Atualizámos a nossa política de privacidade. Clique aqui para ver os detalhes. Toque aqui para ver os detalhes.
Ative o seu período de avaliaçõo gratuito de 30 dias para desbloquear leituras ilimitadas.
Ative o seu teste gratuito de 30 dias para continuar a ler.
Baixar para ler offline
1. The basic definition of Data, Analytics, and Data Analytics
2. Definition: Data: Data is a set of values of qualitative or quantitative variables. It is information in the raw or unorganized form. It may be a fact, figure, characters, symbols etc
Analytics: Analytics is the discovery, interpretation, and communication of meaningful patterns in data and applying those patterns towards effective decision making.
Data Analytics: Data analytics refers to qualitative and quantitative techniques and processes used to enhance productivity and business gain.
3.Types of analytics: Predictive Analytics (What could happen?)
Prescriptive Analytics (What should we do)
Descriptive Analytics (What has happened?)
4.Why Data analytics? Data Analytics is needed in Business to Consumer applications (B2C)
5.The process of Data analytics: Data requirements,
Data collection, Data processing, Data cleaning, Exploratory data analysis,
Modeling and algorithms, Data product, Communication
6.The scope of Data Analytics: Bright future of data analytics, many professionals and students are interested in a career in data analytics.
7.Importance of data analytics:1. Predict customer trends and behaviors
Analyze,
2 interpret and deliver data in meaningful ways
3.Increase business productivity
4.Drive effective decision-making
8.why become a data analyst? talented gaps of skill candidates, good salaries for freshers, great future growth path
9. What recruiters look for in applicants: Problem-Solving Skills, Analytical Mind, Maths and Statistic Skills, Communication (both oral and written), Teamwork Abilities
10. Skill is required for Data analytics?
1.) Analytical Skills
2.) Numeracy Skills
3.) Technical and Computer Skills
4.) Attention to Details
5.) Business Skills
6.) Communication Skills
11. Data analytics tools
1.SAS: SAS (Statistical Analysis System) is a software suite developed by SAS Institute. sas language can be defined as a programming language in the computing field. This language is generally used for the purpose of statistical analysis. The language has the ability to read data from databases and common spreadsheets.
2. R: R is a programming language and software environment for statistical analysis, graphics representation and reporting.R is freely available under the GNU General Public License, and pre-compiled binary versions are provided for various operating systems like Linux, Windows, and Mac.
3.PYTHON: Python is a popular programming language Python is a powerful, flexible, open-sources language that is easy to use,
and has a powerful library for data manipulation and analysis.
4.TABLEAU: Tableau Software is a software company that produces interactive data visualization products focused on business intelligence.
1. The basic definition of Data, Analytics, and Data Analytics
2. Definition: Data: Data is a set of values of qualitative or quantitative variables. It is information in the raw or unorganized form. It may be a fact, figure, characters, symbols etc
Analytics: Analytics is the discovery, interpretation, and communication of meaningful patterns in data and applying those patterns towards effective decision making.
Data Analytics: Data analytics refers to qualitative and quantitative techniques and processes used to enhance productivity and business gain.
3.Types of analytics: Predictive Analytics (What could happen?)
Prescriptive Analytics (What should we do)
Descriptive Analytics (What has happened?)
4.Why Data analytics? Data Analytics is needed in Business to Consumer applications (B2C)
5.The process of Data analytics: Data requirements,
Data collection, Data processing, Data cleaning, Exploratory data analysis,
Modeling and algorithms, Data product, Communication
6.The scope of Data Analytics: Bright future of data analytics, many professionals and students are interested in a career in data analytics.
7.Importance of data analytics:1. Predict customer trends and behaviors
Analyze,
2 interpret and deliver data in meaningful ways
3.Increase business productivity
4.Drive effective decision-making
8.why become a data analyst? talented gaps of skill candidates, good salaries for freshers, great future growth path
9. What recruiters look for in applicants: Problem-Solving Skills, Analytical Mind, Maths and Statistic Skills, Communication (both oral and written), Teamwork Abilities
10. Skill is required for Data analytics?
1.) Analytical Skills
2.) Numeracy Skills
3.) Technical and Computer Skills
4.) Attention to Details
5.) Business Skills
6.) Communication Skills
11. Data analytics tools
1.SAS: SAS (Statistical Analysis System) is a software suite developed by SAS Institute. sas language can be defined as a programming language in the computing field. This language is generally used for the purpose of statistical analysis. The language has the ability to read data from databases and common spreadsheets.
2. R: R is a programming language and software environment for statistical analysis, graphics representation and reporting.R is freely available under the GNU General Public License, and pre-compiled binary versions are provided for various operating systems like Linux, Windows, and Mac.
3.PYTHON: Python is a popular programming language Python is a powerful, flexible, open-sources language that is easy to use,
and has a powerful library for data manipulation and analysis.
4.TABLEAU: Tableau Software is a software company that produces interactive data visualization products focused on business intelligence.
Parece que você já adicionou este slide ao painel
Você recortou seu primeiro slide!
Recortar slides é uma maneira fácil de colecionar slides importantes para acessar mais tarde. Agora, personalize o nome do seu painel de recortes.A família SlideShare acabou de crescer. Desfrute do acesso a milhões de ebooks, áudiolivros, revistas e muito mais a partir do Scribd.
Cancele a qualquer momento.Leitura ilimitada
Aprenda de forma mais rápida e inteligente com os maiores especialistas
Transferências ilimitadas
Faça transferências para ler em qualquer lugar e em movimento
Também terá acesso gratuito ao Scribd!
Acesso instantâneo a milhões de e-books, audiolivros, revistas, podcasts e muito mais.
Leia e ouça offline com qualquer dispositivo.
Acesso gratuito a serviços premium como Tuneln, Mubi e muito mais.
Atualizámos a nossa política de privacidade de modo a estarmos em conformidade com os regulamentos de privacidade em constante mutação a nível mundial e para lhe fornecer uma visão sobre as formas limitadas de utilização dos seus dados.
Pode ler os detalhes abaixo. Ao aceitar, está a concordar com a política de privacidade atualizada.
Obrigado!