0.5e − 2t + 0.25e − 4t , t ≥ 0 INC212 Signals and Systems : 2 / 2554 Chapter 3 The Laplace Transform
  • 30. Transform of the I/O Differential Equation  Example: Second-Order Case y (0 − ) = 1 x(t) = u(t) with the initial condition y (0 − ) = 2  s +8 2 1 Y ( s) = 2 + 2 s + 6s + 8 s + 6s + 8 s s 2 + 8s + 2 = s ( s 2 + 6 s + 8) 0.25 2.5 1.75 Y ( s) = + − s s+2 s+4 y (t ) = 0.25 + 2.5e − 2t − 1.75e − 4t , t ≥ 0 INC212 Signals and Systems : 2 / 2554 Chapter 3 The Laplace Transform
  • 31. Transform of the I/O Differential Equation  Nth-Order Case d N y (t ) N −1 d i y (t ) M d i x(t ) C (s) B(s) N + ∑ ai i = ∑ bi i ; Y ( s) = + X (s) dt i =0 dt i =0 dt A( s ) A( s ) B ( s ) = bM s M + bM −1s M −1 +  + b1s + b0 ; A( s ) = s N + a N −1s N −1 +  + a1s + a0 C ( s ) = y ( 0 − ) s + y ( 0 − ) + a1 y ( 0 − )  B( s) bM s M +  + b1s + b0 Y (s) = X (s) = N N −1 X (s) A( s ) s + a N −1s +  + a1s + a0 bM s M +  + b1s + b0 H (s) = N s + a N −1s N −1 +  + a1s + a0 INC212 Signals and Systems : 2 / 2554 Chapter 3 The Laplace Transform
  • 32. Transform of the I/O Convolution Integral t y (t ) = h(t ) ∗ x(t ) = ∫ h(λ ) x(t − λ )dλ , t ≥ 0 0 Y ( s) = H ( s) X ( s) h(t ) ↔ H ( s ) Y (s) H (s) = X (s) INC212 Signals and Systems : 2 / 2554 Chapter 3 The Laplace Transform
  • 33. Transform of the I/O Convolution Integral  Example: Determining the TF y (t ) = 2 − 3e −t + e −2t cos 2t , t ≥ 0 2 3 s+2 − + 2 3 s+2 s s + 1 ( s + 2) 2 + 4 Y (s) = − + H (s) = s s + 1 ( s + 2) + 4 2 1 s +1 1 2( s + 1) ( s + 1)( s + 2) X (s) = = −3+ s +1 s ( s + 2) 2 + 4 [2( s + 1) − 3s ][( s + 2) 2 + 4] + s ( s + 1)( s + 2) = s[( s + 2) 2 + 4] s 2 + 2s + 16 = 3 s + 4 s 2 + 8s INC212 Signals and Systems : 2 / 2554 Chapter 3 The Laplace Transform
  • 34. Transform of the I/O Convolution Integral  Finite-Dimensional Systems bM s M + bM −1s M −1 +  + b1s + b0 H ( s) = N s + a N −1s N −1 +  + a1s + a0 ( s N + a N −1s N −1 +  + a1s + a0 )Y ( s ) = (bM s M + bM −1s M −1 +  + b1s + b0 ) X ( s ) d N y (t ) N −1 d i y (t ) M d i x(t ) N + ∑ ai i = ∑ bi dt i =0 dt i =0 dt i INC212 Signals and Systems : 2 / 2554 Chapter 3 The Laplace Transform
  • 35. Transform of the I/O Convolution Integral  Poles and zeros of a Systems bM s M + bM −1s M −1 +  + b1s + b0 H ( s) = N s + a N −1s N −1 +  + a1s + a0 bM ( s − z1 )( s − z 2 )  ( s − z M ) H ( s) = ( s − p1 )( s − p2 )  ( s − p N ) zi : “zeros of H (s)” or “zeros of system” pi : “poles of H (s)” or “poles of system” N : “number of poles of system” or “order N of system” INC212 Signals and Systems : 2 / 2554 Chapter 3 The Laplace Transform
  • 36. Transform of the I/O Convolution Integral  Example: Third-Order System 2 s 2 + 12 s + 20 H ( s) = 3 s + 6 s 2 + 10s + 8 2( s + 3 − j )( s + 3 + j ) H ( s) = ( s + 4)( s + 1 − j )( s + 1 + j ) z1 = −3 + j and z1 = −3 − j p1 = −4, p 2 = −1 + j , p3 = −1 − j INC212 Signals and Systems : 2 / 2554 Chapter 3 The Laplace Transform
  • 37. Exercises  Sketch the pole-zero plot and ROC for these signals.  x(t ) = e −8t u (t )  x(t ) = e 3t cos(20πt )u (−t )  x(t ) = e 2t u (−t ) − e −5t u (t ) INC212 Signals and Systems : 2 / 2554 Chapter 3 The Laplace Transform
  • 38. Exercises  Using the time-shifting property, find the LT of these signals.  x(t ) = u (t ) − u (t − 1)  x(t ) = 3e −3(t − 2)u (t − 2)  x(t ) = 3e −3t u (t − 2)  x(t ) = 5 sin(π (t − 1))u (t − 1) INC212 Signals and Systems : 2 / 2554 Chapter 3 The Laplace Transform
  • 39. Exercises  Find the inverse LT of these functions.  24  20 X ( s) = X (s) = s ( s + 8) s 2 + 4s + 3  s2  s X ( s) = 2 X ( s) = 2 s − 4s + 4 s + 4s + 4  5  2s X ( s) = 2 X ( s) = 2 s + 6 s + 73 s + 2 s + 13 INC212 Signals and Systems : 2 / 2554 Chapter 3 The Laplace Transform
  • 40. INC212 Signals and Systems : 2 / 2554 Chapter 3 The Laplace Transform
  • 41. Direct Construction of the TF  RLC Circuits dv(t ) 1 = i (t ) dt C v(t ) = Ri (t ) di (t ) 1 v(t ) = L sV ( s ) − v(0) = I ( s ) dt V ( s ) = RI ( s ) C 1 1 V ( s ) = LsI ( s ) − Li (0) V (s) = I ( s ) + v(0) Cs s INC212 Signals and Systems : 2 / 2554 Chapter 3 The Laplace Transform
  • 42. Direct Construction of the TF  Series and Parallel Connection Z1 ( s ) Z 2 (s) V1 ( s ) = V ( s) I1 ( s ) = I ( s) Z1 ( s ) + Z 2 ( s ) Z1 ( s ) + Z 2 ( s ) Z 2 (s) Z1 ( s ) V2 ( s ) = V ( s) I 2 (s) = I ( s) Z1 ( s ) + Z 2 ( s ) Z1 ( s ) + Z 2 ( s ) INC212 Signals and Systems : 2 / 2554 Chapter 3 The Laplace Transform
  • 43. Direct Construction of the TF  Example: Series RLC Circuit Output = VC(s) Output = VR(s) 1 Cs R Vc ( s ) = X ( s) VR ( s ) = X (s) Ls + R + (1 Cs ) Ls + R + (1 Cs ) 1 LC ( R L) s = 2 X ( s) = 2 X ( s) s + ( R L) s + (1 LC ) s + ( R L) s + (1 LC ) 1 LC ( R L) s H ( s) = 2 H ( s) = 2 s + ( R L) s + (1 LC ) s + ( R L) s + (1 LC ) INC212 Signals and Systems : 2 / 2554 Chapter 3 The Laplace Transform
  • 44. Direct Construction of the TF  Interconnections of Integrators INC212 Signals and Systems : 2 / 2554 Chapter 3 The Laplace Transform
  • 45. Direct Construction of the TF sQ1 ( s) = −4Q1 ( s ) + X ( s)  Example: Q1 ( s) = 1 s+4 X (s) sQ2 ( s ) = Q1 ( s) − 3Q2 ( s) + X ( s ) 1 Q2 ( s ) = [Q1 ( s ) + X ( s )] s+3 1  1  =  + 1 X ( s ) s +3 s +4  s+5 = X ( s) ( s + 3)( s + 4) Y ( s ) = Q2 ( s ) + X ( s ) s+5 = X ( s) + X ( s) ( s + 3)( s + 4) s 2 + 8s + 17 = X ( s) ( s + 3)( s + 4) s 2 + 8s + 17 s 2 + 8s + 17 H ( s) = = ( s + 3)( s + 4) s 2 + 7 s + 12 INC212 Signals and Systems : 2 / 2554 Chapter 3 The Laplace Transform
  • 46. TF of Block Diagrams  Parallel Interconnection Y ( s ) = Y1 ( s ) + Y2 ( s ) Y1 ( s ) = H1 ( s ) X ( s ) Y2 ( s ) = H 2 ( s ) X ( s ) Y ( s ) = H1 ( s ) X ( s ) + H 2 ( s) X ( s) = ( H1 ( s ) + H 2 ( s )) X ( s ) H ( s) = H1 ( s) + H 2 ( s ) INC212 Signals and Systems : 2 / 2554 Chapter 3 The Laplace Transform
  • 47. TF of Block Diagrams  Series Connection Y1 ( s ) = H1 ( s ) X ( s ) Y2 ( s ) = H 2 ( s )Y1 ( s ) Y ( s ) = Y2 ( s ) = H 2 ( s ) H1 ( s ) X ( s ) H ( s ) = H 2 ( s ) H1 ( s ) = H1 ( s ) H 2 ( s ) INC212 Signals and Systems : 2 / 2554 Chapter 3 The Laplace Transform
  • 48. TF of Block Diagrams  Feedback Connection Y ( s) = H1 ( s) X 1 ( s) X 1 ( s ) = X ( s ) − Y2 ( s ) = X ( s ) − H 2 ( s )Y ( s ) Y ( s ) = H1 ( s )[ X ( s ) − H 2 ( s )Y ( s )] H1 ( s ) Y (s) = X (s) 1 + H1 ( s) H 2 ( s) H1 ( s) H (s) = 1 + H1 ( s) H 2 ( s) H1 ( s) H (s) = 1 − H1 ( s ) H 2 ( s ) INC212 Signals and Systems : 2 / 2554 Chapter 3 The Laplace Transform
  • 49. INC212 Signals and Systems : 2 / 2554 Chapter 3 The Laplace Transform