EC8352-Signals and Systems - Laplace transform

Hello!
Nimitha N
Assistant Professor/ECE
nimithaece@rmkcet.ac.in
1
Pierre-Simon Laplace
One of the first scientists to suggest
the existence of black holes
Laplace
Transform
“
”
Process
3
Time
domain
x(t)
Freq
domain
X(s)
Freq
domain
X(s)
Time
domain
x(t)
Differential
Equation
Algebraic
Equation
LT
ILT
Deals with Aperiodic Signals
Input signal changing often at t=0
Stability analysis
Region of Convergence
Time Domain to complex
frequency domain(S-Domain)
4
Laplace Transform
Formula for Laplace Transform
5
▰ It is used to transform a time domain to complex frequency domain signal (s-domain)
▰ Two Sided Laplace transform (or) Bilateral Laplace transform
Let 𝑥(𝑡) be a continuous time signal defined for all values of 𝑡.
Let 𝑋(𝑆) be Laplace transform of 𝑥(𝑡).
▰ One sided Laplace transform (or) Unilateral Laplace transform
Let 𝑥(𝑡) be a continuous time signal defined for 𝑡≥0 (ie If 𝑥(𝑡) is causal)
then,
▰ Inverse Laplace transform (S-domain signal 𝑋(𝑆) Time domain signal x(t) )
▰ Transform: x(t)  X(s), where t is integrated and s is variable
▰ Conversely X(s)  x(t), t is variable and s is integrated
▰ The Laplace transform helps to scan exponential signal and sinusoidal signal
6
Complex variable, S= α + jω
Formula for Laplace Transform
Laplace transform for elementary signals
1)
Solution
2)
Solution
7
Impulse signal
L[δ(t)]
Step signal
L[u(t)]
Laplace transform for elementary signals
3)
Solution
4)
Solution
8
Constant
Exponential signal
Laplace transform for elementary signals
5)
6)
Solution
W.k.t
9
Exponential signal
Laplace transform for elementary signals
7)
8)
9)
10
Hint
x(t) = cos ω0 t u(t)
x(t) = sin ω0 t u(t)
Laplace transform for elementary signals
8)
Solution
Using Euler’s Formula
11
----> (1)
(𝒔 + 𝒊𝒂)
(𝒔 + 𝒊𝒂)
----> (2)
Compare (1) and (2)
Real part Imaginary part
Summary
Impulse
Step
12
L[δ(t)] 1
L[u(t)]
1/s
a= ω0
L[1]
Advantages of Laplace Transform
▰ Signal which are not convergent on Fourier
transform, will converge in Laplace transform
13
Complex S Plane
▰ The most general form of Laplace
transform is
▰ L[x(t)]= X(s) =
𝑵(𝑺)
𝑫(𝑺)
14
LHS RHS
- ∞ 0 ∞
jω
σ
Complex variable, S= α + jω
The zeros are found by setting the numerator polynomial to Zero
The Poles are found by setting the Denominator polynomial to Zero
Region of Convergence
The range variation of complex variable ‘s’ (σ) for which the Laplace transform
converges(Finite) is called region of convergence.
Properties of ROC of Laplace Transform
 ROC contains strip lines parallel to jω axis in s-plane.
 ROC doesn’t contain any poles
 If x(t) is absolutely integral and it is of finite duration, then ROC is entire s-
plane.
 If x(t) is a right sided signal(causal) then ROC : Re{s} > σ of X(s) extends
to right of the rightmost pole
 If x(t) is a left sided signal then ROC : Re{s} < σ of X(s) extends to left of
the leftmost pole
 If x(t) is a two sided sequence then ROC is the combination of two regions.
15
Properties of ROC of Laplace Transform
▰ ROC doesn’t contain any poles
▰ If x(t) is absolutely integral and it is of finite duration, then ROC is entire
s-plane.
16
L[e-2t u(t)] 1/(s+2)
1/(-2+2)
Poles, S=-2 = 1/0 = ∞
-a a
x(t)
ROC includes
imaginary axis jω
- ∞ 0 ∞
jω
σ
Impulse signal have ROC is entire S plane
▰ If x(t) is a right sided signal(causal) then
ROC : Re{s} > σ of X(s) extends to right
of the rightmost pole
▰ If x(t) is a left sided signal then ROC :
Re{s} < σ of X(s) extends to left of the
leftmost pole
17
- ∞ 0 ∞
jω
σ
- ∞ 0 ∞
jω
σ
▰ If x(t) is a two sided sequence then ROC is the combination of two
regions.
18
- ∞ 0 ∞
jω
σ
Problem using ROC
19
1. Find the Laplace transform and ROC of x(t)=e-at u(t)
Solution
2. Find the Laplace transform and ROC of x(t)=eat u(−t)
Solution
Right sided
signal
Left sided
signal
20
Find the Laplace transform and ROC of x(t)=e−at u(t)+eat u(−t)
Solution
Problem using ROC
Both sided signal
Referring to the diagram, combination region lies from
–a to a. Hence,
Shortcut for ROC
▰ Step 1: Compare real part of S complex variable (σ) with real part of
coefficient of power of e
▰ Step 2: Check if the signal is left sided or right sided, then decide < or >
21
Consider L[e-2t u(t)]
Step 1 : σ = -2
Step 2 : σ > -2
ROC is
Roc helps to check the impulse response is absolutely
integrable or not
22
Shortcut for ROC
Find Roc of following signals
1. x(t) = e-2t u(-t)
2. x(t) = e3t u(t)
3. x(t) = e(4+3j)t u(-t)
4. x(t) = e-4t u(t)
5. x(t) = e3t u(t) + e-2t u(t)
6. x(t) = e3t u(-t) + e-2t u(-t)
7. x(t) = e-3t u(t) + e2t u(-t)
- ∞ 0 ∞
jω
σ
Causality and Stability
▰ For a system to be causal, all poles of its transfer
function must be left half of s-plane.
▰ For causal system: A system is said to be stable
all poles of its transfer function must be left half of
s-plane, (ROC include Imaginary axis jω)
▰ For Anticausal system: A system is said to be
stable all poles of its transfer function must be
RHS of s-plane, (ROC include Imaginary axis jω)
▰ A system is said to be unstable when at least one
pole of its transfer function is shifted to the right
half of s-plane.(ROC doesn’t include Imaginary
axis jω)
23
σ
σ
σ
jω
Poles
24
Problems
Check causality and stability
1. x(t) = e-2t u(-t)
2. x(t) = e3t u(t)
3. x(t) = e(4+3j)t u(-t)
4. x(t) = e-4t u(t)
5. x(t) = e-3t u(t) + e-2t u(t)
For a system to be causal, all poles of its transfer function must be right half of s-plane.
If signal is causal, then ROC Re{s} >a
If signal is Non causal, then ROC Re{s} <a
Causality and Stability
25
5. Find the LT and ROC of x(t)=e−3t u(t)+e-2t u(t), Check causality and stability
Solution:
L[x(t)= L[e−3t u(t)+e-2t u(t)]
X(s) =
1
(𝑠+3)
+
1
(𝑠+2)
ROC: Re{s} =σ >-3, Re{s} =σ >-2
ROC: Re{s} =σ >-2
- ∞ -3 -2 0 ∞
jω
σ
Both will converged if Re{s} =σ >-2
Causal and stable
Summary
26
27
Summary
LT for Elementary signals
28
Properties of Laplace Transform
▰ Linearity
▰ Time Scaling
▰ Time shifting
▰ Frequency or s-plane shift
▰ Multiplication by tn
▰ Integration
29
▰ Differentiation
▰ Convolution
▰ Initial Value Theorem and
Final value Theorem
Linearity
30
Proof:
x(t) X(s)
Problem Hence Proved
1. Find the Laplace transform of x(t) = 2δ(t)+ 3 u(t)
L[δ(t)] 1
L[u(t)] 1/s
L[x(t)] = L[2δ(t)+ 3 u(t)] = X(s) = 2 L[δ(t)] + 3 L[u(t)]
X(s) = 2+ 3(1/s)
y(t) Y(s)
Time Scaling
31
Proof:
x(t) X(s)
Consider
Dummy variable
τ = at
t = τ/ a
dt = dτ/ a
Hence Proved
Time Shifting
32
Proof:
x(t) X(s)
Consider
Dummy variable
τ = t-t0
t = τ + t0
dt = dτ
Hence Proved
Problem : Time shifting
1. Using Time shifting property, solve
33
Solution: x(t) X(s)
L[u(t-3)] =
𝑒−3𝑠
𝑠
L[u(t-3)]
Using Time shifting property
Given : t0 =3
L[u(t-3)] = X(s) = −∞
∞
𝑢(𝑡 − 3)𝑒−𝑠𝑡
𝑑𝑡
= 3
∞
𝑒−𝑠𝑡
𝑑𝑡
=
𝑒−𝑠𝑡
−𝑠
∞
3
L[u(t-3)] = X(s) = 0
∞
𝑢(𝑡 − 3)𝑒−𝑠𝑡
𝑑𝑡
=
1
−𝑠
𝑒−∞
− 𝑒−3𝑠
𝑒−∞
= 0
L[u(t-3)] =
𝑒−3𝑠
𝑠
L[u(t)] =
1
𝑠
Wkt
Time Reversal
34
Proof:
X(s)
x(t)
Time Differentiation
35
Proof:
X(s)
x(t)
General Form
Repeat
Frequency Shifting(s- Shifting) or
Modulation in frequency
36
Proof:
Hence Proved
x(t) X(s)
Problem:
Solution:
1. Find the Laplace transform of and
Solution:
2. solve
37
Solution:
= e-6 L[e-3(t-2) u(t-2)]
Given : t0 =2
= e-6 L[e-3t] e-2s
Wkt, L[e-at ] = (1/s+a)
= e-2s e-6(1/s+3)
=
e−(2s+6)
(s+3)
=
e−2(s+3)
(s+3)
x(t) X(s)
= L[e-3(t-2+2) u(t-2)]
L[u(t-2)] =
𝑒−2𝑠
𝑠
Sub : s by s+3
=
𝑒−2(𝑠+3)
(𝑠+3)
Problem : Frequency Shifting+ Time Shifting
Frequency Differentiation
38
X(s)
x(t)
1.Determine LT of
Solution:
n=1
L[t u(t)] = (-1)
𝑑
𝑑𝑠
L[u(t)]
Wkt
L[u(t)] = 1/s
= (-1)
𝑑
𝑑𝑠
(
1
𝑠
)
= (-1)
𝑑
𝑑𝑠
( 𝑠−1
)
= (-1) ( −𝑠−2
)
= 1/𝑠2
L[t u(t)]
L[t2 u(t)]= 2/𝑠3
Similarly
Ramp signal
Parabolic signal
Convolution Theorem
39
L[x1(t) * x2(t)] X1(s) . X2(s)
1.Consider x1(t) = u(t) and x2(t) =𝑒−5𝑡
u(t)
Y(s) = X1(s) . X2(s)
L[x1(t)] =
1
𝑠
L[x2(t)] =
1
𝑠+5
Y(s) =
𝐴
𝑠
+
𝐵
𝑠+5
Y(s) =
1
𝑠
.
1
𝑠+5
=
𝐴 𝑠+5 +𝐵𝑠
𝑠(𝑆+5)
Y(s) =
1
𝑠(𝑠+5)
Sub s=0
A= 1/5
Sub s=-5
B= -1/5
Y(s) =
1/5
𝑠
+
−1/5
𝑠+5
Sub A and B in (1)
(1)
ILT [Y(s)] = y(t)
y(t) =
1
5
u(t) -
1
5
𝑒−5𝑡
u(t)
Initial and Final Value Theorem
40
Initial value Theorem Final value Theorem
x(∞+) = lim
𝑆→0
𝑠𝑋(𝑠)
x(0+) = lim
𝑆→∞
𝑠𝑋(𝑠)
1. Determine the Initial value and final value of x(t) whose Laplace transform is X(s) =
𝟐𝒔+𝟓
𝒔(𝒔+𝟑)
x(0+) = lim
𝑆→∞
𝑠𝑋(𝑠)
Initial value Theorem
Solution:
x(0+) = lim
𝑆→∞
𝑠
𝟐𝒔+𝟓
𝒔(𝒔+𝟑)
x(0+) = lim
𝑆→∞
𝑠(𝟐+
5
𝑠
)
𝑠(1+
3
𝑠
)
x(0+) = 2
Final value Theorem
x(∞+) = lim
𝑆→0
𝑠𝑋(𝑠)
x(∞+) = lim
𝑆→0
𝑠
𝟐𝒔+𝟓
𝒔(𝒔+𝟑)
x(∞+) =
5
3
Initial and Final Value Theorem
41
Initial value Theorem Final value Theorem
x(∞+) = lim
𝑆→0
𝑠𝑋(𝑠)
x(0+) = lim
𝑆→∞
𝑠𝑋(𝑠)
2. Determine the Initial value and final value of x(t) whose Laplace transform is X(s) =
𝒔+𝟓
(𝒔𝟐+𝟑𝒔+𝟐)
x(0+) = lim
𝑆→∞
𝑠𝑋(𝑠)
Initial value Theorem
Solution:
x(0+) = 1
Final value Theorem
x(∞+) = lim
𝑆→0
𝑠𝑋(𝑠)
x(∞+) = 0
x(0+) = lim
𝑆→∞
𝑠
𝒔+𝟓
(𝒔𝟐+𝟑𝒔+𝟐)
x(0+) = lim
𝑆→∞
𝑠
𝒔(𝟏+
𝟓
𝒔
)
𝒔𝟐(𝟏+
𝟑
𝒔
+
𝟐
𝒔𝟐)
x(∞+) = lim
𝑆→0
𝑠
𝒔+𝟓
(𝒔𝟐+𝟑𝒔+𝟐)
Inverse Laplace transform using Partial
fraction
42
Partial fraction
types
01
L[eat]u(t) = Roc, Re{s} σ > a
L[-e-at]u(-t) = Roc, Re{s} σ < a
02
03
Problems ( Simple Poles)
43
1.Determine Inverse LT of
Solution:
𝐴 𝑠 + 1 𝑠 + 2 + 𝐵𝑠 𝑠 + 2 + 𝐶𝑠(𝑠 + 1)
𝑠(𝑠 + 1)(𝑠 + 2)
2 = 𝐴 𝑠 + 1 𝑠 + 2 + 𝐵𝑠 𝑠 + 2 + 𝐶𝑠(𝑠 + 1)
Sub S= 0
2 = 𝐴 1 2
A = 1
Sub S= -1
2 = 𝐴 −1 + 1 −1 + 2 + 𝐵(−1) −1 + 2 + 𝐶(−1)(−1 + 1)
B = -2
(1)
44
Sub S= -2
2 = 𝐴 −2 + 1 −2 + 2 + 𝐵(−2) −2 + 2 + 𝐶(−2)(−2 + 1)
C = 1
Sub A, B and C in (1)
X(s) =
𝐴
𝑠
+
𝐵
(𝑠 + 1)
+
𝐶
(𝑠 + 2)
X(s) =
1
𝑠
+
−2
(𝑠 + 1)
+
1
(𝑠 + 2)
ILT [X(s)] = x(t)
x(t) =𝑢 𝑡 − 2 𝑒−𝑡
𝑢 𝑡 + 𝑒−2𝑡
𝑢(𝑡)
𝑒−𝑎𝑡
𝑢 𝑡 =
1
(𝑠 + 𝑎)
45
Problems ( Multiple Poles)
2.Determine Inverse LT of
Solution:
=
𝐴 𝑠+1 (𝑠+2)2+𝐵𝑠(𝑠+2)2+𝐶𝑠 𝑠+1 +𝐷𝑠(𝑠+1)(𝑠+2)
𝑠(𝑠+1)(𝑠+2)2
2 = 𝐴 𝑠 + 1 (𝑠 + 2)2
+𝐵𝑠(𝑠 + 2)2
+ 𝐶𝑠 𝑠 + 1 + 𝐷𝑠(𝑠 + 1)(𝑠 + 2)
C = 1
Sub S= 0
A = 1/2
Sub S= -1
B = -2
Sub S= -2
(1)
46
2 = 𝐴 𝑠 + 1 (𝑠 + 2)2
+𝐵𝑠(𝑠 + 2)2
+ 𝐶𝑠 𝑠 + 1 + 𝐷𝑠(𝑠 + 1)(𝑠 + 2)
2 = 𝐴 𝑠 + 1 (𝑠2
+ 2𝑠 + 4) + 𝐵𝑠(𝑠2
+ 2𝑠 + 4) + 𝐶𝑠 𝑠 + 1 + 𝐷𝑠(𝑠2
+ 3𝑠 + 2)
2 = 𝐴𝑠3
+ 2𝐴𝑠2
+ 4𝐴𝑠 + 𝐴𝑠2
+ 2𝐴𝑠 + 4𝐴 + 𝐵𝑠3
+ 2𝐵𝑠2
+ 4𝐵𝑠 + 𝐶𝑠2
+ 𝐶𝑠 + 𝐷𝑠3
+ 3𝐷𝑠2
+ 2𝐷𝑠)
Equating 𝑡ℎ𝑒 𝑐𝑜𝑒𝑓𝑓𝑖𝑐𝑒𝑛𝑡 𝑜𝑓 𝑠3
0= A+B+D
0= 0.5-2+D D= 1.5 or 3/2
X(s) =
𝐴
𝑠
+
𝐵
(𝑠+1)
+
𝐶
(𝑠+2)2 +
𝐷
𝑠+2
Sub A,B,C and D in (1)
X(s) =
0.5
𝑠
−
2
(𝑠+1)
+
1
(𝑠+2)2 +
1.5
𝑠+2
x(t) =0.5𝑢 𝑡 − 2 𝑒−𝑡
𝑢 𝑡 + 𝑡𝑒−2𝑡
𝑢 𝑡 + 1.5 𝑒−2𝑡
𝑢 𝑡
ILT [X(s)] = x(t)
47
Problems ( Complex Poles)
3.Determine Inverse LT of X(s) =
(2𝑠+1)
(𝑠+1)(𝑠2+2𝑠+2)
Solution:
X(s) =
(2𝑠+1)
(𝑠+1)(𝑠2+2𝑠+2)
X(s) =
𝐴
(𝑠+1)
+
𝐵𝑠+ 𝐶
(𝑠2+2𝑠+2)
(2𝑠 + 1)
(𝑠 + 1)(𝑠2 + 2𝑠 + 2)
=
𝐴
(𝑠 + 1)
+
𝐵𝑠 + 𝐶
(𝑠2 + 2𝑠 + 2)
(2𝑠 + 1)
(𝑠 + 1)(𝑠2 + 2𝑠 + 2)
=
𝐴 𝑠2
+ 2𝑠 + 2 + 𝐵𝑠 + 𝐶(𝑠 + 1)
(𝑠 + 1)(𝑠2 + 2𝑠 + 2)
C = 3 A = -1
Equating 𝑡ℎ𝑒 𝑐𝑜𝑒𝑓𝑓𝑖𝑐𝑒𝑛𝑡 𝑜𝑓 𝑠2
, s and constant
B = 1
(1)
48
X(s) =
𝐴
(𝑠 + 1)
+
𝐵𝑠 + 𝐶
(𝑠2 + 2𝑠 + 2)
(1)
Sub A,B and C in (2)
X(s) =
𝐴
(𝑠 + 1)
+
𝐵𝑠 + 𝐶
(𝑠 + 1)2 + 1)
(2)
X(s) =
−1
(𝑠 + 1)
+
𝑠 + 3
(𝑠 + 1)2 + 1)
X(s) =
−1
(𝑠 + 1)
+
𝑠 + 1 + 2
(𝑠 + 1)2 + 1
X(s) =
−1
(𝑠+1)
+
𝑠+1
(𝑠+1)2+1
+
2
(𝑠+1)2+1
ILT [X(s)] = x(t) x(t) =𝑒−𝑡
𝑢 𝑡 − 𝑒−𝑡
cos 𝑡 𝑢 𝑡 + 2𝑒−𝑡
sin 𝑡 𝑢 𝑡
L[𝑒−𝑎𝑡
cos t] 𝑠 + 𝑎
(𝑠 + 𝑎)2 + 𝑎2
L[𝑒−𝑎𝑡
sin t]
𝑎
(𝑠 + 𝑎)2 + 𝑎2
Problems ( Complex Poles)
Problem Using RoC
49
4.Determine Inverse LT of X(s) =
4
(𝑠+2)(𝑠+4)
if ROC (i) -2 >Re(s) > -4 , (ii) Re(s) < -4
=
𝐴 𝑠+4 +𝐵 𝑠+2
(𝑠+2)(𝑠+4)
X(s) =
4
(𝑠+2)(𝑠+4)
=
𝐴
(𝑠+2)
+
𝐵
(𝑠+4)
4
(𝑠+2)(𝑠+4)
A = 2 B = −2
X(s) =
2
(𝑠+2)
-
2
(𝑠+4)
Sub in (1)
(1)
x(t) =2𝑒−2𝑡
𝑢 𝑡 − 2𝑒−4𝑡
𝑢 𝑡
50
(i) ROC -2 >Re(s) > -4
(ii) ROC Re(s) < -4
x(t) = −2𝑒−2𝑡
𝑢 −𝑡 − 2𝑒−4𝑡
𝑢 𝑡
x(t) =2𝑒−2𝑡
𝑢 𝑡 − 2𝑒−4𝑡
𝑢 𝑡
- ∞ 0 ∞
jω
σ
Re(s)<-2 and Re(s)> -4
L[eat]u(t) = Roc, Re{s} σ > a
L[-e-at]u(-t) = Roc, Re{s} σ < a
x(t) =2𝑒−2𝑡
𝑢 𝑡 − 2𝑒−4𝑡
𝑢 𝑡
- ∞ 0 ∞
jω
σ
x(t) = −2𝑒−2𝑡
𝑢 −𝑡 + 2𝑒−4𝑡
𝑢 −𝑡
Problem Using RoC
51
(iii) ROC Re(s) > 2
x(t) =2𝑒−2𝑡
𝑢 𝑡 − 2𝑒−4𝑡
𝑢 𝑡
x(t) =2𝑒−2𝑡
𝑢 𝑡 − 2𝑒−4𝑡
𝑢 𝑡
- ∞ 0 ∞
jω
σ
Problem Using RoC
THANK YOU
53
https://www.tutorialspoint.com/signals_and_systems/region_of_c
onvergence.htm
http://jntuhsd.in/uploads/programmes/Module16_LT_14.0_.2017_
.PDF (Properties)
1 de 53

Recomendados

Presentation on laplace transformsPresentation on laplace transforms
Presentation on laplace transformsHimel Himo
10.6K visualizações10 slides
Discrete Fourier TransformDiscrete Fourier Transform
Discrete Fourier TransformAbhishek Choksi
20.7K visualizações19 slides
Fourier transforms Fourier transforms
Fourier transforms Fahad B. Mostafa
8.9K visualizações22 slides
Fourier SeriesFourier Series
Fourier SeriesSimmiRockzz
1.4K visualizações13 slides
Signals & systems Signals & systems
Signals & systems SathyaVigneshR
1.3K visualizações107 slides

Mais conteúdo relacionado

Mais procurados

Laplace transform and its applicationsLaplace transform and its applications
Laplace transform and its applicationsNisarg Shah
28.5K visualizações30 slides
Applications of Z transformApplications of Z transform
Applications of Z transformAakankshaR
27.4K visualizações12 slides
Fourier transformsFourier transforms
Fourier transformsIffat Anjum
30.4K visualizações15 slides

Mais procurados(20)

Laplace transform and its applicationsLaplace transform and its applications
Laplace transform and its applications
Nisarg Shah28.5K visualizações
Applications of Z transformApplications of Z transform
Applications of Z transform
AakankshaR27.4K visualizações
Fourier transformsFourier transforms
Fourier transforms
Iffat Anjum30.4K visualizações
Laplace Transformation & Its ApplicationLaplace Transformation & Its Application
Laplace Transformation & Its Application
Chandra Kundu57.9K visualizações
Fourier series and applications of fourier transformFourier series and applications of fourier transform
Fourier series and applications of fourier transform
Krishna Jangid4.1K visualizações
Fourier series IntroductionFourier series Introduction
Fourier series Introduction
Rizwan Kazi2.3K visualizações
Laplace  transform   Laplace  transform
Laplace transform
001Abhishek126.8K visualizações
 discrete time signals and systems  discrete time signals and systems
discrete time signals and systems
Zlatan Ahmadovic13.9K visualizações
Discrete Fourier Series | Discrete Fourier Transform | Discrete Time Fourier ...Discrete Fourier Series | Discrete Fourier Transform | Discrete Time Fourier ...
Discrete Fourier Series | Discrete Fourier Transform | Discrete Time Fourier ...
Mehran University Of Engineering and Technology, Pakistan549 visualizações
Applications Of Laplace TransformsApplications Of Laplace Transforms
Applications Of Laplace Transforms
Ketaki_Pattani3.8K visualizações
Chapter1 - Signal and SystemChapter1 - Signal and System
Chapter1 - Signal and System
Attaporn Ninsuwan1K visualizações
Importance & Application of Laplace TransformImportance & Application of Laplace Transform
Importance & Application of Laplace Transform
United International University2.6K visualizações
Fourier seriesFourier series
Fourier series
Naveen Sihag49.3K visualizações
Fourier seriesFourier series
Fourier series
kishor pokar49.4K visualizações
Chapter 9 computation of the dftChapter 9 computation of the dft
Chapter 9 computation of the dft
mikeproud3.6K visualizações
Properties of fourier transformProperties of fourier transform
Properties of fourier transform
Nisarg Amin13.1K visualizações
Digital Signal Processing[ECEG-3171]-Ch1_L03Digital Signal Processing[ECEG-3171]-Ch1_L03
Digital Signal Processing[ECEG-3171]-Ch1_L03
Rediet Moges3.5K visualizações
Complex integration its uses and typesComplex integration its uses and types
Complex integration its uses and types
SohailAkbar143.3K visualizações

Similar a EC8352-Signals and Systems - Laplace transform

Laplace Transform ProblemsLaplace Transform Problems
Laplace Transform ProblemsDr.SHANTHI K.G
38 visualizações9 slides
Linear transformation.pptLinear transformation.ppt
Linear transformation.pptRaj Parekh
23.3K visualizações59 slides
Laplace_1.pptLaplace_1.ppt
Laplace_1.pptcantatebrugyral
22 visualizações87 slides
Laplace transformsLaplace transforms
Laplace transformsAwais Chaudhary
22.3K visualizações81 slides
linear transfermation.pptxlinear transfermation.pptx
linear transfermation.pptxUmme habiba
5.5K visualizações27 slides

Similar a EC8352-Signals and Systems - Laplace transform(20)

Laplace Transform ProblemsLaplace Transform Problems
Laplace Transform Problems
Dr.SHANTHI K.G38 visualizações
Linear transformation.pptLinear transformation.ppt
Linear transformation.ppt
Raj Parekh23.3K visualizações
Laplace_1.pptLaplace_1.ppt
Laplace_1.ppt
cantatebrugyral22 visualizações
Laplace transformsLaplace transforms
Laplace transforms
Awais Chaudhary 22.3K visualizações
linear transfermation.pptxlinear transfermation.pptx
linear transfermation.pptx
Umme habiba5.5K visualizações
TLTTLT
TLT
Johar M. Ashfaque201 visualizações
Mcqmc talkMcqmc talk
Mcqmc talk
Chiheb Ben Hammouda42 visualizações
Ss important questionsSs important questions
Ss important questions
Sowji Laddu2.3K visualizações
Signal & systemSignal & system
Signal & system
Ghulam Shabbir3.8K visualizações
Clase 02-modelado-de-sistemas-de-control (1)Clase 02-modelado-de-sistemas-de-control (1)
Clase 02-modelado-de-sistemas-de-control (1)
ronald sanchez321 visualizações
Signal Processing Homework HelpSignal Processing Homework Help
Signal Processing Homework Help
Matlab Assignment Experts64 visualizações
Signals and systems assignment helpSignals and systems assignment help
Signals and systems assignment help
Matlab Assignment Experts104 visualizações
Digital signal processing on arm newDigital signal processing on arm new
Digital signal processing on arm new
Israel Gbati66 visualizações
residueresidue
residue
Rob Arnold680 visualizações
Linear Transformations_part1.pdfLinear Transformations_part1.pdf
Linear Transformations_part1.pdf
HirunManujaya9 visualizações

Último

STERILITY TEST.pptxSTERILITY TEST.pptx
STERILITY TEST.pptxAnupkumar Sharma
102 visualizações9 slides
Plastic waste.pdfPlastic waste.pdf
Plastic waste.pdfalqaseedae
81 visualizações5 slides
Lecture: Open InnovationLecture: Open Innovation
Lecture: Open InnovationMichal Hron
82 visualizações56 slides
Psychology KS5Psychology KS5
Psychology KS5WestHatch
53 visualizações5 slides

Último(20)

Material del tarjetero LEES Travesías.docxMaterial del tarjetero LEES Travesías.docx
Material del tarjetero LEES Travesías.docx
Norberto Millán Muñoz57 visualizações
STERILITY TEST.pptxSTERILITY TEST.pptx
STERILITY TEST.pptx
Anupkumar Sharma102 visualizações
Plastic waste.pdfPlastic waste.pdf
Plastic waste.pdf
alqaseedae81 visualizações
Lecture: Open InnovationLecture: Open Innovation
Lecture: Open Innovation
Michal Hron82 visualizações
Use of Probiotics in Aquaculture.pptxUse of Probiotics in Aquaculture.pptx
Use of Probiotics in Aquaculture.pptx
AKSHAY MANDAL69 visualizações
Psychology KS5Psychology KS5
Psychology KS5
WestHatch53 visualizações
UWP OA Week Presentation (1).pptxUWP OA Week Presentation (1).pptx
UWP OA Week Presentation (1).pptx
Jisc51 visualizações
BYSC infopack.pdfBYSC infopack.pdf
BYSC infopack.pdf
Fundacja Rozwoju Społeczeństwa Przedsiębiorczego144 visualizações
Industry4wrd.pptxIndustry4wrd.pptx
Industry4wrd.pptx
BC Chew153 visualizações
Class 10 English notes 23-24.pptxClass 10 English notes 23-24.pptx
Class 10 English notes 23-24.pptx
Tariq KHAN63 visualizações
Nico Baumbach IMR Media ComponentNico Baumbach IMR Media Component
Nico Baumbach IMR Media Component
InMediaRes1186 visualizações
Structure and Functions of Cell.pdfStructure and Functions of Cell.pdf
Structure and Functions of Cell.pdf
Nithya Murugan142 visualizações
Class 10 English  lesson plansClass 10 English  lesson plans
Class 10 English lesson plans
Tariq KHAN172 visualizações
2022 CAPE Merit List 2023 2022 CAPE Merit List 2023
2022 CAPE Merit List 2023
Caribbean Examinations Council3K visualizações
American Psychological Association  7th Edition.pptxAmerican Psychological Association  7th Edition.pptx
American Psychological Association 7th Edition.pptx
SamiullahAfridi458 visualizações
Drama KS5 BreakdownDrama KS5 Breakdown
Drama KS5 Breakdown
WestHatch50 visualizações
Classification of crude drugs.pptxClassification of crude drugs.pptx
Classification of crude drugs.pptx
GayatriPatra1449 visualizações
Women from Hackney’s History: Stoke Newington by Sue DoeWomen from Hackney’s History: Stoke Newington by Sue Doe
Women from Hackney’s History: Stoke Newington by Sue Doe
History of Stoke Newington103 visualizações

EC8352-Signals and Systems - Laplace transform

  • 1. Hello! Nimitha N Assistant Professor/ECE nimithaece@rmkcet.ac.in 1 Pierre-Simon Laplace One of the first scientists to suggest the existence of black holes
  • 4. Deals with Aperiodic Signals Input signal changing often at t=0 Stability analysis Region of Convergence Time Domain to complex frequency domain(S-Domain) 4 Laplace Transform
  • 5. Formula for Laplace Transform 5 ▰ It is used to transform a time domain to complex frequency domain signal (s-domain) ▰ Two Sided Laplace transform (or) Bilateral Laplace transform Let 𝑥(𝑡) be a continuous time signal defined for all values of 𝑡. Let 𝑋(𝑆) be Laplace transform of 𝑥(𝑡). ▰ One sided Laplace transform (or) Unilateral Laplace transform Let 𝑥(𝑡) be a continuous time signal defined for 𝑡≥0 (ie If 𝑥(𝑡) is causal) then,
  • 6. ▰ Inverse Laplace transform (S-domain signal 𝑋(𝑆) Time domain signal x(t) ) ▰ Transform: x(t)  X(s), where t is integrated and s is variable ▰ Conversely X(s)  x(t), t is variable and s is integrated ▰ The Laplace transform helps to scan exponential signal and sinusoidal signal 6 Complex variable, S= α + jω Formula for Laplace Transform
  • 7. Laplace transform for elementary signals 1) Solution 2) Solution 7 Impulse signal L[δ(t)] Step signal L[u(t)]
  • 8. Laplace transform for elementary signals 3) Solution 4) Solution 8 Constant Exponential signal
  • 9. Laplace transform for elementary signals 5) 6) Solution W.k.t 9 Exponential signal
  • 10. Laplace transform for elementary signals 7) 8) 9) 10 Hint x(t) = cos ω0 t u(t) x(t) = sin ω0 t u(t)
  • 11. Laplace transform for elementary signals 8) Solution Using Euler’s Formula 11 ----> (1) (𝒔 + 𝒊𝒂) (𝒔 + 𝒊𝒂) ----> (2) Compare (1) and (2) Real part Imaginary part
  • 13. Advantages of Laplace Transform ▰ Signal which are not convergent on Fourier transform, will converge in Laplace transform 13
  • 14. Complex S Plane ▰ The most general form of Laplace transform is ▰ L[x(t)]= X(s) = 𝑵(𝑺) 𝑫(𝑺) 14 LHS RHS - ∞ 0 ∞ jω σ Complex variable, S= α + jω The zeros are found by setting the numerator polynomial to Zero The Poles are found by setting the Denominator polynomial to Zero
  • 15. Region of Convergence The range variation of complex variable ‘s’ (σ) for which the Laplace transform converges(Finite) is called region of convergence. Properties of ROC of Laplace Transform  ROC contains strip lines parallel to jω axis in s-plane.  ROC doesn’t contain any poles  If x(t) is absolutely integral and it is of finite duration, then ROC is entire s- plane.  If x(t) is a right sided signal(causal) then ROC : Re{s} > σ of X(s) extends to right of the rightmost pole  If x(t) is a left sided signal then ROC : Re{s} < σ of X(s) extends to left of the leftmost pole  If x(t) is a two sided sequence then ROC is the combination of two regions. 15
  • 16. Properties of ROC of Laplace Transform ▰ ROC doesn’t contain any poles ▰ If x(t) is absolutely integral and it is of finite duration, then ROC is entire s-plane. 16 L[e-2t u(t)] 1/(s+2) 1/(-2+2) Poles, S=-2 = 1/0 = ∞ -a a x(t) ROC includes imaginary axis jω - ∞ 0 ∞ jω σ Impulse signal have ROC is entire S plane
  • 17. ▰ If x(t) is a right sided signal(causal) then ROC : Re{s} > σ of X(s) extends to right of the rightmost pole ▰ If x(t) is a left sided signal then ROC : Re{s} < σ of X(s) extends to left of the leftmost pole 17 - ∞ 0 ∞ jω σ - ∞ 0 ∞ jω σ
  • 18. ▰ If x(t) is a two sided sequence then ROC is the combination of two regions. 18 - ∞ 0 ∞ jω σ
  • 19. Problem using ROC 19 1. Find the Laplace transform and ROC of x(t)=e-at u(t) Solution 2. Find the Laplace transform and ROC of x(t)=eat u(−t) Solution Right sided signal Left sided signal
  • 20. 20 Find the Laplace transform and ROC of x(t)=e−at u(t)+eat u(−t) Solution Problem using ROC Both sided signal Referring to the diagram, combination region lies from –a to a. Hence,
  • 21. Shortcut for ROC ▰ Step 1: Compare real part of S complex variable (σ) with real part of coefficient of power of e ▰ Step 2: Check if the signal is left sided or right sided, then decide < or > 21 Consider L[e-2t u(t)] Step 1 : σ = -2 Step 2 : σ > -2 ROC is
  • 22. Roc helps to check the impulse response is absolutely integrable or not 22 Shortcut for ROC Find Roc of following signals 1. x(t) = e-2t u(-t) 2. x(t) = e3t u(t) 3. x(t) = e(4+3j)t u(-t) 4. x(t) = e-4t u(t) 5. x(t) = e3t u(t) + e-2t u(t) 6. x(t) = e3t u(-t) + e-2t u(-t) 7. x(t) = e-3t u(t) + e2t u(-t) - ∞ 0 ∞ jω σ
  • 23. Causality and Stability ▰ For a system to be causal, all poles of its transfer function must be left half of s-plane. ▰ For causal system: A system is said to be stable all poles of its transfer function must be left half of s-plane, (ROC include Imaginary axis jω) ▰ For Anticausal system: A system is said to be stable all poles of its transfer function must be RHS of s-plane, (ROC include Imaginary axis jω) ▰ A system is said to be unstable when at least one pole of its transfer function is shifted to the right half of s-plane.(ROC doesn’t include Imaginary axis jω) 23 σ σ σ jω Poles
  • 24. 24 Problems Check causality and stability 1. x(t) = e-2t u(-t) 2. x(t) = e3t u(t) 3. x(t) = e(4+3j)t u(-t) 4. x(t) = e-4t u(t) 5. x(t) = e-3t u(t) + e-2t u(t) For a system to be causal, all poles of its transfer function must be right half of s-plane. If signal is causal, then ROC Re{s} >a If signal is Non causal, then ROC Re{s} <a
  • 25. Causality and Stability 25 5. Find the LT and ROC of x(t)=e−3t u(t)+e-2t u(t), Check causality and stability Solution: L[x(t)= L[e−3t u(t)+e-2t u(t)] X(s) = 1 (𝑠+3) + 1 (𝑠+2) ROC: Re{s} =σ >-3, Re{s} =σ >-2 ROC: Re{s} =σ >-2 - ∞ -3 -2 0 ∞ jω σ Both will converged if Re{s} =σ >-2 Causal and stable
  • 28. LT for Elementary signals 28
  • 29. Properties of Laplace Transform ▰ Linearity ▰ Time Scaling ▰ Time shifting ▰ Frequency or s-plane shift ▰ Multiplication by tn ▰ Integration 29 ▰ Differentiation ▰ Convolution ▰ Initial Value Theorem and Final value Theorem
  • 30. Linearity 30 Proof: x(t) X(s) Problem Hence Proved 1. Find the Laplace transform of x(t) = 2δ(t)+ 3 u(t) L[δ(t)] 1 L[u(t)] 1/s L[x(t)] = L[2δ(t)+ 3 u(t)] = X(s) = 2 L[δ(t)] + 3 L[u(t)] X(s) = 2+ 3(1/s) y(t) Y(s)
  • 31. Time Scaling 31 Proof: x(t) X(s) Consider Dummy variable τ = at t = τ/ a dt = dτ/ a Hence Proved
  • 32. Time Shifting 32 Proof: x(t) X(s) Consider Dummy variable τ = t-t0 t = τ + t0 dt = dτ Hence Proved
  • 33. Problem : Time shifting 1. Using Time shifting property, solve 33 Solution: x(t) X(s) L[u(t-3)] = 𝑒−3𝑠 𝑠 L[u(t-3)] Using Time shifting property Given : t0 =3 L[u(t-3)] = X(s) = −∞ ∞ 𝑢(𝑡 − 3)𝑒−𝑠𝑡 𝑑𝑡 = 3 ∞ 𝑒−𝑠𝑡 𝑑𝑡 = 𝑒−𝑠𝑡 −𝑠 ∞ 3 L[u(t-3)] = X(s) = 0 ∞ 𝑢(𝑡 − 3)𝑒−𝑠𝑡 𝑑𝑡 = 1 −𝑠 𝑒−∞ − 𝑒−3𝑠 𝑒−∞ = 0 L[u(t-3)] = 𝑒−3𝑠 𝑠 L[u(t)] = 1 𝑠 Wkt
  • 36. Frequency Shifting(s- Shifting) or Modulation in frequency 36 Proof: Hence Proved x(t) X(s) Problem: Solution: 1. Find the Laplace transform of and Solution:
  • 37. 2. solve 37 Solution: = e-6 L[e-3(t-2) u(t-2)] Given : t0 =2 = e-6 L[e-3t] e-2s Wkt, L[e-at ] = (1/s+a) = e-2s e-6(1/s+3) = e−(2s+6) (s+3) = e−2(s+3) (s+3) x(t) X(s) = L[e-3(t-2+2) u(t-2)] L[u(t-2)] = 𝑒−2𝑠 𝑠 Sub : s by s+3 = 𝑒−2(𝑠+3) (𝑠+3) Problem : Frequency Shifting+ Time Shifting
  • 38. Frequency Differentiation 38 X(s) x(t) 1.Determine LT of Solution: n=1 L[t u(t)] = (-1) 𝑑 𝑑𝑠 L[u(t)] Wkt L[u(t)] = 1/s = (-1) 𝑑 𝑑𝑠 ( 1 𝑠 ) = (-1) 𝑑 𝑑𝑠 ( 𝑠−1 ) = (-1) ( −𝑠−2 ) = 1/𝑠2 L[t u(t)] L[t2 u(t)]= 2/𝑠3 Similarly Ramp signal Parabolic signal
  • 39. Convolution Theorem 39 L[x1(t) * x2(t)] X1(s) . X2(s) 1.Consider x1(t) = u(t) and x2(t) =𝑒−5𝑡 u(t) Y(s) = X1(s) . X2(s) L[x1(t)] = 1 𝑠 L[x2(t)] = 1 𝑠+5 Y(s) = 𝐴 𝑠 + 𝐵 𝑠+5 Y(s) = 1 𝑠 . 1 𝑠+5 = 𝐴 𝑠+5 +𝐵𝑠 𝑠(𝑆+5) Y(s) = 1 𝑠(𝑠+5) Sub s=0 A= 1/5 Sub s=-5 B= -1/5 Y(s) = 1/5 𝑠 + −1/5 𝑠+5 Sub A and B in (1) (1) ILT [Y(s)] = y(t) y(t) = 1 5 u(t) - 1 5 𝑒−5𝑡 u(t)
  • 40. Initial and Final Value Theorem 40 Initial value Theorem Final value Theorem x(∞+) = lim 𝑆→0 𝑠𝑋(𝑠) x(0+) = lim 𝑆→∞ 𝑠𝑋(𝑠) 1. Determine the Initial value and final value of x(t) whose Laplace transform is X(s) = 𝟐𝒔+𝟓 𝒔(𝒔+𝟑) x(0+) = lim 𝑆→∞ 𝑠𝑋(𝑠) Initial value Theorem Solution: x(0+) = lim 𝑆→∞ 𝑠 𝟐𝒔+𝟓 𝒔(𝒔+𝟑) x(0+) = lim 𝑆→∞ 𝑠(𝟐+ 5 𝑠 ) 𝑠(1+ 3 𝑠 ) x(0+) = 2 Final value Theorem x(∞+) = lim 𝑆→0 𝑠𝑋(𝑠) x(∞+) = lim 𝑆→0 𝑠 𝟐𝒔+𝟓 𝒔(𝒔+𝟑) x(∞+) = 5 3
  • 41. Initial and Final Value Theorem 41 Initial value Theorem Final value Theorem x(∞+) = lim 𝑆→0 𝑠𝑋(𝑠) x(0+) = lim 𝑆→∞ 𝑠𝑋(𝑠) 2. Determine the Initial value and final value of x(t) whose Laplace transform is X(s) = 𝒔+𝟓 (𝒔𝟐+𝟑𝒔+𝟐) x(0+) = lim 𝑆→∞ 𝑠𝑋(𝑠) Initial value Theorem Solution: x(0+) = 1 Final value Theorem x(∞+) = lim 𝑆→0 𝑠𝑋(𝑠) x(∞+) = 0 x(0+) = lim 𝑆→∞ 𝑠 𝒔+𝟓 (𝒔𝟐+𝟑𝒔+𝟐) x(0+) = lim 𝑆→∞ 𝑠 𝒔(𝟏+ 𝟓 𝒔 ) 𝒔𝟐(𝟏+ 𝟑 𝒔 + 𝟐 𝒔𝟐) x(∞+) = lim 𝑆→0 𝑠 𝒔+𝟓 (𝒔𝟐+𝟑𝒔+𝟐)
  • 42. Inverse Laplace transform using Partial fraction 42 Partial fraction types 01 L[eat]u(t) = Roc, Re{s} σ > a L[-e-at]u(-t) = Roc, Re{s} σ < a 02 03
  • 43. Problems ( Simple Poles) 43 1.Determine Inverse LT of Solution: 𝐴 𝑠 + 1 𝑠 + 2 + 𝐵𝑠 𝑠 + 2 + 𝐶𝑠(𝑠 + 1) 𝑠(𝑠 + 1)(𝑠 + 2) 2 = 𝐴 𝑠 + 1 𝑠 + 2 + 𝐵𝑠 𝑠 + 2 + 𝐶𝑠(𝑠 + 1) Sub S= 0 2 = 𝐴 1 2 A = 1 Sub S= -1 2 = 𝐴 −1 + 1 −1 + 2 + 𝐵(−1) −1 + 2 + 𝐶(−1)(−1 + 1) B = -2 (1)
  • 44. 44 Sub S= -2 2 = 𝐴 −2 + 1 −2 + 2 + 𝐵(−2) −2 + 2 + 𝐶(−2)(−2 + 1) C = 1 Sub A, B and C in (1) X(s) = 𝐴 𝑠 + 𝐵 (𝑠 + 1) + 𝐶 (𝑠 + 2) X(s) = 1 𝑠 + −2 (𝑠 + 1) + 1 (𝑠 + 2) ILT [X(s)] = x(t) x(t) =𝑢 𝑡 − 2 𝑒−𝑡 𝑢 𝑡 + 𝑒−2𝑡 𝑢(𝑡) 𝑒−𝑎𝑡 𝑢 𝑡 = 1 (𝑠 + 𝑎)
  • 45. 45 Problems ( Multiple Poles) 2.Determine Inverse LT of Solution: = 𝐴 𝑠+1 (𝑠+2)2+𝐵𝑠(𝑠+2)2+𝐶𝑠 𝑠+1 +𝐷𝑠(𝑠+1)(𝑠+2) 𝑠(𝑠+1)(𝑠+2)2 2 = 𝐴 𝑠 + 1 (𝑠 + 2)2 +𝐵𝑠(𝑠 + 2)2 + 𝐶𝑠 𝑠 + 1 + 𝐷𝑠(𝑠 + 1)(𝑠 + 2) C = 1 Sub S= 0 A = 1/2 Sub S= -1 B = -2 Sub S= -2 (1)
  • 46. 46 2 = 𝐴 𝑠 + 1 (𝑠 + 2)2 +𝐵𝑠(𝑠 + 2)2 + 𝐶𝑠 𝑠 + 1 + 𝐷𝑠(𝑠 + 1)(𝑠 + 2) 2 = 𝐴 𝑠 + 1 (𝑠2 + 2𝑠 + 4) + 𝐵𝑠(𝑠2 + 2𝑠 + 4) + 𝐶𝑠 𝑠 + 1 + 𝐷𝑠(𝑠2 + 3𝑠 + 2) 2 = 𝐴𝑠3 + 2𝐴𝑠2 + 4𝐴𝑠 + 𝐴𝑠2 + 2𝐴𝑠 + 4𝐴 + 𝐵𝑠3 + 2𝐵𝑠2 + 4𝐵𝑠 + 𝐶𝑠2 + 𝐶𝑠 + 𝐷𝑠3 + 3𝐷𝑠2 + 2𝐷𝑠) Equating 𝑡ℎ𝑒 𝑐𝑜𝑒𝑓𝑓𝑖𝑐𝑒𝑛𝑡 𝑜𝑓 𝑠3 0= A+B+D 0= 0.5-2+D D= 1.5 or 3/2 X(s) = 𝐴 𝑠 + 𝐵 (𝑠+1) + 𝐶 (𝑠+2)2 + 𝐷 𝑠+2 Sub A,B,C and D in (1) X(s) = 0.5 𝑠 − 2 (𝑠+1) + 1 (𝑠+2)2 + 1.5 𝑠+2 x(t) =0.5𝑢 𝑡 − 2 𝑒−𝑡 𝑢 𝑡 + 𝑡𝑒−2𝑡 𝑢 𝑡 + 1.5 𝑒−2𝑡 𝑢 𝑡 ILT [X(s)] = x(t)
  • 47. 47 Problems ( Complex Poles) 3.Determine Inverse LT of X(s) = (2𝑠+1) (𝑠+1)(𝑠2+2𝑠+2) Solution: X(s) = (2𝑠+1) (𝑠+1)(𝑠2+2𝑠+2) X(s) = 𝐴 (𝑠+1) + 𝐵𝑠+ 𝐶 (𝑠2+2𝑠+2) (2𝑠 + 1) (𝑠 + 1)(𝑠2 + 2𝑠 + 2) = 𝐴 (𝑠 + 1) + 𝐵𝑠 + 𝐶 (𝑠2 + 2𝑠 + 2) (2𝑠 + 1) (𝑠 + 1)(𝑠2 + 2𝑠 + 2) = 𝐴 𝑠2 + 2𝑠 + 2 + 𝐵𝑠 + 𝐶(𝑠 + 1) (𝑠 + 1)(𝑠2 + 2𝑠 + 2) C = 3 A = -1 Equating 𝑡ℎ𝑒 𝑐𝑜𝑒𝑓𝑓𝑖𝑐𝑒𝑛𝑡 𝑜𝑓 𝑠2 , s and constant B = 1 (1)
  • 48. 48 X(s) = 𝐴 (𝑠 + 1) + 𝐵𝑠 + 𝐶 (𝑠2 + 2𝑠 + 2) (1) Sub A,B and C in (2) X(s) = 𝐴 (𝑠 + 1) + 𝐵𝑠 + 𝐶 (𝑠 + 1)2 + 1) (2) X(s) = −1 (𝑠 + 1) + 𝑠 + 3 (𝑠 + 1)2 + 1) X(s) = −1 (𝑠 + 1) + 𝑠 + 1 + 2 (𝑠 + 1)2 + 1 X(s) = −1 (𝑠+1) + 𝑠+1 (𝑠+1)2+1 + 2 (𝑠+1)2+1 ILT [X(s)] = x(t) x(t) =𝑒−𝑡 𝑢 𝑡 − 𝑒−𝑡 cos 𝑡 𝑢 𝑡 + 2𝑒−𝑡 sin 𝑡 𝑢 𝑡 L[𝑒−𝑎𝑡 cos t] 𝑠 + 𝑎 (𝑠 + 𝑎)2 + 𝑎2 L[𝑒−𝑎𝑡 sin t] 𝑎 (𝑠 + 𝑎)2 + 𝑎2 Problems ( Complex Poles)
  • 49. Problem Using RoC 49 4.Determine Inverse LT of X(s) = 4 (𝑠+2)(𝑠+4) if ROC (i) -2 >Re(s) > -4 , (ii) Re(s) < -4 = 𝐴 𝑠+4 +𝐵 𝑠+2 (𝑠+2)(𝑠+4) X(s) = 4 (𝑠+2)(𝑠+4) = 𝐴 (𝑠+2) + 𝐵 (𝑠+4) 4 (𝑠+2)(𝑠+4) A = 2 B = −2 X(s) = 2 (𝑠+2) - 2 (𝑠+4) Sub in (1) (1) x(t) =2𝑒−2𝑡 𝑢 𝑡 − 2𝑒−4𝑡 𝑢 𝑡
  • 50. 50 (i) ROC -2 >Re(s) > -4 (ii) ROC Re(s) < -4 x(t) = −2𝑒−2𝑡 𝑢 −𝑡 − 2𝑒−4𝑡 𝑢 𝑡 x(t) =2𝑒−2𝑡 𝑢 𝑡 − 2𝑒−4𝑡 𝑢 𝑡 - ∞ 0 ∞ jω σ Re(s)<-2 and Re(s)> -4 L[eat]u(t) = Roc, Re{s} σ > a L[-e-at]u(-t) = Roc, Re{s} σ < a x(t) =2𝑒−2𝑡 𝑢 𝑡 − 2𝑒−4𝑡 𝑢 𝑡 - ∞ 0 ∞ jω σ x(t) = −2𝑒−2𝑡 𝑢 −𝑡 + 2𝑒−4𝑡 𝑢 −𝑡 Problem Using RoC
  • 51. 51 (iii) ROC Re(s) > 2 x(t) =2𝑒−2𝑡 𝑢 𝑡 − 2𝑒−4𝑡 𝑢 𝑡 x(t) =2𝑒−2𝑡 𝑢 𝑡 − 2𝑒−4𝑡 𝑢 𝑡 - ∞ 0 ∞ jω σ Problem Using RoC