SlideShare uma empresa Scribd logo
1 de 59
Estrutura de Carboidratos
Paulo Henrique Barbosa do Nascimento
São Bernardo do Campo/SP. Outubro de 2016
Técnico em Química . Graduando em Biomedicina (6° período .Universidade Metodista de São Paulo)
Iniciante a pesquisa cientifica em Farmacologia- (Escola Paulista de Medicina .Universidade Federal de São Paulo)
Introdução aos Carboidratos
• São as biomoléculas (MOLÉCULAS DA VIDA) mais abundantes na natureza;
• Moléculas ou Macromoléculas orgânicas;
• Representam 75% da composição dos vegetais;
• Formados por átomos de Carbono, Oxigênio e Hidrogênio (Podendo apresentar átomos de S,N,P );
• Primeira fonte energética do Corpo Humano;
• Podem ser chamados de Hidrato de Carbono e Sacarídeos.
• fórmula estrutural Cn(H2O)n;
EXEMPLO:
6266126 )( OHCOHC 
Assumem diferentes funções em células
Estrutura Metabolismo
Fonte de energia (glicose)
Reserva de energia (glicogênio e amido...)
Componentes estruturais (paredes celulares, superfícies celulares,
componentes estruturais do DNA e RNA, receptores....)
A Fotossíntese converte + 100 bilhões toneladas de CO2 e H2O em carboidratos
(celulose e outros).
São classificados em Monossacarídeos, Oligossacarídeos e Polissacarídeos
CARBOIDRATOS
Monossacarídeos Oligossacarídeos Polissacarídeos
Polissacarídeo (>20)
Monossacarídeo
Oligossacarídeo (2-20)
• O esqueleto é constituído por uma cadeia carbônica saturada não ramificada, sendo que todos os carbonos se ligam
entre si através de ligações covalentes simples.
• Um dos carbonos da cadeia carbônica realiza uma ligação dupla com o oxigênio para formar o grupo carbonila;
Todos os outros átomos de carbono da cadeia estão ligado a uma hidroxila (função álcool).
CONCEITOS FUNDAMENTAIS SOBRE OS MONOSSACARÍDEOS :
• São os carboidratos mais simples, sendo uma molécula orgânica que possui de 3 á 8 átomos de carbonos geralmente.
3 carbonos: Trioses
4 carbonos: Tetroses
+ importantes 5 carbonos: Pentoses Monossacarídeos
6 carbonos: Hexoses
7 carbonos: Heptoses
Exemplos:
Monossacarídeos
 Solúveis em água e insolúveis
em solventes orgânicos.
 Brancos e cristalinos.
- Possuem várias hidroxilas (-OH) na cadeia carbônica, sendo então chamados de poli-hidroxilados (função orgânica
oxigenada: álcool)
- Possuem grupo funcional que caracteriza função orgânica oxigenada aldeído ou cetona:
Função orgânica aldeído = ALDOSE
Função orgânica cetona = CETOSE
Exemplos:
Aldose Cetose
Em química orgânica, grupo funcional se define como uma estrutura molecular que confere às substâncias comportamentos
químicos semelhantes. O conjunto de compostos que apresentam o mesmo grupo funcional é denominado Função Orgânica.
1 Carbono fazendo dupla
ligação com o Oxigênio.
•Na extremidade: aldeído
•Outra posição: cetona
Logo, são classificados como: POLIHIDROXIALDEÍDO ou POLIHIDROXICETONA
Exemplos:
POLIHIDROXIALDEÍDO POLIHIDROXICETONA
5 Carbonos = Pentoses
3 Carbonos = Triose
4 Carbonos = Tetroses
 D-Aldoses
v
v
6 Carbonos = Hexoses
5 C = Pentoses3 C =Triose
4 C = Tetrose
6 = Hexoses
 D-Cetoses
Monossacarídeos em solução aquosa:
• Os monossacarídeos que possuem acima de “5 Carbonos” podem se apresentar na forma aberta (linear) ou
cíclica, sendo que em solução aquosa apenas 0,02% encontram-se na forma aberta.
Exemplo:
forma aberta (linear)
forma cíclica
forma cíclica
• As moléculas ciclizadas podem apresentar 5 ou 6 vértices.
O anel de 6 vértices é chamado de ANEL PIRANOSÍDICO
O anel de 5 vértices é chamado de ANEL FURANOSÍDICO
Hexágono
Pentágono
Podem assumir duas conformações:
Exemplos:
• Na estrutura, o carbono onde ocorre a formação do anel é denominado “Carbono Anomérico", e sua hidroxila
pode assumir 2 formas:
α : Quando ela fica para baixo do plano do anel
β : Quando ela fica para cima do plano do anel
A interconversão entre estas formas é dinâmica e denomina-se MUTARROTAÇÃO
α  Cis
Β  Trans
Exemplo:
anômero  e 
Nesse exemplo o C-1 faz ligação com OH do C-5,
formando Hemiacetal
• A isomeria espacial óptica é aquela que apresenta um carbono com quatro ligantes diferentes entre si, para este carbono
damos o nome de Assimétrico ou Quiral.
(Carbono Assimétrico ou Quiral: É o átomo de carbono que está ligado a quatro grupos diferentes entre si).
• Os monossacarídeos assim como os aminoácidos, possuem uma nomenclatura especial para identificar as configurações
absolutas dos quatro substituintes do carbono assimétrico, sendo o sistema D e L. Sendo baseado na configuração
absoluta do monossacarídeo de três carbonos gliceraldeído.
(Convenção proposta por Fischer em 1891);
Configuração D e L, refere-se a configuração absoluta dos quatro substituintes em torno do carbono quiral!
Classificado pelo lado em que a Hidroxila se encontra no carbono quiral (direito ou esquerdo);
Sistema D e L: Convenção proposta por Fischer em 1891
Os carboidratos naturais são de série D
• Para todos os compostos quirais, os esteroisomeros com configuração absoluta semelhante a do
D-gliceraldeído são denominados D, e com configuração absoluta semelhante a do L-gliceraldeído são
denominados L.
Configuração D: Hidroxila do carbono quiral no lado direito.
Configuração L: Hidroxila carbono quiral no lado esquerdo.
• Para definir a configuração L ou D de um carboidrato com múltiplos centros quirais deve-se ter como
base a configuração absoluta do carbono quiral mais distante dos grupos funcionais aldeído ou cetona.
Observação: A numeração dos átomos de carbono em uma molécula de carboidrato se inicia sempre pela
extremidade mais próxima do carbono do grupo funcional cetona ou aldeído.
Observação: Moléculas com n centros quirais podem ter 2 esteroisomeros.
n
As letras D e L indicam apenas a configuração espacial de um isômero, e não a sua atividade óptica!
Existem compostos D que são levógiros (-) e, compostos L que são dextrógiros (+).
Exemplos: D (-) fructose e L (+) arginina
O sinal (+) ou (-) indica se é Levógiro ou dextrógiro!
Configuração D: Hidroxila do carbono quiral no lado direito.
Configuração L: Hidroxila carbono quiral no lado esquerdo.
ATIVIDADE ÓPTICA
• A atividade óptica dos isômeros ópticos denomina-se como dextrógiro d (+) o isômero que desvia a luz polarizada
para o plano da direita, e como levógiro l (-) o isômero que desvia a luz polarizada para o plano da esquerda.
• As propriedades físicas destes isômeros são as mesmas. A única diferença é o desvio da luz plano polarizada.
• Essa propriedade foi inicialmente descoberta para ácidos orgânicos e carboidratos, com vários Carbonos quirais.
levógiro: Indicado pelo ( -) desvia a luz polarizada para esquerda.
dextrógiro: Indicado pelo (+) desvia a luz polarizada para direita.
1. Realizar a seleção de um plano de luz.
2. A solução de substância opticamente ativa vai causar rotação do plano da luz polarizada.
3. O plano da luz que emerge da solução foi desviado: para a esquerda ou para a direita, pela substância.
4. O observador gira a escala até coincidir com a luz emergente, para determinar o desvio.
 Estereoisomeros:
São moléculas cujos átomos tem a mesma forma estrutural, mas diferem na forma como esses mesmos
átomos estão orientados no espaço. Apresentam atividade óptica e suas moléculas não sobrepõem
sua imagem especular.
 Enantiômeros:
Isômeros de uma molécula que representam reflexões especulares uma da outra;
 Diaestereômeros:
Isômeros de uma molécula com vários centros quirais;
 EPÍMEROS
Molécula com múltiplos centros quirais onde a configuração de um único centro quiral foi alterada, ou seja, são
isômeros que diferem entre si apenas pela configuração de um carbono quiral.
 A glicose é o carboidrato de maior importância para o organismo;
 Também chamada de dextrose, é o principal carboidrato do sangue (0,1 %);
 A digestão do Amido e de outros carboidratos, bem como a glicogênólise, disponibiliza varias moléculas de
glicose na corrente sanguínea.
 Como a glicose não precisa passar pelo processo de digestão, ela pode ser administrada por via endovenosa
em pacientes que apresentam incapacidade de ingestão de alimentos ou necessitam da administração por
outros motivos.
 A glicose é amplamente distribuídas em frutas;
 É uma aldohexose
 Para a molécula da glicose, em solução aquosa, temos em média as seguintes proporções:
• β-D-Glicopiranose: 62%
• α-D-Glicopiranose: 38%
• α-D-Glicofuranose: menos de 0,5%
• β-D-Glicofuranose: menos de 0,5%
• Forma aberta: menos de 0,02%
62%38% 0,5% 0,5%
 Encontrada principalmente nas frutas e no mel;
 É uma Cetohexose
 O sêmen humano é rico em frutose.
 Carboidrato formado nas glândulas mamarias (exócrina) a partir da molécula de glicose;
 A interação química (ligação covalente ) entre a galactose e a glicose origina um dissacarídeo chamado Lactose.
 A D-Galactose é um epímero de D-Glicose em C4.
 É uma Aldohexose
 Nucleotídeos dos ácidos nucleicos:
Base Nitrogenada + grupamento fosfato + monossacarídeo
Pentoses
p/ RNA p/ DNA
Por consequência dos monossacarídeos serem os carboidratos mais simples, é a partir
deles que derivam todas as outras classes de carboidratos;
• São carboidratos chamados especificadamente de glicosídeos, por serem formados a partir da ligação química entre 2
ou mais monossacarídeos, chamada de ligação glicosídica;
Os Oligossacarídeos são formados entre 2 á 12 monossacarídeos ligados.
DISSACARÍDEOS, TRISSACARÍDEOS, TETRASSACARÍDEOS etc.
• LIGAÇÃO GLICOSÍDICA : É a ligação covalente entre moléculas de carboidratos, originando moléculas de carboidratos
mais complexas (Oligossacarídeos e Polissacarídeos).
A ligação ocorre entre a hidroxila do carbono anomérico de um monossacarídeo e qualquer outra Hidroxila de um carbono
do monossacarídeo seguinte, com a saída de uma molécula de água (H2O).
Oligossacarídeos
“Quebra” por hidrólise (necessita de uma molécula de água)
“Síntese” por condensação (perde uma molécula de água)
Exemplo de ligação glicosídica
Os dissacarídeos consistem a classe mais importante e abundante de oligossacarídeos.
PRINCIPAIS OLIGOSSACARÍDEOS: DISSACARIDEOS
 Formada pela ligação entre uma MOLÉCULA DE GLICOSE e uma MOLÉCULA DE GALACTOSE (hexoses), através de ligação
glicosídica;
 Carboidrato encontrado no leite de mamíferos.
 Não apresenta boa solubilidade em água.
 Menos doce que a sacarose;
 Formada pela ligação entre duas MOLÉCULAS DE GLICOSE.
 Alta solubilidade em água;
 CARBOIDRATO REDUTOR (?)
 É o carboidrato do malte;
 Não é encontrado na natureza na forma livre.
 É menos doce que a sacarose;
 É utilizada em fórmulas nutricionais para a alimentação infantil.
 Formada pela ligação entre uma MOLÉCULA DE GLICOSE e uma MOLÉCULA DE FRUTOSE.
 Alta solubilidade em água;
 CARBOIDRATO NÃO REDUTOR
 É conhecida como açúcar comum, sendo extraído para distribuição comercial da cana-de-açúcar e da beterraba.
Sacarose
Fórmula química C12H22O11
Massa Molar 342.24 g mol-1
Densidade 1,57 g/cm3 (30 °C)
Ponto de Fusão 160–192 °C
Solubilidade em água 1970 g·l-1 a 20.0 °C
Aparência Cristais brancos
Hidrólise de Ligações Glicosídicas:
 Ácido
Exemplo: Ácido Sulfúrico...
 Atividade Enzimática
Exemplos: Lactase, Amilase...
Polissacarídeos
• Como os monossacarídeos possuem a capacidade de união para formar os dissacarídeos e outros
oligossacarídeos, eles também podem dar origem aos polissacarídeos que podem ser formados por centenas e
até milhares de monômeros (monossacarídeo).
• Resumindo, os polissacarídeos são carboidratos complexos, ou seja, macromoléculas por centenas e até milhares
de monômeros (monossacarídeo) ligados entre si por ligações glicosídicas.
• Os polissacarídeos assim como os oligossacarídeos quando em meio ácido e sobre reação de hidrólise produzem
muitos monossacarídeos.
• Os polissacarídeos mais importantes são os formados pela polimerização da glicose;
POLISSACARÍDEOS
Dois ou mais tipos de monossacarídeos
Homopolissacarídeos Um único tipo de monossacarídeo
Heteropolissacarídeos
Homopolissacarídeos Heteropolissacarídeos
Linear Ramificado Linear Ramificado
POLISSACARÍDEOS
 Homopolissacarídeos de Armazenamento de Energia:
o 1. Amido
o 2. Glicogênio
Exemplos de Homopolissacarídeos e Heteropolissacarídeos:
 Homopolissacarídeos Estruturais:
o 3. Celulose
o 4. Quitina
 Heteropolissacarídeos:
o 1. Peptidioglicanos
o 2. Glicosaminoglicanos
o 3. Ágar
POLISSACARÍDEOS
 Armazenamento de energia nas células vegetais (eficaz e duradouro).
 Formado por 2 polissacarídeos associados, sendo a amilose e amilopectina.
 De forma geral é formado por moléculas de glicose ligadas entre si através de numerosas ligações α (1,4) e poucas
ligações α (1,6) "pontos de ramificação" da cadeia.
 Sua molécula é muito linear, e forma hélice em solução aquosa.
AMILOSE:
Macromolécula constituída de 250 a 300 resíduos de glicose, ligadas por ligações glicosídicas α (1,4).
AMILOPECTINA:
Macromolécula, menos hidrossolúvel que a amilose, constituída por cerca de 1400 resíduos de glicose ligadas ligações
glicosídicas α(1,4), ocorrendo também ligações α(1,6), que dão a ela uma estrutura ramificada. A amilopectina constitui,
aproximadamente, 80% dos polissacarídeos existentes no grão de amido.
HOMOPOLISSACARÍDEOS: RESERVA ENERGÉTICA
α(1-6)
α(1-4)
Amilose (Linear)
Amilopectina (Ramificada)
HOMOPOLISSACARÍDEOS: RESERVA ENERGÉTICA
Grânulos de Amido em um Cloroplasto
HOMOPOLISSACARÍDEOS: RESERVA ENERGÉTICA
 O glicogênio é o principal estoque de energia das células animais e de utilização rápida;
 Possui ligações glicosídicas do tipo α(1-4) na cadeia linear, e nos pontos de ramificação ligação glicosídica do tipo α(1-6).
 O peso molecular pode chegar a 100 milhões.
 Corresponde entre 1-2% das reservas energéticas do organismo;
 Distribuído entre o tecido hepático e muscular;
- 300 a 400 gramas no musculo.
- 80 a 90 gramas no fígado.
 Glicogênio hepático: Atua na manutenção da glicemia, pois é uma reserva de glicose que permite que a mesma seja
exportada para outros órgãos quando necessário (Exemplo: Cérebro, que a energia é derivada exclusivamente da
glicose).
 Glicogênio Muscular: Essa reserva não permite que a glicose seja exportada. É usado pela própria fibra como fonte
emergencial de energia quando a necessidade desta é muito intensa (Uma corrida veloz).
 Parecido com a amilopectina: A principal diferença é que a amilopectina apresenta uma ramificação a cada 30 resíduos
de glicose, enquanto o glicogênio apresenta estas ramificações a cada 6 a 12 resíduos de glicose (o glicogênio é muito
mais ramificado).
HOMOPOLISSACARÍDEOS: RESERVA ENERGÉTICA
Estrutura do Glicogênio
HOMOPOLISSACARÍDEOS: RESERVA ENERGÉTICA
Glicogênio na célula
HOMOPOLISSACARÍDEOS: RESERVA ENERGÉTICA
Porque armazenar energia metabólica na forma de polímeros e não de monômeros?
 A pressão osmótica é proporcional ao número de moléculas, 1000 moléculas de glicose gerariam uma
pressão osmótica 1000 vezes maior do que 1 polissacarídeo com 1000 monômeros de glicose.
 O armazenamento de energia metabólica na forma de um grande número de moléculas individuais
dificultaria muito a regulação metabólica.
AMIDO
GLICOGÊNIO
RESERVA DE GLICOSE
EM VEGETAIS
RESERVA DE GLICOSE
EM ANIMAIS
HOMOPOLISSACARÍDEOS: RESERVA ENERGÉTICA
 É o carboidrato mais abundante na natureza; Função estrutural, fazendo parte da parede celular das células vegetais.
 É semelhante ao amido e glicogênio em relação a ser formada por monômeros de D-glicose ,porém se diferencia por
possuir ligação do tipo β (1,4 ).
 Esse tipo de ligação glicosídica dá a celulose característica de estrutura espacial linear, formando assim fibras
insolúveis em água e extremamente rígida, o que por sua vez, caracteriza a celulose como não sendo digerida pelo
ser humano.
(Vale ainda ressaltar que é também pelo fato de não possuirmos enzimas específicas para esse tipo de composto).
- Cria-se varias lig. de Hidrogênio entre as Hidroxilas , fazendo com que moléculas de água sejam impenetráveis, logo
insolúvel em água.
HOMOPOLISSACARÍDEOS: ESTRUTURAIS
β (1,4)β (1,4)
• É um dos principais constituintes das paredes celulares das plantas (cerca de 33% do peso da planta), em combinação
com a lignina, hemicelulose e pectina.
• LEMBRETE: NÓS NÃO DIGERIMOS CELULOSE!!!
o Parede Celular primaria: pectina e hemicelulose
o Parede Celular Secundaria : celulose
HOMOPOLISSACARÍDEOS: ESTRUTURAIS
Fibra de Celulose
Macrofibrilas de Celulose
Microfibrilas de Celulose
Polissacarídeo Celulose
HOMOPOLISSACARÍDEOS: ESTRUTURAIS
o Descoberta em cogumelos pelo professor francês Henri Braconnot, em 1811. Recebeu a denominação inicial de fungina.
o Polímero de cadeia linear e longa de N-acetilglucosamina, um derivado da glucose.
o A quitina é o segundo polissacarídeo mais abundante da natureza, após a celulose.
o O nome Quitina foi dado por Odier, em 1823, quando esta foi isolada de insetos.
o Presente em:
 Parede Celular de fungos
 Exoesqueleto de artrópodes
 Rádula dos moluscos
 Bico dos cefalópodes
 Concha dos foraminíferos
N-acetilglucosamina
HOMOPOLISSACARÍDEOS: ESTRUTURAIS
 Exoesqueleto de artrópodes
Inseto saindo do seu exoesqueleto antigo.
ARTRÓPODES: Crustáceos, Aracnídeos, Quilópodes, Diplópodes e Insetos.
HOMOPOLISSACARÍDEOS: ESTRUTURAIS
Parede Celular de Bactérias Gram-Positiva
 Camada grossa de peptidioglicanos
(40 a 90%) do seu peço seco.
 Ácido teicóicos: presente na parede celular,
e ligando-se covalentemente na membrana
citoplasmática ou nos peptidioglicanos.
HETEROPOLISSACARÍDEOS
N-acetilglicosamina alternado com ác. N-acetilmurâmico
(ligações (14).
 A quantidade de peptidioglicano é pequena
(10 % do peso seco);
 Dupla camada lipoproteíca + outros compostos
como : lipopolissacarideos, lipoproteínas e porinas.
Parede Celular de Bactérias Gram- Negativa:
Membrana externa da parede celular:
HETEROPOLISSACARÍDEOS
HETEROPOLISSACARÍDEOS
COMPONENTE DE MATRIZ EXTRACELULAR:
o Tecido Conjuntivo: Células + Matriz extracelular.
o Matriz extracelular: Substância Fundamental + Fibras.
o Substância Fundamental (substâncias principais):
 GLICOSAMINOGLICANOS (Sulfatados ou Não Sulfatados).
 Proteoglicanos.
 Glicoproteínas adesivas.
 Outros.
HETEROPOLISSACARÍDEOS
Reação para determinação da concentração de glicose sanguínea (Reação enzimática colorimétrica) Labtest:
LABORATÓRIO CLÍNICO
Laboratório Clínico - Glicose
FISIOLOGIA – CICLO GLICÊMICO
Fim !!!

Mais conteúdo relacionado

Mais procurados

Apresentação carboidratos
Apresentação carboidratosApresentação carboidratos
Apresentação carboidratosBruno Silva
 
Aula Funções Inorgânicas
Aula Funções InorgânicasAula Funções Inorgânicas
Aula Funções InorgânicasNai Mariano
 
Lipídios ( Power Point )
Lipídios ( Power Point )Lipídios ( Power Point )
Lipídios ( Power Point )Bio
 
Hibridação sp sp2 e sp3
Hibridação sp sp2 e sp3Hibridação sp sp2 e sp3
Hibridação sp sp2 e sp3Pedro Kangombe
 
Isomeria espacial
Isomeria espacialIsomeria espacial
Isomeria espacialparamore146
 
Carboidratos slides da Fculdade Santa Maria
Carboidratos slides da Fculdade Santa MariaCarboidratos slides da Fculdade Santa Maria
Carboidratos slides da Fculdade Santa MariaOlavo Duarte
 
Carboidratos
CarboidratosCarboidratos
Carboidratosemanuel
 
Aula Digital de Química - Condutividade Elétrica de Soluções Aquosas
Aula Digital de Química - Condutividade Elétrica de Soluções AquosasAula Digital de Química - Condutividade Elétrica de Soluções Aquosas
Aula Digital de Química - Condutividade Elétrica de Soluções AquosasNelson Virgilio Carvalho Filho
 
Isomeria Geométrica
Isomeria GeométricaIsomeria Geométrica
Isomeria GeométricaPaulo Filho
 
Quimica Alimentos Lipideos Ii
Quimica Alimentos Lipideos IiQuimica Alimentos Lipideos Ii
Quimica Alimentos Lipideos IiRicardo Stefani
 
Lipídios prof. Sandro Baldez
Lipídios  prof. Sandro BaldezLipídios  prof. Sandro Baldez
Lipídios prof. Sandro BaldezSandro Baldez
 

Mais procurados (20)

Apresentação carboidratos
Apresentação carboidratosApresentação carboidratos
Apresentação carboidratos
 
Aula Funções Inorgânicas
Aula Funções InorgânicasAula Funções Inorgânicas
Aula Funções Inorgânicas
 
Lipídios ( Power Point )
Lipídios ( Power Point )Lipídios ( Power Point )
Lipídios ( Power Point )
 
Hibridação sp sp2 e sp3
Hibridação sp sp2 e sp3Hibridação sp sp2 e sp3
Hibridação sp sp2 e sp3
 
Isomeria plana
Isomeria planaIsomeria plana
Isomeria plana
 
Isomeria espacial
Isomeria espacialIsomeria espacial
Isomeria espacial
 
Carboidratos
CarboidratosCarboidratos
Carboidratos
 
Carboidratos slides da Fculdade Santa Maria
Carboidratos slides da Fculdade Santa MariaCarboidratos slides da Fculdade Santa Maria
Carboidratos slides da Fculdade Santa Maria
 
Carboidratos
CarboidratosCarboidratos
Carboidratos
 
Carboidratos
CarboidratosCarboidratos
Carboidratos
 
Aula Digital de Química - Condutividade Elétrica de Soluções Aquosas
Aula Digital de Química - Condutividade Elétrica de Soluções AquosasAula Digital de Química - Condutividade Elétrica de Soluções Aquosas
Aula Digital de Química - Condutividade Elétrica de Soluções Aquosas
 
Isomeria Geométrica
Isomeria GeométricaIsomeria Geométrica
Isomeria Geométrica
 
Aldeídos
AldeídosAldeídos
Aldeídos
 
Quimica Alimentos Lipideos Ii
Quimica Alimentos Lipideos IiQuimica Alimentos Lipideos Ii
Quimica Alimentos Lipideos Ii
 
Lipidios
LipidiosLipidios
Lipidios
 
Hidrólise Ácida do Amido
Hidrólise Ácida do AmidoHidrólise Ácida do Amido
Hidrólise Ácida do Amido
 
Composição nutricional dos alimentos
Composição nutricional dos alimentosComposição nutricional dos alimentos
Composição nutricional dos alimentos
 
Isomeria
IsomeriaIsomeria
Isomeria
 
Lipídios prof. Sandro Baldez
Lipídios  prof. Sandro BaldezLipídios  prof. Sandro Baldez
Lipídios prof. Sandro Baldez
 
áCido carboxílico-3a3
áCido carboxílico-3a3áCido carboxílico-3a3
áCido carboxílico-3a3
 

Destaque

Apostila ilustrativa de bioquímica
Apostila ilustrativa de bioquímicaApostila ilustrativa de bioquímica
Apostila ilustrativa de bioquímicaBruno Magnelli
 
Efeito do processamento térmico nas características dos alimentos 2011
Efeito do processamento térmico nas características dos alimentos   2011Efeito do processamento térmico nas características dos alimentos   2011
Efeito do processamento térmico nas características dos alimentos 2011Keysuke Muramatsu
 
Endocrinologia: Glândulas Adrenais e hormônios Corticosteroides.
Endocrinologia: Glândulas Adrenais e hormônios Corticosteroides.Endocrinologia: Glândulas Adrenais e hormônios Corticosteroides.
Endocrinologia: Glândulas Adrenais e hormônios Corticosteroides.PauloHenrique350
 
Dissertacao efeito dos tratamento alcalino, ácido e oxidativo nas prop. amido...
Dissertacao efeito dos tratamento alcalino, ácido e oxidativo nas prop. amido...Dissertacao efeito dos tratamento alcalino, ácido e oxidativo nas prop. amido...
Dissertacao efeito dos tratamento alcalino, ácido e oxidativo nas prop. amido...Silvana Licodiedoff
 
Sistema respiratório- fisiologia
Sistema respiratório- fisiologiaSistema respiratório- fisiologia
Sistema respiratório- fisiologiaPauloHenrique350
 

Destaque (7)

Apostila ilustrativa de bioquímica
Apostila ilustrativa de bioquímicaApostila ilustrativa de bioquímica
Apostila ilustrativa de bioquímica
 
Efeito do processamento térmico nas características dos alimentos 2011
Efeito do processamento térmico nas características dos alimentos   2011Efeito do processamento térmico nas características dos alimentos   2011
Efeito do processamento térmico nas características dos alimentos 2011
 
Endocrinologia: Glândulas Adrenais e hormônios Corticosteroides.
Endocrinologia: Glândulas Adrenais e hormônios Corticosteroides.Endocrinologia: Glândulas Adrenais e hormônios Corticosteroides.
Endocrinologia: Glândulas Adrenais e hormônios Corticosteroides.
 
Carboidratos
CarboidratosCarboidratos
Carboidratos
 
Dissertacao efeito dos tratamento alcalino, ácido e oxidativo nas prop. amido...
Dissertacao efeito dos tratamento alcalino, ácido e oxidativo nas prop. amido...Dissertacao efeito dos tratamento alcalino, ácido e oxidativo nas prop. amido...
Dissertacao efeito dos tratamento alcalino, ácido e oxidativo nas prop. amido...
 
Sistema respiratório- fisiologia
Sistema respiratório- fisiologiaSistema respiratório- fisiologia
Sistema respiratório- fisiologia
 
Reações de Aldeídos e Cetonas
Reações de Aldeídos e CetonasReações de Aldeídos e Cetonas
Reações de Aldeídos e Cetonas
 

Semelhante a Carboidratos: estrutura e classificação

Trabalho II de Bioquímica Ema Francisco Marciano.docx
Trabalho II de Bioquímica Ema Francisco Marciano.docxTrabalho II de Bioquímica Ema Francisco Marciano.docx
Trabalho II de Bioquímica Ema Francisco Marciano.docxFidelMarciano
 
Trabalho II de Bioquímica Ema Francisco Marciano.docx
Trabalho II de Bioquímica Ema Francisco Marciano.docxTrabalho II de Bioquímica Ema Francisco Marciano.docx
Trabalho II de Bioquímica Ema Francisco Marciano.docxFidelMarciano
 
Carboidratos
CarboidratosCarboidratos
CarboidratosURCA
 
BIOMOLECULAS. E suas estruturas importantes.pptx
BIOMOLECULAS. E suas estruturas importantes.pptxBIOMOLECULAS. E suas estruturas importantes.pptx
BIOMOLECULAS. E suas estruturas importantes.pptxGENILDO10
 
Bioquimica i 02 carboidratos
Bioquimica i 02   carboidratosBioquimica i 02   carboidratos
Bioquimica i 02 carboidratosJucie Vasconcelos
 
Resumo de carboidratos
Resumo de carboidratosResumo de carboidratos
Resumo de carboidratosEdimar Lopes
 
Hidratos de carbono
Hidratos de carbonoHidratos de carbono
Hidratos de carbonoLuis Ribeiro
 
Edwineycupertino microsoft power point - carboidratos 1
Edwineycupertino microsoft power point - carboidratos 1Edwineycupertino microsoft power point - carboidratos 1
Edwineycupertino microsoft power point - carboidratos 1Antonio Albino Albino
 

Semelhante a Carboidratos: estrutura e classificação (20)

Trabalho II de Bioquímica Ema Francisco Marciano.docx
Trabalho II de Bioquímica Ema Francisco Marciano.docxTrabalho II de Bioquímica Ema Francisco Marciano.docx
Trabalho II de Bioquímica Ema Francisco Marciano.docx
 
Trabalho II de Bioquímica Ema Francisco Marciano.docx
Trabalho II de Bioquímica Ema Francisco Marciano.docxTrabalho II de Bioquímica Ema Francisco Marciano.docx
Trabalho II de Bioquímica Ema Francisco Marciano.docx
 
carboidratos2018.pptx
carboidratos2018.pptxcarboidratos2018.pptx
carboidratos2018.pptx
 
Carboidratos
CarboidratosCarboidratos
Carboidratos
 
Bioquímica celular
Bioquímica celularBioquímica celular
Bioquímica celular
 
Aula - Carboidratos.pdf
Aula - Carboidratos.pdfAula - Carboidratos.pdf
Aula - Carboidratos.pdf
 
BIOMOLECULAS. E suas estruturas importantes.pptx
BIOMOLECULAS. E suas estruturas importantes.pptxBIOMOLECULAS. E suas estruturas importantes.pptx
BIOMOLECULAS. E suas estruturas importantes.pptx
 
Bioquimica i 02 carboidratos
Bioquimica i 02   carboidratosBioquimica i 02   carboidratos
Bioquimica i 02 carboidratos
 
42951 carboidratos --introdução.2012
42951 carboidratos --introdução.201242951 carboidratos --introdução.2012
42951 carboidratos --introdução.2012
 
Carboidratos.pptx
Carboidratos.pptxCarboidratos.pptx
Carboidratos.pptx
 
Carboidratos
CarboidratosCarboidratos
Carboidratos
 
Resumo de carboidratos
Resumo de carboidratosResumo de carboidratos
Resumo de carboidratos
 
FUNDAMENTOS DE BIOQUIMICA
FUNDAMENTOS DE  BIOQUIMICAFUNDAMENTOS DE  BIOQUIMICA
FUNDAMENTOS DE BIOQUIMICA
 
Aula2 joao
Aula2 joaoAula2 joao
Aula2 joao
 
Hidratos de carbono
Hidratos de carbonoHidratos de carbono
Hidratos de carbono
 
Edwineycupertino microsoft power point - carboidratos 1
Edwineycupertino microsoft power point - carboidratos 1Edwineycupertino microsoft power point - carboidratos 1
Edwineycupertino microsoft power point - carboidratos 1
 
Quimica trabalho
Quimica trabalhoQuimica trabalho
Quimica trabalho
 
Biomoléculas
BiomoléculasBiomoléculas
Biomoléculas
 
Biomoléculas
BiomoléculasBiomoléculas
Biomoléculas
 
Biomoleculas1
Biomoleculas1Biomoleculas1
Biomoleculas1
 

Último

DEPRESSÃO E CUIDADOS DE ENFERMAGEM - SAÚDE MENTAL
DEPRESSÃO E CUIDADOS DE ENFERMAGEM - SAÚDE MENTALDEPRESSÃO E CUIDADOS DE ENFERMAGEM - SAÚDE MENTAL
DEPRESSÃO E CUIDADOS DE ENFERMAGEM - SAÚDE MENTALCarlosLinsJr
 
AULA_11 PRINCIPAIS DOENÇAS DO ENVELHECIMENTO.pdf
AULA_11 PRINCIPAIS DOENÇAS DO ENVELHECIMENTO.pdfAULA_11 PRINCIPAIS DOENÇAS DO ENVELHECIMENTO.pdf
AULA_11 PRINCIPAIS DOENÇAS DO ENVELHECIMENTO.pdfLviaParanaguNevesdeL
 
Técnica Shantala para bebês: relaxamento
Técnica Shantala para bebês: relaxamentoTécnica Shantala para bebês: relaxamento
Técnica Shantala para bebês: relaxamentoPamelaMariaMoreiraFo
 
aula 7. proteínas.ppt. conceitos de proteina
aula 7. proteínas.ppt. conceitos de proteinaaula 7. proteínas.ppt. conceitos de proteina
aula 7. proteínas.ppt. conceitos de proteinajarlianezootecnista
 
PLANO DE ENSINO Disciplina Projeto Integrado I GESTaO.pdf
PLANO DE ENSINO Disciplina Projeto Integrado I  GESTaO.pdfPLANO DE ENSINO Disciplina Projeto Integrado I  GESTaO.pdf
PLANO DE ENSINO Disciplina Projeto Integrado I GESTaO.pdfHELLEN CRISTINA
 
AULA 12 DESENVOLVIMENTO FETAL E MUDANÇAS NO CORPO DA MULHER.pptx
AULA 12 DESENVOLVIMENTO FETAL E MUDANÇAS NO CORPO DA MULHER.pptxAULA 12 DESENVOLVIMENTO FETAL E MUDANÇAS NO CORPO DA MULHER.pptx
AULA 12 DESENVOLVIMENTO FETAL E MUDANÇAS NO CORPO DA MULHER.pptxEnfaVivianeCampos
 
1. 2 PLACAS DE SINALIAÇÃO - (1).pptx Material de obras
1. 2 PLACAS DE SINALIAÇÃO - (1).pptx Material de obras1. 2 PLACAS DE SINALIAÇÃO - (1).pptx Material de obras
1. 2 PLACAS DE SINALIAÇÃO - (1).pptx Material de obrasosnikobus1
 
AULA 12 Sistema urinário.pptx9999999999999
AULA 12 Sistema urinário.pptx9999999999999AULA 12 Sistema urinário.pptx9999999999999
AULA 12 Sistema urinário.pptx9999999999999vanessa270433
 
avaliação pratica. pdf
avaliação pratica.                           pdfavaliação pratica.                           pdf
avaliação pratica. pdfHELLEN CRISTINA
 
AULA_08 SAÚDE E ALIMENTAÇÃO DO IDOSO.pdf
AULA_08 SAÚDE E ALIMENTAÇÃO DO IDOSO.pdfAULA_08 SAÚDE E ALIMENTAÇÃO DO IDOSO.pdf
AULA_08 SAÚDE E ALIMENTAÇÃO DO IDOSO.pdfLviaParanaguNevesdeL
 
PROCESSOS PSICOLOGICOS LINGUAGEM E PENSAMENTO
PROCESSOS PSICOLOGICOS LINGUAGEM E PENSAMENTOPROCESSOS PSICOLOGICOS LINGUAGEM E PENSAMENTO
PROCESSOS PSICOLOGICOS LINGUAGEM E PENSAMENTOvilcielepazebem
 
A HISTÓRIA DA AVALIAÇÃO PSICOLÓGICA..pdf
A HISTÓRIA DA AVALIAÇÃO PSICOLÓGICA..pdfA HISTÓRIA DA AVALIAÇÃO PSICOLÓGICA..pdf
A HISTÓRIA DA AVALIAÇÃO PSICOLÓGICA..pdfMarceloMonteiro213738
 
Dengue aspectos clinicos sintomas e forma de prevenir.pdf
Dengue aspectos clinicos sintomas e forma de prevenir.pdfDengue aspectos clinicos sintomas e forma de prevenir.pdf
Dengue aspectos clinicos sintomas e forma de prevenir.pdfEduardoSilva185439
 
Aula sobre ANSIEDADE & Cuidados de Enfermagem
Aula sobre ANSIEDADE & Cuidados de EnfermagemAula sobre ANSIEDADE & Cuidados de Enfermagem
Aula sobre ANSIEDADE & Cuidados de EnfermagemCarlosLinsJr
 

Último (14)

DEPRESSÃO E CUIDADOS DE ENFERMAGEM - SAÚDE MENTAL
DEPRESSÃO E CUIDADOS DE ENFERMAGEM - SAÚDE MENTALDEPRESSÃO E CUIDADOS DE ENFERMAGEM - SAÚDE MENTAL
DEPRESSÃO E CUIDADOS DE ENFERMAGEM - SAÚDE MENTAL
 
AULA_11 PRINCIPAIS DOENÇAS DO ENVELHECIMENTO.pdf
AULA_11 PRINCIPAIS DOENÇAS DO ENVELHECIMENTO.pdfAULA_11 PRINCIPAIS DOENÇAS DO ENVELHECIMENTO.pdf
AULA_11 PRINCIPAIS DOENÇAS DO ENVELHECIMENTO.pdf
 
Técnica Shantala para bebês: relaxamento
Técnica Shantala para bebês: relaxamentoTécnica Shantala para bebês: relaxamento
Técnica Shantala para bebês: relaxamento
 
aula 7. proteínas.ppt. conceitos de proteina
aula 7. proteínas.ppt. conceitos de proteinaaula 7. proteínas.ppt. conceitos de proteina
aula 7. proteínas.ppt. conceitos de proteina
 
PLANO DE ENSINO Disciplina Projeto Integrado I GESTaO.pdf
PLANO DE ENSINO Disciplina Projeto Integrado I  GESTaO.pdfPLANO DE ENSINO Disciplina Projeto Integrado I  GESTaO.pdf
PLANO DE ENSINO Disciplina Projeto Integrado I GESTaO.pdf
 
AULA 12 DESENVOLVIMENTO FETAL E MUDANÇAS NO CORPO DA MULHER.pptx
AULA 12 DESENVOLVIMENTO FETAL E MUDANÇAS NO CORPO DA MULHER.pptxAULA 12 DESENVOLVIMENTO FETAL E MUDANÇAS NO CORPO DA MULHER.pptx
AULA 12 DESENVOLVIMENTO FETAL E MUDANÇAS NO CORPO DA MULHER.pptx
 
1. 2 PLACAS DE SINALIAÇÃO - (1).pptx Material de obras
1. 2 PLACAS DE SINALIAÇÃO - (1).pptx Material de obras1. 2 PLACAS DE SINALIAÇÃO - (1).pptx Material de obras
1. 2 PLACAS DE SINALIAÇÃO - (1).pptx Material de obras
 
AULA 12 Sistema urinário.pptx9999999999999
AULA 12 Sistema urinário.pptx9999999999999AULA 12 Sistema urinário.pptx9999999999999
AULA 12 Sistema urinário.pptx9999999999999
 
avaliação pratica. pdf
avaliação pratica.                           pdfavaliação pratica.                           pdf
avaliação pratica. pdf
 
AULA_08 SAÚDE E ALIMENTAÇÃO DO IDOSO.pdf
AULA_08 SAÚDE E ALIMENTAÇÃO DO IDOSO.pdfAULA_08 SAÚDE E ALIMENTAÇÃO DO IDOSO.pdf
AULA_08 SAÚDE E ALIMENTAÇÃO DO IDOSO.pdf
 
PROCESSOS PSICOLOGICOS LINGUAGEM E PENSAMENTO
PROCESSOS PSICOLOGICOS LINGUAGEM E PENSAMENTOPROCESSOS PSICOLOGICOS LINGUAGEM E PENSAMENTO
PROCESSOS PSICOLOGICOS LINGUAGEM E PENSAMENTO
 
A HISTÓRIA DA AVALIAÇÃO PSICOLÓGICA..pdf
A HISTÓRIA DA AVALIAÇÃO PSICOLÓGICA..pdfA HISTÓRIA DA AVALIAÇÃO PSICOLÓGICA..pdf
A HISTÓRIA DA AVALIAÇÃO PSICOLÓGICA..pdf
 
Dengue aspectos clinicos sintomas e forma de prevenir.pdf
Dengue aspectos clinicos sintomas e forma de prevenir.pdfDengue aspectos clinicos sintomas e forma de prevenir.pdf
Dengue aspectos clinicos sintomas e forma de prevenir.pdf
 
Aula sobre ANSIEDADE & Cuidados de Enfermagem
Aula sobre ANSIEDADE & Cuidados de EnfermagemAula sobre ANSIEDADE & Cuidados de Enfermagem
Aula sobre ANSIEDADE & Cuidados de Enfermagem
 

Carboidratos: estrutura e classificação

  • 1. Estrutura de Carboidratos Paulo Henrique Barbosa do Nascimento São Bernardo do Campo/SP. Outubro de 2016 Técnico em Química . Graduando em Biomedicina (6° período .Universidade Metodista de São Paulo) Iniciante a pesquisa cientifica em Farmacologia- (Escola Paulista de Medicina .Universidade Federal de São Paulo)
  • 2.
  • 3. Introdução aos Carboidratos • São as biomoléculas (MOLÉCULAS DA VIDA) mais abundantes na natureza; • Moléculas ou Macromoléculas orgânicas; • Representam 75% da composição dos vegetais; • Formados por átomos de Carbono, Oxigênio e Hidrogênio (Podendo apresentar átomos de S,N,P ); • Primeira fonte energética do Corpo Humano; • Podem ser chamados de Hidrato de Carbono e Sacarídeos. • fórmula estrutural Cn(H2O)n; EXEMPLO: 6266126 )( OHCOHC 
  • 4. Assumem diferentes funções em células Estrutura Metabolismo Fonte de energia (glicose) Reserva de energia (glicogênio e amido...) Componentes estruturais (paredes celulares, superfícies celulares, componentes estruturais do DNA e RNA, receptores....)
  • 5. A Fotossíntese converte + 100 bilhões toneladas de CO2 e H2O em carboidratos (celulose e outros).
  • 6. São classificados em Monossacarídeos, Oligossacarídeos e Polissacarídeos CARBOIDRATOS Monossacarídeos Oligossacarídeos Polissacarídeos Polissacarídeo (>20) Monossacarídeo Oligossacarídeo (2-20)
  • 7. • O esqueleto é constituído por uma cadeia carbônica saturada não ramificada, sendo que todos os carbonos se ligam entre si através de ligações covalentes simples. • Um dos carbonos da cadeia carbônica realiza uma ligação dupla com o oxigênio para formar o grupo carbonila; Todos os outros átomos de carbono da cadeia estão ligado a uma hidroxila (função álcool). CONCEITOS FUNDAMENTAIS SOBRE OS MONOSSACARÍDEOS : • São os carboidratos mais simples, sendo uma molécula orgânica que possui de 3 á 8 átomos de carbonos geralmente. 3 carbonos: Trioses 4 carbonos: Tetroses + importantes 5 carbonos: Pentoses Monossacarídeos 6 carbonos: Hexoses 7 carbonos: Heptoses Exemplos: Monossacarídeos  Solúveis em água e insolúveis em solventes orgânicos.  Brancos e cristalinos.
  • 8. - Possuem várias hidroxilas (-OH) na cadeia carbônica, sendo então chamados de poli-hidroxilados (função orgânica oxigenada: álcool) - Possuem grupo funcional que caracteriza função orgânica oxigenada aldeído ou cetona: Função orgânica aldeído = ALDOSE Função orgânica cetona = CETOSE Exemplos: Aldose Cetose Em química orgânica, grupo funcional se define como uma estrutura molecular que confere às substâncias comportamentos químicos semelhantes. O conjunto de compostos que apresentam o mesmo grupo funcional é denominado Função Orgânica. 1 Carbono fazendo dupla ligação com o Oxigênio. •Na extremidade: aldeído •Outra posição: cetona
  • 9. Logo, são classificados como: POLIHIDROXIALDEÍDO ou POLIHIDROXICETONA Exemplos: POLIHIDROXIALDEÍDO POLIHIDROXICETONA
  • 10. 5 Carbonos = Pentoses 3 Carbonos = Triose 4 Carbonos = Tetroses  D-Aldoses
  • 11. v v 6 Carbonos = Hexoses
  • 12. 5 C = Pentoses3 C =Triose 4 C = Tetrose 6 = Hexoses  D-Cetoses
  • 13. Monossacarídeos em solução aquosa: • Os monossacarídeos que possuem acima de “5 Carbonos” podem se apresentar na forma aberta (linear) ou cíclica, sendo que em solução aquosa apenas 0,02% encontram-se na forma aberta. Exemplo: forma aberta (linear) forma cíclica forma cíclica
  • 14. • As moléculas ciclizadas podem apresentar 5 ou 6 vértices. O anel de 6 vértices é chamado de ANEL PIRANOSÍDICO O anel de 5 vértices é chamado de ANEL FURANOSÍDICO Hexágono Pentágono Podem assumir duas conformações: Exemplos:
  • 15. • Na estrutura, o carbono onde ocorre a formação do anel é denominado “Carbono Anomérico", e sua hidroxila pode assumir 2 formas: α : Quando ela fica para baixo do plano do anel β : Quando ela fica para cima do plano do anel
  • 16. A interconversão entre estas formas é dinâmica e denomina-se MUTARROTAÇÃO α  Cis Β  Trans Exemplo: anômero  e 
  • 17. Nesse exemplo o C-1 faz ligação com OH do C-5, formando Hemiacetal
  • 18. • A isomeria espacial óptica é aquela que apresenta um carbono com quatro ligantes diferentes entre si, para este carbono damos o nome de Assimétrico ou Quiral. (Carbono Assimétrico ou Quiral: É o átomo de carbono que está ligado a quatro grupos diferentes entre si). • Os monossacarídeos assim como os aminoácidos, possuem uma nomenclatura especial para identificar as configurações absolutas dos quatro substituintes do carbono assimétrico, sendo o sistema D e L. Sendo baseado na configuração absoluta do monossacarídeo de três carbonos gliceraldeído. (Convenção proposta por Fischer em 1891); Configuração D e L, refere-se a configuração absoluta dos quatro substituintes em torno do carbono quiral! Classificado pelo lado em que a Hidroxila se encontra no carbono quiral (direito ou esquerdo); Sistema D e L: Convenção proposta por Fischer em 1891 Os carboidratos naturais são de série D
  • 19. • Para todos os compostos quirais, os esteroisomeros com configuração absoluta semelhante a do D-gliceraldeído são denominados D, e com configuração absoluta semelhante a do L-gliceraldeído são denominados L. Configuração D: Hidroxila do carbono quiral no lado direito. Configuração L: Hidroxila carbono quiral no lado esquerdo. • Para definir a configuração L ou D de um carboidrato com múltiplos centros quirais deve-se ter como base a configuração absoluta do carbono quiral mais distante dos grupos funcionais aldeído ou cetona. Observação: A numeração dos átomos de carbono em uma molécula de carboidrato se inicia sempre pela extremidade mais próxima do carbono do grupo funcional cetona ou aldeído. Observação: Moléculas com n centros quirais podem ter 2 esteroisomeros. n
  • 20.
  • 21. As letras D e L indicam apenas a configuração espacial de um isômero, e não a sua atividade óptica! Existem compostos D que são levógiros (-) e, compostos L que são dextrógiros (+). Exemplos: D (-) fructose e L (+) arginina O sinal (+) ou (-) indica se é Levógiro ou dextrógiro! Configuração D: Hidroxila do carbono quiral no lado direito. Configuração L: Hidroxila carbono quiral no lado esquerdo.
  • 22. ATIVIDADE ÓPTICA • A atividade óptica dos isômeros ópticos denomina-se como dextrógiro d (+) o isômero que desvia a luz polarizada para o plano da direita, e como levógiro l (-) o isômero que desvia a luz polarizada para o plano da esquerda. • As propriedades físicas destes isômeros são as mesmas. A única diferença é o desvio da luz plano polarizada. • Essa propriedade foi inicialmente descoberta para ácidos orgânicos e carboidratos, com vários Carbonos quirais. levógiro: Indicado pelo ( -) desvia a luz polarizada para esquerda. dextrógiro: Indicado pelo (+) desvia a luz polarizada para direita. 1. Realizar a seleção de um plano de luz. 2. A solução de substância opticamente ativa vai causar rotação do plano da luz polarizada. 3. O plano da luz que emerge da solução foi desviado: para a esquerda ou para a direita, pela substância. 4. O observador gira a escala até coincidir com a luz emergente, para determinar o desvio.
  • 23.  Estereoisomeros: São moléculas cujos átomos tem a mesma forma estrutural, mas diferem na forma como esses mesmos átomos estão orientados no espaço. Apresentam atividade óptica e suas moléculas não sobrepõem sua imagem especular.  Enantiômeros: Isômeros de uma molécula que representam reflexões especulares uma da outra;  Diaestereômeros: Isômeros de uma molécula com vários centros quirais;
  • 24.  EPÍMEROS Molécula com múltiplos centros quirais onde a configuração de um único centro quiral foi alterada, ou seja, são isômeros que diferem entre si apenas pela configuração de um carbono quiral.
  • 25.  A glicose é o carboidrato de maior importância para o organismo;  Também chamada de dextrose, é o principal carboidrato do sangue (0,1 %);  A digestão do Amido e de outros carboidratos, bem como a glicogênólise, disponibiliza varias moléculas de glicose na corrente sanguínea.  Como a glicose não precisa passar pelo processo de digestão, ela pode ser administrada por via endovenosa em pacientes que apresentam incapacidade de ingestão de alimentos ou necessitam da administração por outros motivos.  A glicose é amplamente distribuídas em frutas;  É uma aldohexose
  • 26.  Para a molécula da glicose, em solução aquosa, temos em média as seguintes proporções: • β-D-Glicopiranose: 62% • α-D-Glicopiranose: 38% • α-D-Glicofuranose: menos de 0,5% • β-D-Glicofuranose: menos de 0,5% • Forma aberta: menos de 0,02% 62%38% 0,5% 0,5%
  • 27.  Encontrada principalmente nas frutas e no mel;  É uma Cetohexose  O sêmen humano é rico em frutose.
  • 28.  Carboidrato formado nas glândulas mamarias (exócrina) a partir da molécula de glicose;  A interação química (ligação covalente ) entre a galactose e a glicose origina um dissacarídeo chamado Lactose.  A D-Galactose é um epímero de D-Glicose em C4.  É uma Aldohexose
  • 29.  Nucleotídeos dos ácidos nucleicos: Base Nitrogenada + grupamento fosfato + monossacarídeo Pentoses p/ RNA p/ DNA
  • 30. Por consequência dos monossacarídeos serem os carboidratos mais simples, é a partir deles que derivam todas as outras classes de carboidratos;
  • 31. • São carboidratos chamados especificadamente de glicosídeos, por serem formados a partir da ligação química entre 2 ou mais monossacarídeos, chamada de ligação glicosídica; Os Oligossacarídeos são formados entre 2 á 12 monossacarídeos ligados. DISSACARÍDEOS, TRISSACARÍDEOS, TETRASSACARÍDEOS etc. • LIGAÇÃO GLICOSÍDICA : É a ligação covalente entre moléculas de carboidratos, originando moléculas de carboidratos mais complexas (Oligossacarídeos e Polissacarídeos). A ligação ocorre entre a hidroxila do carbono anomérico de um monossacarídeo e qualquer outra Hidroxila de um carbono do monossacarídeo seguinte, com a saída de uma molécula de água (H2O). Oligossacarídeos “Quebra” por hidrólise (necessita de uma molécula de água) “Síntese” por condensação (perde uma molécula de água)
  • 32. Exemplo de ligação glicosídica
  • 33. Os dissacarídeos consistem a classe mais importante e abundante de oligossacarídeos. PRINCIPAIS OLIGOSSACARÍDEOS: DISSACARIDEOS
  • 34.  Formada pela ligação entre uma MOLÉCULA DE GLICOSE e uma MOLÉCULA DE GALACTOSE (hexoses), através de ligação glicosídica;  Carboidrato encontrado no leite de mamíferos.  Não apresenta boa solubilidade em água.  Menos doce que a sacarose;
  • 35.  Formada pela ligação entre duas MOLÉCULAS DE GLICOSE.  Alta solubilidade em água;  CARBOIDRATO REDUTOR (?)  É o carboidrato do malte;  Não é encontrado na natureza na forma livre.  É menos doce que a sacarose;  É utilizada em fórmulas nutricionais para a alimentação infantil.
  • 36.  Formada pela ligação entre uma MOLÉCULA DE GLICOSE e uma MOLÉCULA DE FRUTOSE.  Alta solubilidade em água;  CARBOIDRATO NÃO REDUTOR  É conhecida como açúcar comum, sendo extraído para distribuição comercial da cana-de-açúcar e da beterraba. Sacarose Fórmula química C12H22O11 Massa Molar 342.24 g mol-1 Densidade 1,57 g/cm3 (30 °C) Ponto de Fusão 160–192 °C Solubilidade em água 1970 g·l-1 a 20.0 °C Aparência Cristais brancos
  • 37. Hidrólise de Ligações Glicosídicas:  Ácido Exemplo: Ácido Sulfúrico...  Atividade Enzimática Exemplos: Lactase, Amilase...
  • 38. Polissacarídeos • Como os monossacarídeos possuem a capacidade de união para formar os dissacarídeos e outros oligossacarídeos, eles também podem dar origem aos polissacarídeos que podem ser formados por centenas e até milhares de monômeros (monossacarídeo). • Resumindo, os polissacarídeos são carboidratos complexos, ou seja, macromoléculas por centenas e até milhares de monômeros (monossacarídeo) ligados entre si por ligações glicosídicas. • Os polissacarídeos assim como os oligossacarídeos quando em meio ácido e sobre reação de hidrólise produzem muitos monossacarídeos. • Os polissacarídeos mais importantes são os formados pela polimerização da glicose; POLISSACARÍDEOS
  • 39. Dois ou mais tipos de monossacarídeos Homopolissacarídeos Um único tipo de monossacarídeo Heteropolissacarídeos Homopolissacarídeos Heteropolissacarídeos Linear Ramificado Linear Ramificado POLISSACARÍDEOS
  • 40.  Homopolissacarídeos de Armazenamento de Energia: o 1. Amido o 2. Glicogênio Exemplos de Homopolissacarídeos e Heteropolissacarídeos:  Homopolissacarídeos Estruturais: o 3. Celulose o 4. Quitina  Heteropolissacarídeos: o 1. Peptidioglicanos o 2. Glicosaminoglicanos o 3. Ágar POLISSACARÍDEOS
  • 41.  Armazenamento de energia nas células vegetais (eficaz e duradouro).  Formado por 2 polissacarídeos associados, sendo a amilose e amilopectina.  De forma geral é formado por moléculas de glicose ligadas entre si através de numerosas ligações α (1,4) e poucas ligações α (1,6) "pontos de ramificação" da cadeia.  Sua molécula é muito linear, e forma hélice em solução aquosa. AMILOSE: Macromolécula constituída de 250 a 300 resíduos de glicose, ligadas por ligações glicosídicas α (1,4). AMILOPECTINA: Macromolécula, menos hidrossolúvel que a amilose, constituída por cerca de 1400 resíduos de glicose ligadas ligações glicosídicas α(1,4), ocorrendo também ligações α(1,6), que dão a ela uma estrutura ramificada. A amilopectina constitui, aproximadamente, 80% dos polissacarídeos existentes no grão de amido. HOMOPOLISSACARÍDEOS: RESERVA ENERGÉTICA
  • 43. Grânulos de Amido em um Cloroplasto HOMOPOLISSACARÍDEOS: RESERVA ENERGÉTICA
  • 44.  O glicogênio é o principal estoque de energia das células animais e de utilização rápida;  Possui ligações glicosídicas do tipo α(1-4) na cadeia linear, e nos pontos de ramificação ligação glicosídica do tipo α(1-6).  O peso molecular pode chegar a 100 milhões.  Corresponde entre 1-2% das reservas energéticas do organismo;  Distribuído entre o tecido hepático e muscular; - 300 a 400 gramas no musculo. - 80 a 90 gramas no fígado.  Glicogênio hepático: Atua na manutenção da glicemia, pois é uma reserva de glicose que permite que a mesma seja exportada para outros órgãos quando necessário (Exemplo: Cérebro, que a energia é derivada exclusivamente da glicose).  Glicogênio Muscular: Essa reserva não permite que a glicose seja exportada. É usado pela própria fibra como fonte emergencial de energia quando a necessidade desta é muito intensa (Uma corrida veloz).  Parecido com a amilopectina: A principal diferença é que a amilopectina apresenta uma ramificação a cada 30 resíduos de glicose, enquanto o glicogênio apresenta estas ramificações a cada 6 a 12 resíduos de glicose (o glicogênio é muito mais ramificado). HOMOPOLISSACARÍDEOS: RESERVA ENERGÉTICA
  • 47. Porque armazenar energia metabólica na forma de polímeros e não de monômeros?  A pressão osmótica é proporcional ao número de moléculas, 1000 moléculas de glicose gerariam uma pressão osmótica 1000 vezes maior do que 1 polissacarídeo com 1000 monômeros de glicose.  O armazenamento de energia metabólica na forma de um grande número de moléculas individuais dificultaria muito a regulação metabólica. AMIDO GLICOGÊNIO RESERVA DE GLICOSE EM VEGETAIS RESERVA DE GLICOSE EM ANIMAIS HOMOPOLISSACARÍDEOS: RESERVA ENERGÉTICA
  • 48.  É o carboidrato mais abundante na natureza; Função estrutural, fazendo parte da parede celular das células vegetais.  É semelhante ao amido e glicogênio em relação a ser formada por monômeros de D-glicose ,porém se diferencia por possuir ligação do tipo β (1,4 ).  Esse tipo de ligação glicosídica dá a celulose característica de estrutura espacial linear, formando assim fibras insolúveis em água e extremamente rígida, o que por sua vez, caracteriza a celulose como não sendo digerida pelo ser humano. (Vale ainda ressaltar que é também pelo fato de não possuirmos enzimas específicas para esse tipo de composto). - Cria-se varias lig. de Hidrogênio entre as Hidroxilas , fazendo com que moléculas de água sejam impenetráveis, logo insolúvel em água. HOMOPOLISSACARÍDEOS: ESTRUTURAIS β (1,4)β (1,4)
  • 49. • É um dos principais constituintes das paredes celulares das plantas (cerca de 33% do peso da planta), em combinação com a lignina, hemicelulose e pectina. • LEMBRETE: NÓS NÃO DIGERIMOS CELULOSE!!! o Parede Celular primaria: pectina e hemicelulose o Parede Celular Secundaria : celulose HOMOPOLISSACARÍDEOS: ESTRUTURAIS
  • 50. Fibra de Celulose Macrofibrilas de Celulose Microfibrilas de Celulose Polissacarídeo Celulose HOMOPOLISSACARÍDEOS: ESTRUTURAIS
  • 51. o Descoberta em cogumelos pelo professor francês Henri Braconnot, em 1811. Recebeu a denominação inicial de fungina. o Polímero de cadeia linear e longa de N-acetilglucosamina, um derivado da glucose. o A quitina é o segundo polissacarídeo mais abundante da natureza, após a celulose. o O nome Quitina foi dado por Odier, em 1823, quando esta foi isolada de insetos. o Presente em:  Parede Celular de fungos  Exoesqueleto de artrópodes  Rádula dos moluscos  Bico dos cefalópodes  Concha dos foraminíferos N-acetilglucosamina HOMOPOLISSACARÍDEOS: ESTRUTURAIS
  • 52.  Exoesqueleto de artrópodes Inseto saindo do seu exoesqueleto antigo. ARTRÓPODES: Crustáceos, Aracnídeos, Quilópodes, Diplópodes e Insetos. HOMOPOLISSACARÍDEOS: ESTRUTURAIS
  • 53. Parede Celular de Bactérias Gram-Positiva  Camada grossa de peptidioglicanos (40 a 90%) do seu peço seco.  Ácido teicóicos: presente na parede celular, e ligando-se covalentemente na membrana citoplasmática ou nos peptidioglicanos. HETEROPOLISSACARÍDEOS N-acetilglicosamina alternado com ác. N-acetilmurâmico (ligações (14).
  • 54.  A quantidade de peptidioglicano é pequena (10 % do peso seco);  Dupla camada lipoproteíca + outros compostos como : lipopolissacarideos, lipoproteínas e porinas. Parede Celular de Bactérias Gram- Negativa: Membrana externa da parede celular: HETEROPOLISSACARÍDEOS
  • 56. COMPONENTE DE MATRIZ EXTRACELULAR: o Tecido Conjuntivo: Células + Matriz extracelular. o Matriz extracelular: Substância Fundamental + Fibras. o Substância Fundamental (substâncias principais):  GLICOSAMINOGLICANOS (Sulfatados ou Não Sulfatados).  Proteoglicanos.  Glicoproteínas adesivas.  Outros. HETEROPOLISSACARÍDEOS
  • 57. Reação para determinação da concentração de glicose sanguínea (Reação enzimática colorimétrica) Labtest: LABORATÓRIO CLÍNICO Laboratório Clínico - Glicose
  • 58. FISIOLOGIA – CICLO GLICÊMICO