LIGHT-REFLECTION AND REFRACTION.ppt.pptx

CHAPTER - 10
LIGHT : REFLECTION AND
REFRACTION
Class :- X
Subject :- Science
Name of Teacher :- Mr. V. K. Pathak (PGT Physics)
School :- KV RRL Jorhat, Assam
1) Light :-
i) Light is a form of energy which helps us to see objects.
ii) When light falls on objects, it reflects the light and when the
reflected light reaches our eyes then we see the objects.
iii) Light travels in straight line.
iv) The common phenomena of light are formation of shadows,
formation of images by mirrors and lenses, bending of light by a
medium, twinkling of stars, formation of rainbow etc.
LIGHT-REFLECTION AND REFRACTION.ppt.pptx
2a) Reflection of light :-
When light falls on a highly polished surface like a mirror most of
the light is sent back into the same medium. This process is called
reflection of light.
a) Laws of reflection of light :-
i) The angle of incidence is equal to the angle of reflection.
ii) The incident ray, the reflected ray and the normal to the mirror at
the point of incidence all lie in the same plane.
i) The image is erect.
ii) The image is same size as the object.
iii) The image is at the same distance from the mirror as the object is in
front of it.
iv) The image is virtual (cannot be obtained on a screen).
v) The image is laterally inverted.
3) Spherical mirrors :-
Spherical mirror is a curved mirror which is a part of a hollow
sphere. Spherical mirrors are of two types. They are concave mirror
and convex mirror.
i) Concave mirror :- is a spherical mirror whose reflecting surface is
curved inwards. Rays of light parallel to the principal axis after
reflection from a concave mirror meet at a point (converge) on the
principal axis.
ii) Convex mirror :- is a spherical mirror whose reflecting surface is
curved inwards. Rays of light parallel to the principal axis after
reflection from a convex mirror get diverged and appear to come from a
point behind the mirror.
F
F
4) Terms used in the study of spherical mirrors :-
i) Center of curvature :- is the centre of the sphere of which the mirror
is a part (C).
ii) Radius of curvature :- is the radius of the sphere of which the mirror
is a part (CP).
iii) Pole :- is the centre of the spherical mirror (P).
iv) Principal axis :- is the straight line passing through the centre of
curvature and the pole (X-Y).
v) Principal focus :-
In a concave mirror, rays of light parallel to the principal axis after
reflection meet at a point on the principal axis called principal
focus(F).
In a convex mirror, rays of light parallel to the principal axis after
reflection get diverged and appear to come from a point on the
principal axis behind the mirror called principal focus (F).
vi) Focal length :- is the distance between the pole and principal focus
(f). In a spherical mirror the radius of curvature is twice the focal
length.
R = 2f or f = R
2
X C F P Y
C – centre of curvature CP – radius of curvature
P – pole XY – principal axis
F – principal focus PF – focal length
5) Reflection by spherical mirrors :-
i) In a concave mirror a ray of light parallel to the principal
axis after reflection passes through the focus.
In a convex mirror a ray of light parallel to the principal
axis after reflection appears to diverge from the focus.
C F P P F C
ii) In a concave mirror a ray of light passing through the
focus after reflection goes parallel to the principal axis.
In a convex mirror a ray of light directed towards the
focus after reflection goes parallel to the principal axis.
C F P P F C
iii) In a concave mirror a ray of light passing through the
centre of curvature after reflection is reflected back along
the same direction.
In a convex mirror a ray of light directed towards the
centre of curvature after reflection is reflected back along
the same direction.
C F P P F C
iv) In a concave or a convex mirror a ray of light directed
obliquely at the pole is reflected obliquely making equal
angles with the principal axis.
C F i P i P F C
r r
6) Images formed by concave mirror :-
i) When the object is at infinity the image is formed at the
focus, it is highly diminished, real and inverted.
C F P
ii) When the object is beyond C, the image is formed
between C and F, it is diminished, real and inverted.
C F P
iii) When the object is at C, the image is formed at C, it is
same size as the object, real and inverted.
C F P
iv) When the object is between C and F, the image is
formed beyond C, it is enlarged, real and inverted.
C F P
v) When the object is at F, the image is formed at infinity, it
is highly enlarged, real and inverted.
C F P
vi) When the object is between F and P, the image is
formed behind the mirror, it is enlarged, virtual and erect.
C F P
7) Images formed by convex mirror :-
i) When the object is at infinity, the image is formed at F
behind the mirror, it is highly diminished, virtual and erect.
P F
ii) When the object is between infinity and pole, the image
is formed behind the mirror, it is diminished, virtual and
erect.
P F C
8) Uses of spherical mirrors :-
a) Concave mirrors :-
Concave mirrors are used in torches, search lights and head lights of
vehicles to get parallel beams of light.
They are used as shaving mirrors to see larger image of the face.
They are used by dentists to see larger images of the teeth.
Large concave mirrors are used to concentrate sunlight to produce
heat in solar furnaces.
b) Convex mirrors :-
Convex mirrors are used as rear-view mirrors in vehicles. Convex
mirrors give erect diminished images of objects. They also have a
wider field of view than plane mirrors.
9) New Cartesian sign convention for spherical mirrors :-
i) The object is always placed on the left of the mirror and light from the
object falls from the left to the right.
ii) All distances parallel to the principal axis are measured from the pole.
iii) All distances measured to the right of the pole are taken as + ve.
iv) All distances measured to the left of the pole are taken as – ve.
v) The height measured upwards perpendicular to the principal axis is
taken as + ve.
vi) The height measured downwards perpendicular to the principal axis
is taken as – ve.
Direction of incident light
Distance towards the left ( - ve
)
Distance towards the right ( + ve )
Height
downwards ( - ve )
Height
upwards ( + ve )
Concave mirror
Object
Image
10a) Mirror formula for spherical mirrors :-
The mirror formula for spherical mirrors is the relationship between
the object distance (u), image distance (v) and focal length (f).
The mirror formula is expressed as :-
1 1 1
+ =
v u f
b) Magnification for spherical mirrors :-
Magnification for spherical mirrors is the ratio of the height of the
image to the height of the object.
Height of the image hi
Magnification = m =
Height of the object ho
The magnification is also related to the object distance and image
distance. It is expressed as :-
hi v
Magnification m = =
ho u
11a) Refraction of light :-
When light travels obliquely from one transparent medium into
another it gets bent. This bending of light is called refraction of light.
When light travels from a rarer medium to a denser medium, it bends
towards the normal.
When light travels from a denser medium to a rarer medium to a
rarer medium, it bends away from the normal.
Denser medium Rarer medium
Rarer medium Denser medium
Normal Normal
b) Refraction of light through a rectangular glass
slab :-
When a ray of light passes through a rectangular glass slab, it gets
bent twice at the air- glass interface and at the glass- air interface.
The emergent ray is parallel to the incident ray and is displaced
through a distance.
i
e
Normal
Incident ray
Emergent ray
Refracted ray
Glass
Air
Normal
r
Glass
Air
Rectangular glass slab
displacement
Angle of emergence
Angle of incidence
Angle of refraction
c) Laws of refraction of light :-
i) The incident ray, the refracted ray and the normal to the
interface of two transparent media at the point of incidence, all lie in the
same plane.
II) The ratio of the sine of angle of incidence to the sine of angle
of refraction is a constant, for the light of a given colour and for the
given pair of media.( This law is also known as Snell`s law of refraction.)
sine i
= constant
sine r
d)Refractive index :-
The absolute refractive index of a medium is the ratio of the
speed light in air or vacuum to the speed of light in medium.
Speed of light in air or vacuum c
Refractive index = n =
Speed of light in the medium v
The relative refractive index of a medium 2 with respect to a
medium 1 is the ratio of the speed of light in medium 1 to the speed of
light in medium 2.
n
21
= Speed of light in medium 1 n 21
= v
1 / v2
Speed of light in medium 2
12) Spherical lenses :-
A spherical lens is a transparent material bounded by two surfaces
one or both of which are spherical.
Spherical lenses are of two main types. They are convex and concave
lenses.
i) Convex lens :- is thicker in the middle and thinner at the edges.
Rays of light parallel to the principal axis after refraction through a
convex lens meet at a point (converge) on the principal axis.
ii) Concave lens :- is thinner in the middle and thicker at the edges.
Rays of light parallel to the principal axis after refraction get diverged
and appear o come from a point on the principal axis on the same side
of the lens.
F F
13) Refraction by spherical lenses :-
i) In a convex lens a ray of light parallel to the principal
axis after refraction passes through the focus on the other
side of the lens. In a concave lens it appears to diverge
from the focus on the same side of the lens.
2F1 F1 O F2 2F2 2F1 F1 O F2 2F2
ii) In a convex lens a ray of light passing through the focus
after refraction goes parallel to the principal axis. In a
concave lens a ray of light directed towards the focus after
refraction goes parallel to the principal axis.
2F1 F1 O F2 2F2 2F1 F1 O F2 2F2
iii) In a convex lens and concave lens a ray of light passing
through the optical centre goes without any deviation.
2F1 F1 O F2 2F2 2F1 F1 O F2 2F2
14) Images formed by convex lens :-
i) When the object is at infinity the image is formed at the
focus F2, it is highly diminished, real and inverted.
2F1 F1 O F2 2F2
ii) When the object is beyond 2F1, the image is formed
between F2 and 2F2, it if diminished, real and inverted.
2F1 F1 O F2 2F2
iii) When the object is at 2F1, the image is formed at 2F2, it
is the same size as the object, real and inverted.
2F1 F1 O F2 2F2
iv) When the object is between 2F1 and F1, the image is
formed beyond 2F2, it is enlarged, real and inverted.
2F1 F1 O F2 2F2
v) When the object is at F1 the image is formed at infinity, it
is highly enlarged, real and inverted.
2F1 F1 O F2 2F2
vi) When the object is between F1 and O, the image is
formed on the same side of the lens, it is enlarged, virtual
and erect.
2F1 F1 O F2 2F2
15) Images formed by concave lens :-
i) When the object is at infinity, the image is formed at the
focus F1 on the same side of the lens, it is highly
diminished, virtual and erect.
F1 O
ii) When the object is between infinity and F1, the image is
formed between F1 and O on the same side of the lens, it is
diminished, virtual and erect.
FI O
16) Sign convention for spherical lenses :-
The sign convention for spherical lenses is the same as in
spherical mirrors except that the distances are measured from the
optical centre (O).
The focal length of a convex lens is positive ( + ve ) and the focal
length of a concave lens is negative ( - ve ).
O
Direction of incident light
Distance towards the left (- ve )
Height
downwards ( - ve )
Height
upwards ( + ve )
Convex lens
Object
Image
Distance towards the right ( + ve )
17a) Lens formula for spherical lenses :-
The lens formula for spherical lenses is the relationship between the
object distance (u), image distance (v) and focal length (f).
The lens formula is expressed as :-
1 1 1
=
v u f
b) Magnification produced by spherical lenses :-
Magnification for spherical lens is the ratio of the height of the
image to the height of the object.
Height of the image hi
Magnification = m =
Height of the object ho
The magnification is also related to the object distance and image
distance. It can be expressed as :-
hi v
Magnification m = =
ho u
18) Power of a lens :-
The power of a lens is the reciprocal of its focal length
(in metres).
I 1
P = or f =
f (m) P
The SI unit of power is dioptre (D).
1 dioptre is the power of a lens whose focal length is 1
metre.
The power of a convex lens is positive ( + ve ) and the
power of a concave lens is negative ( - ve ).
1 de 42

Recomendados

Light reflection and refraction.ppt por
Light reflection and refraction.pptLight reflection and refraction.ppt
Light reflection and refraction.pptBharaniSuppliers
2.4K visualizações42 slides
Light - Reflection and Refraction, Class X, CBSE, Science por
Light - Reflection and Refraction, Class X, CBSE, ScienceLight - Reflection and Refraction, Class X, CBSE, Science
Light - Reflection and Refraction, Class X, CBSE, ScienceDevesh Saini
11.5K visualizações57 slides
light reflection and refraction por
light reflection and refractionlight reflection and refraction
light reflection and refractionInternational advisers
34.8K visualizações42 slides
Ligth reflection and refraction por
Ligth reflection and refractionLigth reflection and refraction
Ligth reflection and refractionAlwin M Reji
4K visualizações32 slides
6. 10. lightreflectionandrefraction por
6. 10. lightreflectionandrefraction6. 10. lightreflectionandrefraction
6. 10. lightreflectionandrefractionTeachWithIdea
4.7K visualizações52 slides
Image formation by mirrors ppt class 10 por
Image formation by mirrors ppt class 10Image formation by mirrors ppt class 10
Image formation by mirrors ppt class 10shailendrasolanki11
6.2K visualizações21 slides

Mais conteúdo relacionado

Mais procurados

Human Eye and Colorful World. Chapter 11 grade 10th por
Human Eye and Colorful World. Chapter 11 grade 10thHuman Eye and Colorful World. Chapter 11 grade 10th
Human Eye and Colorful World. Chapter 11 grade 10thMurari Parashar
400 visualizações7 slides
Light reflection and refaraction por
Light reflection and refaractionLight reflection and refaraction
Light reflection and refaractionRohit Singhal
3K visualizações36 slides
Lenses por
LensesLenses
Lensesitutor
58.5K visualizações21 slides
Electricity por
ElectricityElectricity
ElectricityAnupam_Rptile
3.4K visualizações18 slides
LIGHT-REFLECTION REFRACTION. X ppt-converted.pptx por
LIGHT-REFLECTION REFRACTION. X ppt-converted.pptxLIGHT-REFLECTION REFRACTION. X ppt-converted.pptx
LIGHT-REFLECTION REFRACTION. X ppt-converted.pptxSiddalingeshwarSiddu
45 visualizações44 slides
Lenses por
LensesLenses
LensesOhMiss
3K visualizações23 slides

Mais procurados(20)

Human Eye and Colorful World. Chapter 11 grade 10th por Murari Parashar
Human Eye and Colorful World. Chapter 11 grade 10thHuman Eye and Colorful World. Chapter 11 grade 10th
Human Eye and Colorful World. Chapter 11 grade 10th
Murari Parashar400 visualizações
Light reflection and refaraction por Rohit Singhal
Light reflection and refaractionLight reflection and refaraction
Light reflection and refaraction
Rohit Singhal3K visualizações
Lenses por itutor
LensesLenses
Lenses
itutor58.5K visualizações
Electricity por Anupam_Rptile
ElectricityElectricity
Electricity
Anupam_Rptile3.4K visualizações
LIGHT-REFLECTION REFRACTION. X ppt-converted.pptx por SiddalingeshwarSiddu
LIGHT-REFLECTION REFRACTION. X ppt-converted.pptxLIGHT-REFLECTION REFRACTION. X ppt-converted.pptx
LIGHT-REFLECTION REFRACTION. X ppt-converted.pptx
SiddalingeshwarSiddu45 visualizações
Lenses por OhMiss
LensesLenses
Lenses
OhMiss3K visualizações
Reflection of light por Mayank Sharma
Reflection of lightReflection of light
Reflection of light
Mayank Sharma2.3K visualizações
Class 10 light ppt por vivek sawhney
Class 10 light pptClass 10 light ppt
Class 10 light ppt
vivek sawhney4K visualizações
Light – reflection refraction por rahul670905
Light – reflection refractionLight – reflection refraction
Light – reflection refraction
rahul670905686 visualizações
Reflection of light por Akshat Kaushik
Reflection of lightReflection of light
Reflection of light
Akshat Kaushik39.9K visualizações
Our environment.ppt por tuantai1302
Our environment.pptOur environment.ppt
Our environment.ppt
tuantai1302222 visualizações
Image formation in lens por Felix Bunagan
Image formation in lensImage formation in lens
Image formation in lens
Felix Bunagan16.3K visualizações
14 ray diagrams por Fidelfo Moral
14 ray diagrams14 ray diagrams
14 ray diagrams
Fidelfo Moral8.4K visualizações
Reflection and refraction por Salahdeen Hi
Reflection and refractionReflection and refraction
Reflection and refraction
Salahdeen Hi162 visualizações
Reflection of light (Physics) por Sheikh Amman
Reflection of light (Physics)Reflection of light (Physics)
Reflection of light (Physics)
Sheikh Amman11.8K visualizações
Spherical Mirrors por itutor
Spherical MirrorsSpherical Mirrors
Spherical Mirrors
itutor45.6K visualizações
Wave optics por Gyanendra Singh
Wave opticsWave optics
Wave optics
Gyanendra Singh13.1K visualizações
carbon and its compounds por MISSRITIMABIOLOGYEXP
carbon and its compoundscarbon and its compounds
carbon and its compounds
MISSRITIMABIOLOGYEXP492 visualizações
The human eye presentation por GaddigappaKs
The human eye presentationThe human eye presentation
The human eye presentation
GaddigappaKs971 visualizações

Similar a LIGHT-REFLECTION AND REFRACTION.ppt.pptx

LIGHT-REFLECTION AND REFRACTION.ppt.pptx por
LIGHT-REFLECTION AND REFRACTION.ppt.pptxLIGHT-REFLECTION AND REFRACTION.ppt.pptx
LIGHT-REFLECTION AND REFRACTION.ppt.pptxChamarthiNagamani
11 visualizações42 slides
Light grade 10.pptx por
Light grade 10.pptxLight grade 10.pptx
Light grade 10.pptxYATIAGRAWAL3
18 visualizações41 slides
REFLECTION AND REFRACTION PPT.ppt por
REFLECTION AND REFRACTION PPT.pptREFLECTION AND REFRACTION PPT.ppt
REFLECTION AND REFRACTION PPT.pptkarthikeyanNATIONALM
37 visualizações41 slides
Light Reflection and Refraction por
Light Reflection and RefractionLight Reflection and Refraction
Light Reflection and Refractionssuserd04138
72 visualizações41 slides
reflectionoflight-160126085039.pdf por
reflectionoflight-160126085039.pdfreflectionoflight-160126085039.pdf
reflectionoflight-160126085039.pdfAnthonyNacaytuna2
4 visualizações26 slides
Reflection and refraction por
Reflection and refractionReflection and refraction
Reflection and refractionDante Billones
7.9K visualizações75 slides

Similar a LIGHT-REFLECTION AND REFRACTION.ppt.pptx(20)

LIGHT-REFLECTION AND REFRACTION.ppt.pptx por ChamarthiNagamani
LIGHT-REFLECTION AND REFRACTION.ppt.pptxLIGHT-REFLECTION AND REFRACTION.ppt.pptx
LIGHT-REFLECTION AND REFRACTION.ppt.pptx
ChamarthiNagamani11 visualizações
Light grade 10.pptx por YATIAGRAWAL3
Light grade 10.pptxLight grade 10.pptx
Light grade 10.pptx
YATIAGRAWAL318 visualizações
REFLECTION AND REFRACTION PPT.ppt por karthikeyanNATIONALM
REFLECTION AND REFRACTION PPT.pptREFLECTION AND REFRACTION PPT.ppt
REFLECTION AND REFRACTION PPT.ppt
karthikeyanNATIONALM37 visualizações
Light Reflection and Refraction por ssuserd04138
Light Reflection and RefractionLight Reflection and Refraction
Light Reflection and Refraction
ssuserd0413872 visualizações
reflectionoflight-160126085039.pdf por AnthonyNacaytuna2
reflectionoflight-160126085039.pdfreflectionoflight-160126085039.pdf
reflectionoflight-160126085039.pdf
AnthonyNacaytuna24 visualizações
Reflection and refraction por Dante Billones
Reflection and refractionReflection and refraction
Reflection and refraction
Dante Billones7.9K visualizações
Physics por shallinirv
PhysicsPhysics
Physics
shallinirv1.1K visualizações
10lightreflectionandrefraction.ppsx por AkshatSharma13892
10lightreflectionandrefraction.ppsx10lightreflectionandrefraction.ppsx
10lightreflectionandrefraction.ppsx
AkshatSharma1389223 visualizações
Class 10 light refraction and reflection por Jyoti Kumari
Class 10 light refraction and reflection Class 10 light refraction and reflection
Class 10 light refraction and reflection
Jyoti Kumari644 visualizações
vdocument.in_reflection-mirrors-swbat-explain-how-light-is-reflected-from-rou... por DevikaMani3
vdocument.in_reflection-mirrors-swbat-explain-how-light-is-reflected-from-rou...vdocument.in_reflection-mirrors-swbat-explain-how-light-is-reflected-from-rou...
vdocument.in_reflection-mirrors-swbat-explain-how-light-is-reflected-from-rou...
DevikaMani31 visão
04 curved mirrors por mrtangextrahelp
04   curved mirrors04   curved mirrors
04 curved mirrors
mrtangextrahelp3K visualizações
Light - Part 1 por Gurudatta Wagh
Light - Part 1Light - Part 1
Light - Part 1
Gurudatta Wagh1.3K visualizações
Light-Reflection and Refraction por ShirinShahana6
Light-Reflection and RefractionLight-Reflection and Refraction
Light-Reflection and Refraction
ShirinShahana685 visualizações
Light- refraction and reflection .pdf por HimanshuTiwari656710
Light- refraction and reflection .pdfLight- refraction and reflection .pdf
Light- refraction and reflection .pdf
HimanshuTiwari65671042 visualizações
19 -Ray Optics.doc por STUDY INNOVATIONS
19 -Ray Optics.doc19 -Ray Optics.doc
19 -Ray Optics.doc
STUDY INNOVATIONS48 visualizações
Ray Optics - JEE Main Physics Preparation por Ednexa
Ray Optics - JEE Main Physics PreparationRay Optics - JEE Main Physics Preparation
Ray Optics - JEE Main Physics Preparation
Ednexa 1.6K visualizações
Basic optics por sania aslam
Basic opticsBasic optics
Basic optics
sania aslam284 visualizações
Cl10 light reflaction and refraction por Priya Jha
Cl10 light reflaction and refractionCl10 light reflaction and refraction
Cl10 light reflaction and refraction
Priya Jha1.7K visualizações

Último

Effect of Integrated Nutrient Management on Growth and Yield of Solanaceous F... por
Effect of Integrated Nutrient Management on Growth and Yield of Solanaceous F...Effect of Integrated Nutrient Management on Growth and Yield of Solanaceous F...
Effect of Integrated Nutrient Management on Growth and Yield of Solanaceous F...SwagatBehera9
5 visualizações36 slides
application of genetic engineering 2.pptx por
application of genetic engineering 2.pptxapplication of genetic engineering 2.pptx
application of genetic engineering 2.pptxSankSurezz
14 visualizações12 slides
ELECTRON TRANSPORT CHAIN por
ELECTRON TRANSPORT CHAINELECTRON TRANSPORT CHAIN
ELECTRON TRANSPORT CHAINDEEKSHA RANI
10 visualizações16 slides
Discovery of therapeutic agents targeting PKLR for NAFLD using drug repositio... por
Discovery of therapeutic agents targeting PKLR for NAFLD using drug repositio...Discovery of therapeutic agents targeting PKLR for NAFLD using drug repositio...
Discovery of therapeutic agents targeting PKLR for NAFLD using drug repositio...Trustlife
127 visualizações17 slides
Applications of Large Language Models in Materials Discovery and Design por
Applications of Large Language Models in Materials Discovery and DesignApplications of Large Language Models in Materials Discovery and Design
Applications of Large Language Models in Materials Discovery and DesignAnubhav Jain
13 visualizações17 slides

Último(20)

Effect of Integrated Nutrient Management on Growth and Yield of Solanaceous F... por SwagatBehera9
Effect of Integrated Nutrient Management on Growth and Yield of Solanaceous F...Effect of Integrated Nutrient Management on Growth and Yield of Solanaceous F...
Effect of Integrated Nutrient Management on Growth and Yield of Solanaceous F...
SwagatBehera95 visualizações
application of genetic engineering 2.pptx por SankSurezz
application of genetic engineering 2.pptxapplication of genetic engineering 2.pptx
application of genetic engineering 2.pptx
SankSurezz14 visualizações
ELECTRON TRANSPORT CHAIN por DEEKSHA RANI
ELECTRON TRANSPORT CHAINELECTRON TRANSPORT CHAIN
ELECTRON TRANSPORT CHAIN
DEEKSHA RANI10 visualizações
Discovery of therapeutic agents targeting PKLR for NAFLD using drug repositio... por Trustlife
Discovery of therapeutic agents targeting PKLR for NAFLD using drug repositio...Discovery of therapeutic agents targeting PKLR for NAFLD using drug repositio...
Discovery of therapeutic agents targeting PKLR for NAFLD using drug repositio...
Trustlife127 visualizações
Applications of Large Language Models in Materials Discovery and Design por Anubhav Jain
Applications of Large Language Models in Materials Discovery and DesignApplications of Large Language Models in Materials Discovery and Design
Applications of Large Language Models in Materials Discovery and Design
Anubhav Jain13 visualizações
DEVELOPMENT OF FROG.pptx por sushant292556
DEVELOPMENT OF FROG.pptxDEVELOPMENT OF FROG.pptx
DEVELOPMENT OF FROG.pptx
sushant29255611 visualizações
TF-FAIR.pdf por Dirk Roorda
TF-FAIR.pdfTF-FAIR.pdf
TF-FAIR.pdf
Dirk Roorda6 visualizações
Factors affecting fluorescence and phosphorescence.pptx por SamarthGiri1
Factors affecting fluorescence and phosphorescence.pptxFactors affecting fluorescence and phosphorescence.pptx
Factors affecting fluorescence and phosphorescence.pptx
SamarthGiri17 visualizações
Small ruminant keepers’ knowledge, attitudes and practices towards peste des ... por ILRI
Small ruminant keepers’ knowledge, attitudes and practices towards peste des ...Small ruminant keepers’ knowledge, attitudes and practices towards peste des ...
Small ruminant keepers’ knowledge, attitudes and practices towards peste des ...
ILRI7 visualizações
Small ruminant keepers’ knowledge, attitudes and practices towards peste des ... por ILRI
Small ruminant keepers’ knowledge, attitudes and practices towards peste des ...Small ruminant keepers’ knowledge, attitudes and practices towards peste des ...
Small ruminant keepers’ knowledge, attitudes and practices towards peste des ...
ILRI5 visualizações
Radioactive and Non- radioactive probes por Nathiya .T Nathiya.T
Radioactive and Non- radioactive probesRadioactive and Non- radioactive probes
Radioactive and Non- radioactive probes
Nathiya .T Nathiya.T5 visualizações
RemeOs science and clinical evidence por PetrusViitanen1
RemeOs science and clinical evidenceRemeOs science and clinical evidence
RemeOs science and clinical evidence
PetrusViitanen147 visualizações
Study on Drug Drug Interaction Through Prescription Analysis of Type II Diabe... por Anmol Vishnu Gupta
Study on Drug Drug Interaction Through Prescription Analysis of Type II Diabe...Study on Drug Drug Interaction Through Prescription Analysis of Type II Diabe...
Study on Drug Drug Interaction Through Prescription Analysis of Type II Diabe...
Anmol Vishnu Gupta26 visualizações
BLOTTING TECHNIQUES SPECIAL por MuhammadImranMirza2
BLOTTING TECHNIQUES SPECIALBLOTTING TECHNIQUES SPECIAL
BLOTTING TECHNIQUES SPECIAL
MuhammadImranMirza25 visualizações
Disinfectants & Antiseptic por Sanket P Shinde
Disinfectants & AntisepticDisinfectants & Antiseptic
Disinfectants & Antiseptic
Sanket P Shinde62 visualizações
vitamine B1.pptx por ajithkilpart
vitamine B1.pptxvitamine B1.pptx
vitamine B1.pptx
ajithkilpart27 visualizações
Nitrosamine & NDSRI.pptx por NileshBonde4
Nitrosamine & NDSRI.pptxNitrosamine & NDSRI.pptx
Nitrosamine & NDSRI.pptx
NileshBonde418 visualizações
scopus cited journals.pdf por KSAravindSrivastava
scopus cited journals.pdfscopus cited journals.pdf
scopus cited journals.pdf
KSAravindSrivastava10 visualizações

LIGHT-REFLECTION AND REFRACTION.ppt.pptx

  • 1. CHAPTER - 10 LIGHT : REFLECTION AND REFRACTION Class :- X Subject :- Science Name of Teacher :- Mr. V. K. Pathak (PGT Physics) School :- KV RRL Jorhat, Assam
  • 2. 1) Light :- i) Light is a form of energy which helps us to see objects. ii) When light falls on objects, it reflects the light and when the reflected light reaches our eyes then we see the objects. iii) Light travels in straight line. iv) The common phenomena of light are formation of shadows, formation of images by mirrors and lenses, bending of light by a medium, twinkling of stars, formation of rainbow etc.
  • 4. 2a) Reflection of light :- When light falls on a highly polished surface like a mirror most of the light is sent back into the same medium. This process is called reflection of light. a) Laws of reflection of light :- i) The angle of incidence is equal to the angle of reflection. ii) The incident ray, the reflected ray and the normal to the mirror at the point of incidence all lie in the same plane.
  • 5. i) The image is erect. ii) The image is same size as the object. iii) The image is at the same distance from the mirror as the object is in front of it. iv) The image is virtual (cannot be obtained on a screen). v) The image is laterally inverted.
  • 6. 3) Spherical mirrors :- Spherical mirror is a curved mirror which is a part of a hollow sphere. Spherical mirrors are of two types. They are concave mirror and convex mirror. i) Concave mirror :- is a spherical mirror whose reflecting surface is curved inwards. Rays of light parallel to the principal axis after reflection from a concave mirror meet at a point (converge) on the principal axis. ii) Convex mirror :- is a spherical mirror whose reflecting surface is curved inwards. Rays of light parallel to the principal axis after reflection from a convex mirror get diverged and appear to come from a point behind the mirror. F F
  • 7. 4) Terms used in the study of spherical mirrors :- i) Center of curvature :- is the centre of the sphere of which the mirror is a part (C). ii) Radius of curvature :- is the radius of the sphere of which the mirror is a part (CP). iii) Pole :- is the centre of the spherical mirror (P). iv) Principal axis :- is the straight line passing through the centre of curvature and the pole (X-Y). v) Principal focus :- In a concave mirror, rays of light parallel to the principal axis after reflection meet at a point on the principal axis called principal focus(F). In a convex mirror, rays of light parallel to the principal axis after reflection get diverged and appear to come from a point on the principal axis behind the mirror called principal focus (F). vi) Focal length :- is the distance between the pole and principal focus (f). In a spherical mirror the radius of curvature is twice the focal length. R = 2f or f = R 2
  • 8. X C F P Y C – centre of curvature CP – radius of curvature P – pole XY – principal axis F – principal focus PF – focal length
  • 9. 5) Reflection by spherical mirrors :- i) In a concave mirror a ray of light parallel to the principal axis after reflection passes through the focus. In a convex mirror a ray of light parallel to the principal axis after reflection appears to diverge from the focus. C F P P F C
  • 10. ii) In a concave mirror a ray of light passing through the focus after reflection goes parallel to the principal axis. In a convex mirror a ray of light directed towards the focus after reflection goes parallel to the principal axis. C F P P F C
  • 11. iii) In a concave mirror a ray of light passing through the centre of curvature after reflection is reflected back along the same direction. In a convex mirror a ray of light directed towards the centre of curvature after reflection is reflected back along the same direction. C F P P F C
  • 12. iv) In a concave or a convex mirror a ray of light directed obliquely at the pole is reflected obliquely making equal angles with the principal axis. C F i P i P F C r r
  • 13. 6) Images formed by concave mirror :- i) When the object is at infinity the image is formed at the focus, it is highly diminished, real and inverted. C F P
  • 14. ii) When the object is beyond C, the image is formed between C and F, it is diminished, real and inverted. C F P
  • 15. iii) When the object is at C, the image is formed at C, it is same size as the object, real and inverted. C F P
  • 16. iv) When the object is between C and F, the image is formed beyond C, it is enlarged, real and inverted. C F P
  • 17. v) When the object is at F, the image is formed at infinity, it is highly enlarged, real and inverted. C F P
  • 18. vi) When the object is between F and P, the image is formed behind the mirror, it is enlarged, virtual and erect. C F P
  • 19. 7) Images formed by convex mirror :- i) When the object is at infinity, the image is formed at F behind the mirror, it is highly diminished, virtual and erect. P F
  • 20. ii) When the object is between infinity and pole, the image is formed behind the mirror, it is diminished, virtual and erect. P F C
  • 21. 8) Uses of spherical mirrors :- a) Concave mirrors :- Concave mirrors are used in torches, search lights and head lights of vehicles to get parallel beams of light. They are used as shaving mirrors to see larger image of the face. They are used by dentists to see larger images of the teeth. Large concave mirrors are used to concentrate sunlight to produce heat in solar furnaces.
  • 22. b) Convex mirrors :- Convex mirrors are used as rear-view mirrors in vehicles. Convex mirrors give erect diminished images of objects. They also have a wider field of view than plane mirrors.
  • 23. 9) New Cartesian sign convention for spherical mirrors :- i) The object is always placed on the left of the mirror and light from the object falls from the left to the right. ii) All distances parallel to the principal axis are measured from the pole. iii) All distances measured to the right of the pole are taken as + ve. iv) All distances measured to the left of the pole are taken as – ve. v) The height measured upwards perpendicular to the principal axis is taken as + ve. vi) The height measured downwards perpendicular to the principal axis is taken as – ve. Direction of incident light Distance towards the left ( - ve ) Distance towards the right ( + ve ) Height downwards ( - ve ) Height upwards ( + ve ) Concave mirror Object Image
  • 24. 10a) Mirror formula for spherical mirrors :- The mirror formula for spherical mirrors is the relationship between the object distance (u), image distance (v) and focal length (f). The mirror formula is expressed as :- 1 1 1 + = v u f b) Magnification for spherical mirrors :- Magnification for spherical mirrors is the ratio of the height of the image to the height of the object. Height of the image hi Magnification = m = Height of the object ho The magnification is also related to the object distance and image distance. It is expressed as :- hi v Magnification m = = ho u
  • 25. 11a) Refraction of light :- When light travels obliquely from one transparent medium into another it gets bent. This bending of light is called refraction of light. When light travels from a rarer medium to a denser medium, it bends towards the normal. When light travels from a denser medium to a rarer medium to a rarer medium, it bends away from the normal. Denser medium Rarer medium Rarer medium Denser medium Normal Normal
  • 26. b) Refraction of light through a rectangular glass slab :- When a ray of light passes through a rectangular glass slab, it gets bent twice at the air- glass interface and at the glass- air interface. The emergent ray is parallel to the incident ray and is displaced through a distance. i e Normal Incident ray Emergent ray Refracted ray Glass Air Normal r Glass Air Rectangular glass slab displacement Angle of emergence Angle of incidence Angle of refraction
  • 27. c) Laws of refraction of light :- i) The incident ray, the refracted ray and the normal to the interface of two transparent media at the point of incidence, all lie in the same plane. II) The ratio of the sine of angle of incidence to the sine of angle of refraction is a constant, for the light of a given colour and for the given pair of media.( This law is also known as Snell`s law of refraction.) sine i = constant sine r d)Refractive index :- The absolute refractive index of a medium is the ratio of the speed light in air or vacuum to the speed of light in medium. Speed of light in air or vacuum c Refractive index = n = Speed of light in the medium v The relative refractive index of a medium 2 with respect to a medium 1 is the ratio of the speed of light in medium 1 to the speed of light in medium 2. n 21 = Speed of light in medium 1 n 21 = v 1 / v2 Speed of light in medium 2
  • 28. 12) Spherical lenses :- A spherical lens is a transparent material bounded by two surfaces one or both of which are spherical. Spherical lenses are of two main types. They are convex and concave lenses. i) Convex lens :- is thicker in the middle and thinner at the edges. Rays of light parallel to the principal axis after refraction through a convex lens meet at a point (converge) on the principal axis. ii) Concave lens :- is thinner in the middle and thicker at the edges. Rays of light parallel to the principal axis after refraction get diverged and appear o come from a point on the principal axis on the same side of the lens. F F
  • 29. 13) Refraction by spherical lenses :- i) In a convex lens a ray of light parallel to the principal axis after refraction passes through the focus on the other side of the lens. In a concave lens it appears to diverge from the focus on the same side of the lens. 2F1 F1 O F2 2F2 2F1 F1 O F2 2F2
  • 30. ii) In a convex lens a ray of light passing through the focus after refraction goes parallel to the principal axis. In a concave lens a ray of light directed towards the focus after refraction goes parallel to the principal axis. 2F1 F1 O F2 2F2 2F1 F1 O F2 2F2
  • 31. iii) In a convex lens and concave lens a ray of light passing through the optical centre goes without any deviation. 2F1 F1 O F2 2F2 2F1 F1 O F2 2F2
  • 32. 14) Images formed by convex lens :- i) When the object is at infinity the image is formed at the focus F2, it is highly diminished, real and inverted. 2F1 F1 O F2 2F2
  • 33. ii) When the object is beyond 2F1, the image is formed between F2 and 2F2, it if diminished, real and inverted. 2F1 F1 O F2 2F2
  • 34. iii) When the object is at 2F1, the image is formed at 2F2, it is the same size as the object, real and inverted. 2F1 F1 O F2 2F2
  • 35. iv) When the object is between 2F1 and F1, the image is formed beyond 2F2, it is enlarged, real and inverted. 2F1 F1 O F2 2F2
  • 36. v) When the object is at F1 the image is formed at infinity, it is highly enlarged, real and inverted. 2F1 F1 O F2 2F2
  • 37. vi) When the object is between F1 and O, the image is formed on the same side of the lens, it is enlarged, virtual and erect. 2F1 F1 O F2 2F2
  • 38. 15) Images formed by concave lens :- i) When the object is at infinity, the image is formed at the focus F1 on the same side of the lens, it is highly diminished, virtual and erect. F1 O
  • 39. ii) When the object is between infinity and F1, the image is formed between F1 and O on the same side of the lens, it is diminished, virtual and erect. FI O
  • 40. 16) Sign convention for spherical lenses :- The sign convention for spherical lenses is the same as in spherical mirrors except that the distances are measured from the optical centre (O). The focal length of a convex lens is positive ( + ve ) and the focal length of a concave lens is negative ( - ve ). O Direction of incident light Distance towards the left (- ve ) Height downwards ( - ve ) Height upwards ( + ve ) Convex lens Object Image Distance towards the right ( + ve )
  • 41. 17a) Lens formula for spherical lenses :- The lens formula for spherical lenses is the relationship between the object distance (u), image distance (v) and focal length (f). The lens formula is expressed as :- 1 1 1 = v u f b) Magnification produced by spherical lenses :- Magnification for spherical lens is the ratio of the height of the image to the height of the object. Height of the image hi Magnification = m = Height of the object ho The magnification is also related to the object distance and image distance. It can be expressed as :- hi v Magnification m = = ho u
  • 42. 18) Power of a lens :- The power of a lens is the reciprocal of its focal length (in metres). I 1 P = or f = f (m) P The SI unit of power is dioptre (D). 1 dioptre is the power of a lens whose focal length is 1 metre. The power of a convex lens is positive ( + ve ) and the power of a concave lens is negative ( - ve ).