Design HVAC System for Hospital

M
Mohammed Abdulhabeb Ahmed Mechanical Engineer em Mohammed Abdulhabeb Ahmed
DESIGN OF HVAC SYSTEM FOR FIRST
FLOOR FOR SCIENCE AND TECHNOLOGY
HOSPITAL
Sana’a University – faculty of engineering-mechanical
engineering
Team:
MOHAMMED HABEB
ADEB HASAN
MOHAMMED AL-GAORI
MOATH RADMAN
Supervised
by:
DR. ABDULJALIL AL-ABIDI
Introduction 1
Cooling load calculation 4
Building description 3
Duct design 5
Conclusions
&Recommendations 9
Outline :
Pipe design 6
Terminal units 7
Problem statement 2
Absorption chiller 8
Heating, ventilation, and air conditioning (HVAC) is the
technology of indoor environmental comfort. Its goal is
to provide thermal comfort and acceptable indoor air
quality. ... It is one of the most important factors for
maintaining acceptable indoor air quality in buildings
0
20
40
60
80
100
120
44% of a commercial building’s energy consumption is
attributed to HVAC systems
Introduction 1
w w w . b l u e h a t m e c h a n i c a l . c o m
Hospital buildings are very important building and one of
the few types of building that run at full scale twenty four
hours a day, so they need to make HVAC system
to maintain the temperature, air quality, airflow and humidity to
create the most comfortable environment possible for the
patients and to control hazards and control of infection, removal
of odors and bacteria
Introduction 1
In practice, HVAC of hospital depend on air
conditioning system configuration and design
parameters selection and this based on
knowledge, experience, and skill of system
designer and using of standards
Introduction 1
HVAC for hospital is a little different due to
The parameter for each room and department
Introduction 1
Problem statement 2
h t t p s : / / w w w. hy d ro l - e a r t h - sy s t - s c i . n e t / 1 7 / 3 9 3 7 / 2 0 1 3 /
Due Hot temperature climate in Yemen
Importance of Air conditioning system for
hospitals
• Air-conditioning system in Yemen
depend on air-conditioning using
compressor
• large amount of electrical power
required
• the cost of electrical energy at Yemen
increased
• missing the local grid and the
increasing of fuel cost
• The using of solar cooling is necessary
for energy saving
Problem statement 2
Building description 2
- Location (15.35°N) (44.27°E)
- First floor
- Area = 1970 m2
Thickness
(mm)
K
W /m.°C
Layer
150
1.05
Soft stone
20
1.2
Cement concrete
200
1
Block cement
20
1.2
Cement plaster
10
2.9
Ceramic
Components of External Wall
Building description 2
` ICU
Sterilization Operation rooms
Cardiac
Operation room department
Sterilization
ICU
Cardiac department
Recovery room
Dressing rooms
Break rooms
Cooling loads calculation 3
There are two methods used for loads calculations
B) Technical Method
A) Manual Method
DB Temperature 21°C
Relative humidity 50%
Pressure Positive
Exhaust air 200-400 cfm less than
supply
Ventilation 15-20 ACH
Operation room parameters
Cooling loads calculation 3
taking operation room 1 (OP-Z1) with 35 m2
and 2.8m height
as sample, which is located in the SE and NE
of building.
Overall heat transfer coefficient for walls U=1.787 w/m2 .C. 𝑅𝑡ℎ =
1
𝑈𝑤
= 𝑅𝑖 + ෍
𝑗=1
𝑛
𝑥𝑗
𝑘𝑗
+ 𝑅𝑜
A) Manual Method
Overall heat transfer coefficient for windows U=5.097w/m2 .C.
Outside design condition: 30.20 C Db.
Inside design condition: 210C Db and 50% RH.
Occupancy: 5m2/person=7 people with sensible heat gain 82
W/person, and latent heat gain 79 W/person
Lights: 17 W/m2 of floor area.
Equipment: 110 W/m2.
Cooling loads calculation 3
1
2
3
4
𝑇𝑜𝑚 = 𝑇𝑜 −
𝐷𝑅
2
= 23.75
𝐶𝐿𝑇𝐷𝑐𝑜𝑟𝑟 = 𝐶𝐿𝑇𝐷 − 𝐿𝑀 𝐾 + 25.5 − 𝑇𝑖 + 𝑇𝑂,𝑚 − 29.4 𝑓
𝑄𝑠𝑜𝑙𝑎𝑟 = 𝐴𝑈ሺ𝐶𝐿𝑇𝐷𝑐𝑜𝑟𝑟) = 705.7 𝑊
𝑄𝑙𝑖𝑔ℎ𝑡 = 𝑄
𝑊
𝑚2 𝐴 = 581 𝑊
𝑄𝑜𝑐𝑐𝑢𝑝. = 𝑄𝑆𝐻 + 𝑄𝐿𝐻 = 956 w
൯
𝑄𝑒𝑞𝑢𝑖𝑝. = 𝑄 Τ
𝑤 𝑚2
∗ 𝐴 𝑚2
= 3850 𝑊 5
𝑄𝑡𝑟𝑎𝑛𝑠 = 𝐴 𝑆𝐻𝐺𝐹 𝐶𝐿𝐹 𝑆𝐶 = 2227.2 W
Cooling loads calculation 3
Q inf il =mf(hi
__ho) =27.6 W 6
Qv=(
𝑉𝑓
𝑣𝑜
) *(ho-hi) =6650 W 7
The Total Heat Gain
𝑄𝑡𝑜𝑡𝑎𝑙 = 𝑄𝑠𝑜𝑙𝑎𝑟 𝑒𝑓𝑓𝑒𝑐𝑡𝑠 + 𝑄𝑡𝑟𝑎𝑛𝑠 + 𝑄𝑙𝑖𝑔ℎ𝑡 + 𝑄𝑜𝑐𝑐𝑢𝑝 + 𝑄𝑒𝑞𝑢𝑖𝑝 + 𝑄𝑖𝑛𝑓𝑖𝑙+ =8.34 KW =2.385 TR
The Total coil load
𝑄𝑡𝑜𝑡𝑎𝑙 = 𝑄𝑠𝑜𝑙𝑎𝑟 𝑒𝑓𝑓𝑒𝑐𝑡𝑠 + 𝑄𝑡𝑟𝑎𝑛𝑠. + 𝑄𝑙𝑖𝑔ℎ𝑡 + 𝑄occc𝑢𝑝 + 𝑄𝑒𝑞𝑢𝑖𝑝 + 𝑄𝑖𝑛𝑓𝑖𝑙+ 𝑄𝑣𝑒𝑛𝑡.
= 14.99 KW =4.28 TR
Cooling loads calculation 3
B) Technical Method
Using REVIT program to calculate cooling loads
the program performs the following tasks:
• Calculates design cooling loads for zones
• Determines required supply and return airflow flow rates for zones
Cooling loads calculation 3
SketchUp
First
SketchUp creates and the
building geometry in REVIT
and gives the defining for
each zone
Second
separate the departments
into spaces and collect spaces
to zones
Such as OP-Z1 and we do
that for all the building
Cooling loads calculation 3
Cooling loads calculation 3
Cooling loads calculation 3
REVIT input data
2.8m
The modified data done according to ASHRAE
Cooling loads calculation 3
R e s u l t s
Cooling loads calculation 3
Cooling loads calculation 3
Validation
Load (Kw) Manual method Technical method
Total load 15 15.48
Ventilation load 6.657 6.859
Error = 3.2%
Which of these methods is preferred ……..??????
Technical method is better than manual method due to
1- The manual method takes all the loads at the same time
2- other consideration like fan heat
Duct design 4
conduits or passages used in ventilation, and air
conditioning (HVAC) to deliver and remove air
Figure shows galvanized iron material that is used in
ducts design for this work because its availability ,
corrosion resistance and lowest cost.
Duct design 4
Duct work
Types of ducts
Rectangular or square
Round
Flexible
Flexible
Round rectangular
Duct design 4
fibrous glass material used to
isolate duct for many purpose
such as thermal insulation and
protection duct from corrosion
Duct insulation
Duct Design Procedures
Duct design 4
1. Selection the
dimension of air
outlet(diffusers)
according to flow rate
of air in each room
2. Selection the type of
duct
3. Duct calculation
Duct design 4
Selection the diffuser
For OP-Z1 m. air= 406 L/s
Type of duct is rectangular
Duct design 4
By knowing the flow rate of room
and recommended velocity using
DUCT SIZER to calculate the
losses and duct size
Velocity 500-700 fpm
Duct size 350 x 350
Friction 0.399 pa/m
Duct sizer
Duct design 4
Duct fitting losses calculating by
ASHRAE DUCT FITTIND DATA BASE
Duct design 4
Duct and pipe design 4 REVIT design
Duct design 4
REVIT duct result
Duct design 4
Exhaust duct
Exhaust duct criteria
1- Exhaust grill should be
70 mm above floor
according to ASHRAE
application
2- exhaust flow depend
on the pressure of
rooms
Duct design 4
Duct accessories
Balancing damper
To control the flow rate reducing or
increasing the airflow depending upon
conditions
HEPA filter
Efficiency of HEPA filter reach
to 99.997%
Pressure loss reach to 249 pa
Duct design 4
Filter Design Factors
1. Degree of air cleanliness required.
2. Particulate/contaminate size and form (solid or aerosols).
4. Cost (initial and maintenance).
5. Space requirements.
6. Pressure loss/energy use.
FILTERS
To eliminate particles
Duct design 4
Duct design 4
Duct design 4
After drawing and calculating
duct the main ducts detail
Roof top fan units Actual flow rate
(m3/s)
Actual Pressure
drop (Pa)
Mechanical supply
air (1)
1.056 123.64
Mechanical supply
air (2)
1.08 314.67
Mechanical
supply air (3)
1.9274 334.62
Mechanical supply
air (4)
3.04 772.7
Mechanical supply
air (5)
0.9795 116.3
Mechanical supply
air (6)
1.1859 342
Mechanical exhaust
air (1)
2.8107 349
Mechanical exhaust
air (2)
1.9485 255.5
Mechanical exhaust
air (3)
1.7505 276
Duct design 4
Selection of the fans
The following must be considered when selecting a suitable fan:
Desired air volume
Required pressure loss
Roof top fan
units
Actual flow
rate (m3/s)
Actual
Pressure
drop (Pa)
Model standar
d flow
rate
(m3/s)
Standar
d
Pressur
e drop
(Pa)
Mechanical
supply air (1)
1.056 123.64 MUB 042450
EC-A2
1.41 250
Mechanical
supply air (2)
1.08 314.67 MUB 042450
EC-A2
1.75 560
Mechanical
supply air (3)
1.9274 334.62 MUB 062560
EC-A2
3 540
Mechanical
supply air (4)
3.04 772.7 MUB 062630
D4-A2 IE2
3.89 790
Mechanical
supply air (5)
0.9795 116.3 MUB 042450
EC-A2
1.75 600
Mechanical
supply air (6)
1.1859 342 MUB 042450
EC-A2
1.75 430
Mechanical
exhaust air (1)
2.8107 349 MUB 062630
D4-A2 IE2
3.63 660
Mechanical
exhaust air (2)
1.9485 255.5 MUB 062560
EC-A2
3 500
Mechanical
exhaust air (3)
1.7505 276 MUB 062560
EC-A2
3 550
Duct design 4
A B
Pipe design 5
Piping system used to convey water to
FCU and AHU
In a chilled water system, water is first cooled
in the water chiller the evaporator of
reciprocating, screw, or centrifugal refrigeration
system located in a centralized plant to a
temperature of (6 °C). It is then pumped to the
water cooling coils in AHUs and FCUs.
After flowing through the coils, the chilled water
increases in temperature up to (12 C ) and then returns to
the chiller
Pipe design 5
Pipe design 5
Type of Piping system
a closed system is one in which the flow of water is not exposed
to the atmosphere at any point.
Two-Pipe Direct Return System
Closed system
Piping Material
Steel- Schedule 40
Manual calculation
Pipe design 5
Section Component Diameter
(mm)
Flow
rate
(kg/s)
Velocity
)m/s)
Equivalent
length
(mm)
NO. of
component
Total
length
(mm
)
P
∆
(pa/m)
P
∆
)pa)
Sect. 1 Pipe 32 2.37 2.46 ‫ــــــــــــ‬ ‫ــــــــــــ‬ 1.1 2000 10200
Elbow 1 2 2
Tee 2 1 2
Total ‫ــــــــــــ‬ ‫ــــــــــــ‬ 5.1
Sect. 2 Pipe 32 1.79 1.85 ‫ــــــــــــ‬ ‫ــــــــــــ‬ 3.2 1200 6240
Tee 2 1 2
Total ‫ــــــــــــ‬ ‫ــــــــــــ‬ 5.2
Sect. 3 Pipe 20 .74 2.15 ‫ــــــــــــ‬ ‫ــــــــــــ‬ 14 3000 87300
Tee 1.2 1 1.2
Elbow 0.6 12 7.2
Pall valve 6.7 1 6.7
Total ‫ــــــــــــ‬ ‫ــــــــــــ‬ 29.1
A.H.U.01 6880
Sect. 4 Pipe 32 1.79 1.85 ‫ــــــــــــ‬ ‫ــــــــــــ‬ 3.2 1200 6240
Tee 2 1 2
Total ‫ــــــــــــ‬ ‫ــــــــــــ‬ 5.2
TOTAL 116860
Pipe design 5
Result of manual
calculation
Pipe design 5
Pipe flow wizard program
Input Data
Output data
Pipe design 5
REVIT drawing and calculating
First draw pipe and indicate
if it supply or return
Second insert the flow water
for AHU or FCU and the
pressure drop for each AHU
or FCU
Pipe design 5
Inserting data to FCU
or AHU based on
catalogs
ሶ
𝒎 =
𝑸𝒄𝒄
𝑪𝒑ሺ𝑻𝒊𝒏 −𝑻𝒐𝒖𝒕 )
(kg/s)
Water flow calculated
by this equation
𝐶𝑝= 4.186 k J/ kg °C
𝑇𝑜𝑢𝑡= 12 0 C 𝑇𝑖𝑛 = 7 oC
For FCU01 the zone load 𝑸𝒄𝒄= 8.688kw …. ሶ
𝒎 = 0.415 L/s
F.C.U. Spaces Q(W) V(L/s) mw(L/s)
F.C.U. 01 • Break 3
• Break 4
• Break 5
8688 416.8 0.4151
F.C.U. 02 • Break 1
• Break 2
• Store NR break
11651 557.6 0.55667
F.C.U. 03 • Monitoring 9967 309.6 0..47621
F.C.U. 04 • Dressing NR STR 4659 244.3 0.2226
F.C.U. 05 • Fixing NR STR
• Sub NR STR
6904 241 0.32986
F.C.U. 06 • Sub way 01 9621 470.1 0.45968
F.C.U. 07 • Sub way 02 4089 159.1 0.19537
F.C.U. 08 • Sub way 03 10204 400.7 0.48753
F.C.U. 09 • Replacing dressing zone 6831 321 0.3264
F.C.U. 10 • Replacing NR CATH 7284 347.3 0.348
F.C.U. 11 • ICU services rooms 6242 313.15 0.29823
F.C.U. 12 • CATH services rooms 3984 342.17 0.19
F.C.U. 13 • Services room
• Electric room
• Hall with stair
12556 464 0.59991
F.C.U. 14 • Replacing zone 11052 396.5 0.528
Pipe design 5
A.H.U. Spaces Q(W) V(L/s) mw(L/s)
A.H.U. 01 • OP-Z1 15485 405.4 0.73985
A.H.U. 02 • OP-Z2 12230 423.5 0.58433
A.H.U. 03 • OP-Z3 13847 414.1 0.661586
A.H.U. 04 • OP-Z4 7689 344.9 0.36737
A.H.U. 05 • OP-Z5 18195 616.7 0.86933
A.H.U. 06 • I.C.U. 31777 876.75 1.5183
A.H.U. 07 • Cath heart zone
• PR-zone 2
33535 1118.03 1.6022
A.H.U. 08 • Cath zone
• Dirt unit
17100 673.63 0.817
A.H.U. 09 • Stylization 37330 1225.6 1.78356
A.H.U. 10 • Recovery zone 9831 314.1 0.46971
A.H.U. 11 • Store 1-OP
• Store 2-OP
• Prep. -R- OP
• Hall near-OP
22043 815 1.0532
Pipe design 5
Pipe design 5
Pipe accessories
Pressure gauge (on chiller)
Temperature gauge
Gate valve
Pressure regulating valve
Butterfly valve
Balancing valve
Strainer
Pipe design 5
Air separator is removing the air from pipes system because air
create noise in the system and causes corrosion in pump
impellers.
Air Separator
Expansion tank
Expansion tanks are required in a closed loop chilled water
HVAC system to absorb the expanding fluid and limit the
pressure within a cooling system
Pipe design 5
Results of pipe calculating
Diameter of main pipe = 100 mm
Flow = 16.7 L/s
Return pressure loss= 4.18 bar
Supply pressure = 3.8 bar
Supply
Return
Pipe design 5
Pump Sizing
centrifugal pump designs which are the most common
types used in comfort air conditioning.
∆𝒑 = 𝜌𝑔ℎ
Total pressure drop = 7.98 bar
ℎ = 81.34 𝑚
Flow rate = 16.7 L/s
Pipe design 5
Pump selection
Terminal units 6
Fan-Coil Unit
fan-coil units used to control the volume and
temperature of air delivered to the space as required to
maintain occupant thermal comfort and/or ventilation.
the basic components of fan-coil units are a cooling
coil, filter, fan, and temperature control device
Terminal units 6
In our project we
used 14 FCU
According to loads
F.C.U. Spaces Q(W) V(L/s) mw(L/s)
F.C.U. 01 • Break 3
• Break 4
• Break 5
8688 416.8 0.4151
F.C.U. 02 • Break 1
• Break 2
• Store NR break
11651 557.6 0.55667
F.C.U. 03 • Monitoring 9967 309.6 0..47621
F.C.U. 04 • Dressing NR STR 4659 244.3 0.2226
F.C.U. 05 • Fixing NR STR
• Sub NR STR
6904 241 0.32986
F.C.U. 06 • Sub way 01 9621 470.1 0.45968
F.C.U. 07 • Sub way 02 4089 159.1 0.19537
F.C.U. 08 • Sub way 03 10204 400.7 0.48753
F.C.U. 09 • Replacing dressing
zone
6831 321 0.3264
F.C.U. 10 • Replacing NR CATH 7284 347.3 0.348
F.C.U. 11 • ICU services rooms 6242 313.15 0.29823
F.C.U. 12 • CATH services rooms 3984 342.17 0.19
F.C.U. 13 • Services room
• Electric room
• Hall with stair
12556 464 0.59991
F.C.U. 14 • Replacing zone 11052 396.5 0.528
Terminal units 6
Selection of FCU from catalogs
For FCU01 with load 8.688 Kw and flow 416 L/s
475 L/s
Terminal units 6
enclosed assembly consisting of a
fan or fans and other necessary
equipment to perform one or more
of the functions of circulating,
cleaning, cooling, humidifying,
dehumidifying.
Terminal units 6
The AHU is used to control the
following parameters of the space.
•Temperature
•Humidity
•Air Movement
•Air Cleanliness
Components of Air Handling Unit
Housing
Fan
Cooling Coil
Filters
Terminal units 6
Selection AHU criteria
load
flow rate
AHU 11 with 22.043 Kw and 815 L/s
Terminal units 6
A.H.U. Spaces Q(W) V(L/s) mw(L/s)
A.H.U. 01 • OP-Z1 15485 405.4 0.73985
A.H.U. 02 • OP-Z2 12230 423.5 0.58433
A.H.U. 03 • OP-Z3 13847 414.1 0.661586
A.H.U. 04 • OP-Z4 7689 344.9 0.36737
A.H.U. 05 • OP-Z5 18195 616.7 0.86933
A.H.U. 06 • I.C.U. 31777 876.75 1.5183
A.H.U. 07 • Cath heart zone
• PR-zone 2
33535 1118.03 1.6022
A.H.U. 08 • Cath zone
• Dirt unit
17100 673.63 0.817
A.H.U. 09 • Stylization 37330 1225.6 1.78356
A.H.U. 10 • Recovery zone 9831 314.1 0.46971
A.H.U. 11 • Store 1-OP
• Store 2-OP
• Prep. -R- OP
• Hall near-OP
22043 815 1.0532
Absorption chiller 8
Absorption chiller 8
Selection of
absorption chiller
Absorption chiller 8
Characteristics of different solar collectors (for solar cooling purposes)
Absorption chiller 8
Absorption chiller 8
Efficiency of evacuated
tube
Thermann TH-30 Collector Specification Source:[ Apricus ,technical manual, March2014]
Absorption chiller 8
Absorption chiller 8
𝑨𝑪 =
𝑸𝑺
𝛈𝐬𝐨𝐥𝐚𝐫 𝐈𝐦𝐚𝐱
𝑨𝒄 = 𝒏𝑨𝒆 → 𝒏 =
𝑨𝒄
𝑨𝒆
Result
Item
369 kW
Qe
473.1 kW
Qg
333.2 Kw
Qs
504.9 𝑚2
Ac
792 𝑚2
Ag
180
Number of collector
5400
Number of tube
Absorption chiller 8
Type Size (mmXmm) No. Cost of unit $ Total Cost
Supply diffuser 600X600 10 55 550
Supply diffuser 450X450 82 55 4510
Return diffuser 450X450 45 55 2475
Exhaust grille 600X600 3 55 165
Exhaust grille 400X400 26 55 1430
Exhaust grille 300X300 4 55 220
TOTAL COST 170 9350
Cost of diffusers and grilles
F.C.U Actual Load (TR) standard Load
(TR)
Cost $
F.C.U. 01 2.4823 2.5 1875
F.C.U. 02 3.329 3.5 2625
F.C.U. 03 2.85 3 2250
F.C.U. 04 1.33 1.5 1125
F.C.U. 05 1.973 2 1500
F.C.U. 06 2.749 3 2250
F.C.U. 07 1.1683 1.5 1125
F.C.U. 08 2.915 3 2250
F.C.U. 09 1.952 2 1500
F.C.U. 10 2.08 2 1500
F.C.U. 11 1.7834 2 1500
F.C.U. 12 1.1383 1.5 1125
F.C.U. 13 3.5874 3.5 2625
F.C.U. 14 3.1577 3.5 2625
TOTAL COST 25875
Cost of F.C.U.
A.H.U. Actual Load
(TR)
Standard
Load (TR)
Cost $
A.H.U. 01 4.4243 4.5 6300
A.H.U. 02 3.494 3.5 4900
A.H.U. 03 3.9563 4 5600
A.H.U. 04 2.197 2.5 3500
A.H.U. 05 5.1986 5.5 7700
A.H.U. 06 9.08 9 12600
A.H.U. 07 10.153 10.5 14700
A.H.U. 08 4.886 5 7000
A.H.U. 09 10.666 11 15400
A.H.U. 10 2.81 3 4200
A.H.U. 11 6.298 6.5 9100
TOTAL COST 91000
Cost of A.H.U.
Duct every 1 m2
28 $
Total= 54000 $
Chiller every 1 TR 1700$ Total= 166600 $
Solar collector every piece 1200 $ Total=216000 $
Recommendations 8.2
▪ Using REVIT MEB for calculating load is effective most of things
considered in it .
▪ Using REVIT MEB for calculating duct and pipe losses is very
effective.
▪ Any one Using REVIT MEB should be precise in inserting data to
program from standards books for getting proper cooling loads
and losses .
THANKS FOR ATTENTION
1 de 76

Recomendados

Aircon design volvo bus por
Aircon design volvo busAircon design volvo bus
Aircon design volvo busAllen Brian Libranda
272 visualizações5 slides
final presentation edit.pptx por
final presentation edit.pptxfinal presentation edit.pptx
final presentation edit.pptxssuser0ee912
5 visualizações107 slides
RUDRA 7 portfolio por
RUDRA 7 portfolioRUDRA 7 portfolio
RUDRA 7 portfolioRudrayya Yaragambalimath
169 visualizações21 slides
CIBSE Yorkshire 2014 - Public Pool CPD by Menerga por
CIBSE Yorkshire 2014 - Public Pool CPD by MenergaCIBSE Yorkshire 2014 - Public Pool CPD by Menerga
CIBSE Yorkshire 2014 - Public Pool CPD by MenergaCIBSE_Yorkshire
1.6K visualizações80 slides
Eco cooling por
Eco cooling Eco cooling
Eco cooling JISC RSC Eastern
1.1K visualizações36 slides
General Sales Brochure 2016 por
General Sales Brochure 2016General Sales Brochure 2016
General Sales Brochure 2016Alan Beresford
82 visualizações15 slides

Mais conteúdo relacionado

Similar a Design HVAC System for Hospital

Pinnacle sunway services por
Pinnacle sunway services Pinnacle sunway services
Pinnacle sunway services Celine Tan
5.2K visualizações136 slides
Ae4 Final Report por
Ae4 Final ReportAe4 Final Report
Ae4 Final ReportRyan Brown
191 visualizações84 slides
odunlami prese_033552.pptx por
odunlami prese_033552.pptxodunlami prese_033552.pptx
odunlami prese_033552.pptxAgohaChinonso
2 visualizações26 slides
Vapor Compression Refrigeration System por
Vapor Compression Refrigeration System Vapor Compression Refrigeration System
Vapor Compression Refrigeration System Abduljalil Al-Abidi
705 visualizações54 slides
Introduction-to-HVAC.pdf por
Introduction-to-HVAC.pdfIntroduction-to-HVAC.pdf
Introduction-to-HVAC.pdfRagu Muthukumar MSc BS Eng MCIBSE MASHRAE
74 visualizações83 slides
PERFORMANCE ANALYSIS OF CAR RADIATOR por
PERFORMANCE ANALYSIS OF CAR RADIATORPERFORMANCE ANALYSIS OF CAR RADIATOR
PERFORMANCE ANALYSIS OF CAR RADIATORIRJET Journal
11 visualizações8 slides

Similar a Design HVAC System for Hospital (20)

Pinnacle sunway services por Celine Tan
Pinnacle sunway services Pinnacle sunway services
Pinnacle sunway services
Celine Tan5.2K visualizações
Ae4 Final Report por Ryan Brown
Ae4 Final ReportAe4 Final Report
Ae4 Final Report
Ryan Brown191 visualizações
odunlami prese_033552.pptx por AgohaChinonso
odunlami prese_033552.pptxodunlami prese_033552.pptx
odunlami prese_033552.pptx
AgohaChinonso2 visualizações
Vapor Compression Refrigeration System por Abduljalil Al-Abidi
Vapor Compression Refrigeration System Vapor Compression Refrigeration System
Vapor Compression Refrigeration System
Abduljalil Al-Abidi705 visualizações
PERFORMANCE ANALYSIS OF CAR RADIATOR por IRJET Journal
PERFORMANCE ANALYSIS OF CAR RADIATORPERFORMANCE ANALYSIS OF CAR RADIATOR
PERFORMANCE ANALYSIS OF CAR RADIATOR
IRJET Journal11 visualizações
Project portfolio por iliyasahmamt
Project portfolioProject portfolio
Project portfolio
iliyasahmamt120 visualizações
HVAC Mini project review.pptx por College
HVAC Mini project review.pptxHVAC Mini project review.pptx
HVAC Mini project review.pptx
College1.4K visualizações
Final report on spent solution in hydro por prateekj765
Final report on spent solution in hydroFinal report on spent solution in hydro
Final report on spent solution in hydro
prateekj765799 visualizações
Cooling tower por Mostafa Nassar
Cooling tower Cooling tower
Cooling tower
Mostafa Nassar166 visualizações
5 Steps to Achieve More CostEffective Aminebased Carbon Capture Processes at ... por NazrulIslam657555
5 Steps to Achieve More CostEffective Aminebased Carbon Capture Processes at ...5 Steps to Achieve More CostEffective Aminebased Carbon Capture Processes at ...
5 Steps to Achieve More CostEffective Aminebased Carbon Capture Processes at ...
NazrulIslam65755520 visualizações
Active Chilled Beam Technology por Illinois ASHRAE
Active Chilled Beam TechnologyActive Chilled Beam Technology
Active Chilled Beam Technology
Illinois ASHRAE9K visualizações
Chapter4.pdf por karunagrawal2
Chapter4.pdfChapter4.pdf
Chapter4.pdf
karunagrawal2133 visualizações
Energy transfer and heat load analysis por Satwinder Singh
Energy transfer and heat load analysisEnergy transfer and heat load analysis
Energy transfer and heat load analysis
Satwinder Singh955 visualizações
Development of a Bench-Top Air-to-Water Heat Pump Experimental Apparatus por CSCJournals
Development of a Bench-Top Air-to-Water Heat Pump Experimental ApparatusDevelopment of a Bench-Top Air-to-Water Heat Pump Experimental Apparatus
Development of a Bench-Top Air-to-Water Heat Pump Experimental Apparatus
CSCJournals181 visualizações
Crac precision climate_control_units_for_data_centres por Eeu SC
Crac precision climate_control_units_for_data_centresCrac precision climate_control_units_for_data_centres
Crac precision climate_control_units_for_data_centres
Eeu SC207 visualizações
Mechanical Engineering Seminar 2017_3 por Nicholas Naing
Mechanical Engineering Seminar 2017_3Mechanical Engineering Seminar 2017_3
Mechanical Engineering Seminar 2017_3
Nicholas Naing315 visualizações
Experimentation on heat pipe and cfd analysis for performance enhancement por eSAT Journals
Experimentation on heat pipe and cfd analysis for performance enhancementExperimentation on heat pipe and cfd analysis for performance enhancement
Experimentation on heat pipe and cfd analysis for performance enhancement
eSAT Journals163 visualizações
Experimentation on heat pipe and cfd analysis for performance enhancement por eSAT Journals
Experimentation on heat pipe and cfd analysis for performance enhancementExperimentation on heat pipe and cfd analysis for performance enhancement
Experimentation on heat pipe and cfd analysis for performance enhancement
eSAT Journals371 visualizações

Último

Control Systems Feedback.pdf por
Control Systems Feedback.pdfControl Systems Feedback.pdf
Control Systems Feedback.pdfLGGaming5
6 visualizações39 slides
Effect of deep chemical mixing columns on properties of surrounding soft clay... por
Effect of deep chemical mixing columns on properties of surrounding soft clay...Effect of deep chemical mixing columns on properties of surrounding soft clay...
Effect of deep chemical mixing columns on properties of surrounding soft clay...AltinKaradagli
6 visualizações10 slides
NEW SUPPLIERS SUPPLIES (copie).pdf por
NEW SUPPLIERS SUPPLIES (copie).pdfNEW SUPPLIERS SUPPLIES (copie).pdf
NEW SUPPLIERS SUPPLIES (copie).pdfgeorgesradjou
15 visualizações30 slides
802.11 Computer Networks por
802.11 Computer Networks802.11 Computer Networks
802.11 Computer NetworksTusharChoudhary72015
10 visualizações33 slides
SPICE PARK DEC2023 (6,625 SPICE Models) por
SPICE PARK DEC2023 (6,625 SPICE Models) SPICE PARK DEC2023 (6,625 SPICE Models)
SPICE PARK DEC2023 (6,625 SPICE Models) Tsuyoshi Horigome
24 visualizações218 slides
Investigation of Physicochemical Changes of Soft Clay around Deep Geopolymer ... por
Investigation of Physicochemical Changes of Soft Clay around Deep Geopolymer ...Investigation of Physicochemical Changes of Soft Clay around Deep Geopolymer ...
Investigation of Physicochemical Changes of Soft Clay around Deep Geopolymer ...AltinKaradagli
9 visualizações16 slides

Último(20)

Control Systems Feedback.pdf por LGGaming5
Control Systems Feedback.pdfControl Systems Feedback.pdf
Control Systems Feedback.pdf
LGGaming56 visualizações
Effect of deep chemical mixing columns on properties of surrounding soft clay... por AltinKaradagli
Effect of deep chemical mixing columns on properties of surrounding soft clay...Effect of deep chemical mixing columns on properties of surrounding soft clay...
Effect of deep chemical mixing columns on properties of surrounding soft clay...
AltinKaradagli6 visualizações
NEW SUPPLIERS SUPPLIES (copie).pdf por georgesradjou
NEW SUPPLIERS SUPPLIES (copie).pdfNEW SUPPLIERS SUPPLIES (copie).pdf
NEW SUPPLIERS SUPPLIES (copie).pdf
georgesradjou15 visualizações
SPICE PARK DEC2023 (6,625 SPICE Models) por Tsuyoshi Horigome
SPICE PARK DEC2023 (6,625 SPICE Models) SPICE PARK DEC2023 (6,625 SPICE Models)
SPICE PARK DEC2023 (6,625 SPICE Models)
Tsuyoshi Horigome24 visualizações
Investigation of Physicochemical Changes of Soft Clay around Deep Geopolymer ... por AltinKaradagli
Investigation of Physicochemical Changes of Soft Clay around Deep Geopolymer ...Investigation of Physicochemical Changes of Soft Clay around Deep Geopolymer ...
Investigation of Physicochemical Changes of Soft Clay around Deep Geopolymer ...
AltinKaradagli9 visualizações
Introduction to CAD-CAM.pptx por suyogpatil49
Introduction to CAD-CAM.pptxIntroduction to CAD-CAM.pptx
Introduction to CAD-CAM.pptx
suyogpatil495 visualizações
Digital Watermarking Of Audio Signals.pptx por AyushJaiswal781174
Digital Watermarking Of Audio Signals.pptxDigital Watermarking Of Audio Signals.pptx
Digital Watermarking Of Audio Signals.pptx
AyushJaiswal78117412 visualizações
DESIGN OF SPRINGS-UNIT4.pptx por gopinathcreddy
DESIGN OF SPRINGS-UNIT4.pptxDESIGN OF SPRINGS-UNIT4.pptx
DESIGN OF SPRINGS-UNIT4.pptx
gopinathcreddy19 visualizações
MK__Cert.pdf por Hassan Khan
MK__Cert.pdfMK__Cert.pdf
MK__Cert.pdf
Hassan Khan10 visualizações
What is Unit Testing por Sadaaki Emura
What is Unit TestingWhat is Unit Testing
What is Unit Testing
Sadaaki Emura23 visualizações
Instrumentation & Control Lab Manual.pdf por NTU Faisalabad
Instrumentation & Control Lab Manual.pdfInstrumentation & Control Lab Manual.pdf
Instrumentation & Control Lab Manual.pdf
NTU Faisalabad 5 visualizações
fakenews_DBDA_Mar23.pptx por deepmitra8
fakenews_DBDA_Mar23.pptxfakenews_DBDA_Mar23.pptx
fakenews_DBDA_Mar23.pptx
deepmitra814 visualizações
Activated sludge process .pdf por 8832RafiyaAltaf
Activated sludge process .pdfActivated sludge process .pdf
Activated sludge process .pdf
8832RafiyaAltaf9 visualizações
Generative AI Models & Their Applications por SN
Generative AI Models & Their ApplicationsGenerative AI Models & Their Applications
Generative AI Models & Their Applications
SN8 visualizações
sam_software_eng_cv.pdf por sammyigbinovia
sam_software_eng_cv.pdfsam_software_eng_cv.pdf
sam_software_eng_cv.pdf
sammyigbinovia5 visualizações
Literature review and Case study on Commercial Complex in Nepal, Durbar mall,... por AakashShakya12
Literature review and Case study on Commercial Complex in Nepal, Durbar mall,...Literature review and Case study on Commercial Complex in Nepal, Durbar mall,...
Literature review and Case study on Commercial Complex in Nepal, Durbar mall,...
AakashShakya1272 visualizações
Object Oriented Programming with JAVA por Demian Antony D'Mello
Object Oriented Programming with JAVAObject Oriented Programming with JAVA
Object Oriented Programming with JAVA
Demian Antony D'Mello140 visualizações
Saikat Chakraborty Java Oracle Certificate.pdf por SaikatChakraborty787148
Saikat Chakraborty Java Oracle Certificate.pdfSaikat Chakraborty Java Oracle Certificate.pdf
Saikat Chakraborty Java Oracle Certificate.pdf
SaikatChakraborty78714815 visualizações

Design HVAC System for Hospital

  • 1. DESIGN OF HVAC SYSTEM FOR FIRST FLOOR FOR SCIENCE AND TECHNOLOGY HOSPITAL Sana’a University – faculty of engineering-mechanical engineering Team: MOHAMMED HABEB ADEB HASAN MOHAMMED AL-GAORI MOATH RADMAN Supervised by: DR. ABDULJALIL AL-ABIDI
  • 2. Introduction 1 Cooling load calculation 4 Building description 3 Duct design 5 Conclusions &Recommendations 9 Outline : Pipe design 6 Terminal units 7 Problem statement 2 Absorption chiller 8
  • 3. Heating, ventilation, and air conditioning (HVAC) is the technology of indoor environmental comfort. Its goal is to provide thermal comfort and acceptable indoor air quality. ... It is one of the most important factors for maintaining acceptable indoor air quality in buildings 0 20 40 60 80 100 120 44% of a commercial building’s energy consumption is attributed to HVAC systems Introduction 1 w w w . b l u e h a t m e c h a n i c a l . c o m
  • 4. Hospital buildings are very important building and one of the few types of building that run at full scale twenty four hours a day, so they need to make HVAC system to maintain the temperature, air quality, airflow and humidity to create the most comfortable environment possible for the patients and to control hazards and control of infection, removal of odors and bacteria Introduction 1
  • 5. In practice, HVAC of hospital depend on air conditioning system configuration and design parameters selection and this based on knowledge, experience, and skill of system designer and using of standards Introduction 1
  • 6. HVAC for hospital is a little different due to The parameter for each room and department Introduction 1
  • 7. Problem statement 2 h t t p s : / / w w w. hy d ro l - e a r t h - sy s t - s c i . n e t / 1 7 / 3 9 3 7 / 2 0 1 3 / Due Hot temperature climate in Yemen Importance of Air conditioning system for hospitals
  • 8. • Air-conditioning system in Yemen depend on air-conditioning using compressor • large amount of electrical power required • the cost of electrical energy at Yemen increased • missing the local grid and the increasing of fuel cost • The using of solar cooling is necessary for energy saving Problem statement 2
  • 9. Building description 2 - Location (15.35°N) (44.27°E) - First floor - Area = 1970 m2 Thickness (mm) K W /m.°C Layer 150 1.05 Soft stone 20 1.2 Cement concrete 200 1 Block cement 20 1.2 Cement plaster 10 2.9 Ceramic Components of External Wall
  • 10. Building description 2 ` ICU Sterilization Operation rooms Cardiac Operation room department Sterilization ICU Cardiac department Recovery room Dressing rooms Break rooms
  • 11. Cooling loads calculation 3 There are two methods used for loads calculations B) Technical Method A) Manual Method
  • 12. DB Temperature 21°C Relative humidity 50% Pressure Positive Exhaust air 200-400 cfm less than supply Ventilation 15-20 ACH Operation room parameters Cooling loads calculation 3 taking operation room 1 (OP-Z1) with 35 m2 and 2.8m height as sample, which is located in the SE and NE of building.
  • 13. Overall heat transfer coefficient for walls U=1.787 w/m2 .C. 𝑅𝑡ℎ = 1 𝑈𝑤 = 𝑅𝑖 + ෍ 𝑗=1 𝑛 𝑥𝑗 𝑘𝑗 + 𝑅𝑜 A) Manual Method Overall heat transfer coefficient for windows U=5.097w/m2 .C. Outside design condition: 30.20 C Db. Inside design condition: 210C Db and 50% RH. Occupancy: 5m2/person=7 people with sensible heat gain 82 W/person, and latent heat gain 79 W/person Lights: 17 W/m2 of floor area. Equipment: 110 W/m2. Cooling loads calculation 3
  • 14. 1 2 3 4 𝑇𝑜𝑚 = 𝑇𝑜 − 𝐷𝑅 2 = 23.75 𝐶𝐿𝑇𝐷𝑐𝑜𝑟𝑟 = 𝐶𝐿𝑇𝐷 − 𝐿𝑀 𝐾 + 25.5 − 𝑇𝑖 + 𝑇𝑂,𝑚 − 29.4 𝑓 𝑄𝑠𝑜𝑙𝑎𝑟 = 𝐴𝑈ሺ𝐶𝐿𝑇𝐷𝑐𝑜𝑟𝑟) = 705.7 𝑊 𝑄𝑙𝑖𝑔ℎ𝑡 = 𝑄 𝑊 𝑚2 𝐴 = 581 𝑊 𝑄𝑜𝑐𝑐𝑢𝑝. = 𝑄𝑆𝐻 + 𝑄𝐿𝐻 = 956 w ൯ 𝑄𝑒𝑞𝑢𝑖𝑝. = 𝑄 Τ 𝑤 𝑚2 ∗ 𝐴 𝑚2 = 3850 𝑊 5 𝑄𝑡𝑟𝑎𝑛𝑠 = 𝐴 𝑆𝐻𝐺𝐹 𝐶𝐿𝐹 𝑆𝐶 = 2227.2 W Cooling loads calculation 3
  • 15. Q inf il =mf(hi __ho) =27.6 W 6 Qv=( 𝑉𝑓 𝑣𝑜 ) *(ho-hi) =6650 W 7 The Total Heat Gain 𝑄𝑡𝑜𝑡𝑎𝑙 = 𝑄𝑠𝑜𝑙𝑎𝑟 𝑒𝑓𝑓𝑒𝑐𝑡𝑠 + 𝑄𝑡𝑟𝑎𝑛𝑠 + 𝑄𝑙𝑖𝑔ℎ𝑡 + 𝑄𝑜𝑐𝑐𝑢𝑝 + 𝑄𝑒𝑞𝑢𝑖𝑝 + 𝑄𝑖𝑛𝑓𝑖𝑙+ =8.34 KW =2.385 TR The Total coil load 𝑄𝑡𝑜𝑡𝑎𝑙 = 𝑄𝑠𝑜𝑙𝑎𝑟 𝑒𝑓𝑓𝑒𝑐𝑡𝑠 + 𝑄𝑡𝑟𝑎𝑛𝑠. + 𝑄𝑙𝑖𝑔ℎ𝑡 + 𝑄occc𝑢𝑝 + 𝑄𝑒𝑞𝑢𝑖𝑝 + 𝑄𝑖𝑛𝑓𝑖𝑙+ 𝑄𝑣𝑒𝑛𝑡. = 14.99 KW =4.28 TR Cooling loads calculation 3
  • 16. B) Technical Method Using REVIT program to calculate cooling loads the program performs the following tasks: • Calculates design cooling loads for zones • Determines required supply and return airflow flow rates for zones Cooling loads calculation 3
  • 17. SketchUp First SketchUp creates and the building geometry in REVIT and gives the defining for each zone Second separate the departments into spaces and collect spaces to zones Such as OP-Z1 and we do that for all the building Cooling loads calculation 3
  • 19. Cooling loads calculation 3 REVIT input data 2.8m The modified data done according to ASHRAE
  • 21. R e s u l t s Cooling loads calculation 3
  • 22. Cooling loads calculation 3 Validation Load (Kw) Manual method Technical method Total load 15 15.48 Ventilation load 6.657 6.859 Error = 3.2% Which of these methods is preferred ……..?????? Technical method is better than manual method due to 1- The manual method takes all the loads at the same time 2- other consideration like fan heat
  • 23. Duct design 4 conduits or passages used in ventilation, and air conditioning (HVAC) to deliver and remove air Figure shows galvanized iron material that is used in ducts design for this work because its availability , corrosion resistance and lowest cost.
  • 24. Duct design 4 Duct work Types of ducts Rectangular or square Round Flexible Flexible Round rectangular
  • 25. Duct design 4 fibrous glass material used to isolate duct for many purpose such as thermal insulation and protection duct from corrosion Duct insulation
  • 26. Duct Design Procedures Duct design 4 1. Selection the dimension of air outlet(diffusers) according to flow rate of air in each room 2. Selection the type of duct 3. Duct calculation
  • 27. Duct design 4 Selection the diffuser For OP-Z1 m. air= 406 L/s Type of duct is rectangular
  • 28. Duct design 4 By knowing the flow rate of room and recommended velocity using DUCT SIZER to calculate the losses and duct size Velocity 500-700 fpm Duct size 350 x 350 Friction 0.399 pa/m Duct sizer
  • 29. Duct design 4 Duct fitting losses calculating by ASHRAE DUCT FITTIND DATA BASE
  • 31. Duct and pipe design 4 REVIT design
  • 32. Duct design 4 REVIT duct result
  • 33. Duct design 4 Exhaust duct Exhaust duct criteria 1- Exhaust grill should be 70 mm above floor according to ASHRAE application 2- exhaust flow depend on the pressure of rooms
  • 34. Duct design 4 Duct accessories Balancing damper To control the flow rate reducing or increasing the airflow depending upon conditions
  • 35. HEPA filter Efficiency of HEPA filter reach to 99.997% Pressure loss reach to 249 pa Duct design 4 Filter Design Factors 1. Degree of air cleanliness required. 2. Particulate/contaminate size and form (solid or aerosols). 4. Cost (initial and maintenance). 5. Space requirements. 6. Pressure loss/energy use. FILTERS To eliminate particles
  • 38. Duct design 4 After drawing and calculating duct the main ducts detail Roof top fan units Actual flow rate (m3/s) Actual Pressure drop (Pa) Mechanical supply air (1) 1.056 123.64 Mechanical supply air (2) 1.08 314.67 Mechanical supply air (3) 1.9274 334.62 Mechanical supply air (4) 3.04 772.7 Mechanical supply air (5) 0.9795 116.3 Mechanical supply air (6) 1.1859 342 Mechanical exhaust air (1) 2.8107 349 Mechanical exhaust air (2) 1.9485 255.5 Mechanical exhaust air (3) 1.7505 276
  • 39. Duct design 4 Selection of the fans The following must be considered when selecting a suitable fan: Desired air volume Required pressure loss Roof top fan units Actual flow rate (m3/s) Actual Pressure drop (Pa) Model standar d flow rate (m3/s) Standar d Pressur e drop (Pa) Mechanical supply air (1) 1.056 123.64 MUB 042450 EC-A2 1.41 250 Mechanical supply air (2) 1.08 314.67 MUB 042450 EC-A2 1.75 560 Mechanical supply air (3) 1.9274 334.62 MUB 062560 EC-A2 3 540 Mechanical supply air (4) 3.04 772.7 MUB 062630 D4-A2 IE2 3.89 790 Mechanical supply air (5) 0.9795 116.3 MUB 042450 EC-A2 1.75 600 Mechanical supply air (6) 1.1859 342 MUB 042450 EC-A2 1.75 430 Mechanical exhaust air (1) 2.8107 349 MUB 062630 D4-A2 IE2 3.63 660 Mechanical exhaust air (2) 1.9485 255.5 MUB 062560 EC-A2 3 500 Mechanical exhaust air (3) 1.7505 276 MUB 062560 EC-A2 3 550
  • 41. Pipe design 5 Piping system used to convey water to FCU and AHU In a chilled water system, water is first cooled in the water chiller the evaporator of reciprocating, screw, or centrifugal refrigeration system located in a centralized plant to a temperature of (6 °C). It is then pumped to the water cooling coils in AHUs and FCUs.
  • 42. After flowing through the coils, the chilled water increases in temperature up to (12 C ) and then returns to the chiller Pipe design 5
  • 43. Pipe design 5 Type of Piping system a closed system is one in which the flow of water is not exposed to the atmosphere at any point. Two-Pipe Direct Return System Closed system Piping Material Steel- Schedule 40
  • 45. Section Component Diameter (mm) Flow rate (kg/s) Velocity )m/s) Equivalent length (mm) NO. of component Total length (mm ) P ∆ (pa/m) P ∆ )pa) Sect. 1 Pipe 32 2.37 2.46 ‫ــــــــــــ‬ ‫ــــــــــــ‬ 1.1 2000 10200 Elbow 1 2 2 Tee 2 1 2 Total ‫ــــــــــــ‬ ‫ــــــــــــ‬ 5.1 Sect. 2 Pipe 32 1.79 1.85 ‫ــــــــــــ‬ ‫ــــــــــــ‬ 3.2 1200 6240 Tee 2 1 2 Total ‫ــــــــــــ‬ ‫ــــــــــــ‬ 5.2 Sect. 3 Pipe 20 .74 2.15 ‫ــــــــــــ‬ ‫ــــــــــــ‬ 14 3000 87300 Tee 1.2 1 1.2 Elbow 0.6 12 7.2 Pall valve 6.7 1 6.7 Total ‫ــــــــــــ‬ ‫ــــــــــــ‬ 29.1 A.H.U.01 6880 Sect. 4 Pipe 32 1.79 1.85 ‫ــــــــــــ‬ ‫ــــــــــــ‬ 3.2 1200 6240 Tee 2 1 2 Total ‫ــــــــــــ‬ ‫ــــــــــــ‬ 5.2 TOTAL 116860 Pipe design 5 Result of manual calculation
  • 46. Pipe design 5 Pipe flow wizard program Input Data Output data
  • 47. Pipe design 5 REVIT drawing and calculating First draw pipe and indicate if it supply or return Second insert the flow water for AHU or FCU and the pressure drop for each AHU or FCU
  • 48. Pipe design 5 Inserting data to FCU or AHU based on catalogs ሶ 𝒎 = 𝑸𝒄𝒄 𝑪𝒑ሺ𝑻𝒊𝒏 −𝑻𝒐𝒖𝒕 ) (kg/s) Water flow calculated by this equation 𝐶𝑝= 4.186 k J/ kg °C 𝑇𝑜𝑢𝑡= 12 0 C 𝑇𝑖𝑛 = 7 oC For FCU01 the zone load 𝑸𝒄𝒄= 8.688kw …. ሶ 𝒎 = 0.415 L/s
  • 49. F.C.U. Spaces Q(W) V(L/s) mw(L/s) F.C.U. 01 • Break 3 • Break 4 • Break 5 8688 416.8 0.4151 F.C.U. 02 • Break 1 • Break 2 • Store NR break 11651 557.6 0.55667 F.C.U. 03 • Monitoring 9967 309.6 0..47621 F.C.U. 04 • Dressing NR STR 4659 244.3 0.2226 F.C.U. 05 • Fixing NR STR • Sub NR STR 6904 241 0.32986 F.C.U. 06 • Sub way 01 9621 470.1 0.45968 F.C.U. 07 • Sub way 02 4089 159.1 0.19537 F.C.U. 08 • Sub way 03 10204 400.7 0.48753 F.C.U. 09 • Replacing dressing zone 6831 321 0.3264 F.C.U. 10 • Replacing NR CATH 7284 347.3 0.348 F.C.U. 11 • ICU services rooms 6242 313.15 0.29823 F.C.U. 12 • CATH services rooms 3984 342.17 0.19 F.C.U. 13 • Services room • Electric room • Hall with stair 12556 464 0.59991 F.C.U. 14 • Replacing zone 11052 396.5 0.528 Pipe design 5
  • 50. A.H.U. Spaces Q(W) V(L/s) mw(L/s) A.H.U. 01 • OP-Z1 15485 405.4 0.73985 A.H.U. 02 • OP-Z2 12230 423.5 0.58433 A.H.U. 03 • OP-Z3 13847 414.1 0.661586 A.H.U. 04 • OP-Z4 7689 344.9 0.36737 A.H.U. 05 • OP-Z5 18195 616.7 0.86933 A.H.U. 06 • I.C.U. 31777 876.75 1.5183 A.H.U. 07 • Cath heart zone • PR-zone 2 33535 1118.03 1.6022 A.H.U. 08 • Cath zone • Dirt unit 17100 673.63 0.817 A.H.U. 09 • Stylization 37330 1225.6 1.78356 A.H.U. 10 • Recovery zone 9831 314.1 0.46971 A.H.U. 11 • Store 1-OP • Store 2-OP • Prep. -R- OP • Hall near-OP 22043 815 1.0532 Pipe design 5
  • 51. Pipe design 5 Pipe accessories Pressure gauge (on chiller) Temperature gauge Gate valve Pressure regulating valve Butterfly valve Balancing valve Strainer
  • 52. Pipe design 5 Air separator is removing the air from pipes system because air create noise in the system and causes corrosion in pump impellers. Air Separator Expansion tank Expansion tanks are required in a closed loop chilled water HVAC system to absorb the expanding fluid and limit the pressure within a cooling system
  • 53. Pipe design 5 Results of pipe calculating Diameter of main pipe = 100 mm Flow = 16.7 L/s Return pressure loss= 4.18 bar Supply pressure = 3.8 bar Supply Return
  • 54. Pipe design 5 Pump Sizing centrifugal pump designs which are the most common types used in comfort air conditioning. ∆𝒑 = 𝜌𝑔ℎ Total pressure drop = 7.98 bar ℎ = 81.34 𝑚 Flow rate = 16.7 L/s
  • 55. Pipe design 5 Pump selection
  • 56. Terminal units 6 Fan-Coil Unit fan-coil units used to control the volume and temperature of air delivered to the space as required to maintain occupant thermal comfort and/or ventilation. the basic components of fan-coil units are a cooling coil, filter, fan, and temperature control device
  • 57. Terminal units 6 In our project we used 14 FCU According to loads F.C.U. Spaces Q(W) V(L/s) mw(L/s) F.C.U. 01 • Break 3 • Break 4 • Break 5 8688 416.8 0.4151 F.C.U. 02 • Break 1 • Break 2 • Store NR break 11651 557.6 0.55667 F.C.U. 03 • Monitoring 9967 309.6 0..47621 F.C.U. 04 • Dressing NR STR 4659 244.3 0.2226 F.C.U. 05 • Fixing NR STR • Sub NR STR 6904 241 0.32986 F.C.U. 06 • Sub way 01 9621 470.1 0.45968 F.C.U. 07 • Sub way 02 4089 159.1 0.19537 F.C.U. 08 • Sub way 03 10204 400.7 0.48753 F.C.U. 09 • Replacing dressing zone 6831 321 0.3264 F.C.U. 10 • Replacing NR CATH 7284 347.3 0.348 F.C.U. 11 • ICU services rooms 6242 313.15 0.29823 F.C.U. 12 • CATH services rooms 3984 342.17 0.19 F.C.U. 13 • Services room • Electric room • Hall with stair 12556 464 0.59991 F.C.U. 14 • Replacing zone 11052 396.5 0.528
  • 58. Terminal units 6 Selection of FCU from catalogs For FCU01 with load 8.688 Kw and flow 416 L/s 475 L/s
  • 59. Terminal units 6 enclosed assembly consisting of a fan or fans and other necessary equipment to perform one or more of the functions of circulating, cleaning, cooling, humidifying, dehumidifying.
  • 60. Terminal units 6 The AHU is used to control the following parameters of the space. •Temperature •Humidity •Air Movement •Air Cleanliness Components of Air Handling Unit Housing Fan Cooling Coil Filters
  • 61. Terminal units 6 Selection AHU criteria load flow rate AHU 11 with 22.043 Kw and 815 L/s
  • 62. Terminal units 6 A.H.U. Spaces Q(W) V(L/s) mw(L/s) A.H.U. 01 • OP-Z1 15485 405.4 0.73985 A.H.U. 02 • OP-Z2 12230 423.5 0.58433 A.H.U. 03 • OP-Z3 13847 414.1 0.661586 A.H.U. 04 • OP-Z4 7689 344.9 0.36737 A.H.U. 05 • OP-Z5 18195 616.7 0.86933 A.H.U. 06 • I.C.U. 31777 876.75 1.5183 A.H.U. 07 • Cath heart zone • PR-zone 2 33535 1118.03 1.6022 A.H.U. 08 • Cath zone • Dirt unit 17100 673.63 0.817 A.H.U. 09 • Stylization 37330 1225.6 1.78356 A.H.U. 10 • Recovery zone 9831 314.1 0.46971 A.H.U. 11 • Store 1-OP • Store 2-OP • Prep. -R- OP • Hall near-OP 22043 815 1.0532
  • 64. Absorption chiller 8 Selection of absorption chiller
  • 66. Characteristics of different solar collectors (for solar cooling purposes) Absorption chiller 8
  • 67. Absorption chiller 8 Efficiency of evacuated tube
  • 68. Thermann TH-30 Collector Specification Source:[ Apricus ,technical manual, March2014] Absorption chiller 8
  • 70. 𝑨𝑪 = 𝑸𝑺 𝛈𝐬𝐨𝐥𝐚𝐫 𝐈𝐦𝐚𝐱 𝑨𝒄 = 𝒏𝑨𝒆 → 𝒏 = 𝑨𝒄 𝑨𝒆 Result Item 369 kW Qe 473.1 kW Qg 333.2 Kw Qs 504.9 𝑚2 Ac 792 𝑚2 Ag 180 Number of collector 5400 Number of tube Absorption chiller 8
  • 71. Type Size (mmXmm) No. Cost of unit $ Total Cost Supply diffuser 600X600 10 55 550 Supply diffuser 450X450 82 55 4510 Return diffuser 450X450 45 55 2475 Exhaust grille 600X600 3 55 165 Exhaust grille 400X400 26 55 1430 Exhaust grille 300X300 4 55 220 TOTAL COST 170 9350 Cost of diffusers and grilles
  • 72. F.C.U Actual Load (TR) standard Load (TR) Cost $ F.C.U. 01 2.4823 2.5 1875 F.C.U. 02 3.329 3.5 2625 F.C.U. 03 2.85 3 2250 F.C.U. 04 1.33 1.5 1125 F.C.U. 05 1.973 2 1500 F.C.U. 06 2.749 3 2250 F.C.U. 07 1.1683 1.5 1125 F.C.U. 08 2.915 3 2250 F.C.U. 09 1.952 2 1500 F.C.U. 10 2.08 2 1500 F.C.U. 11 1.7834 2 1500 F.C.U. 12 1.1383 1.5 1125 F.C.U. 13 3.5874 3.5 2625 F.C.U. 14 3.1577 3.5 2625 TOTAL COST 25875 Cost of F.C.U.
  • 73. A.H.U. Actual Load (TR) Standard Load (TR) Cost $ A.H.U. 01 4.4243 4.5 6300 A.H.U. 02 3.494 3.5 4900 A.H.U. 03 3.9563 4 5600 A.H.U. 04 2.197 2.5 3500 A.H.U. 05 5.1986 5.5 7700 A.H.U. 06 9.08 9 12600 A.H.U. 07 10.153 10.5 14700 A.H.U. 08 4.886 5 7000 A.H.U. 09 10.666 11 15400 A.H.U. 10 2.81 3 4200 A.H.U. 11 6.298 6.5 9100 TOTAL COST 91000 Cost of A.H.U.
  • 74. Duct every 1 m2 28 $ Total= 54000 $ Chiller every 1 TR 1700$ Total= 166600 $ Solar collector every piece 1200 $ Total=216000 $
  • 75. Recommendations 8.2 ▪ Using REVIT MEB for calculating load is effective most of things considered in it . ▪ Using REVIT MEB for calculating duct and pipe losses is very effective. ▪ Any one Using REVIT MEB should be precise in inserting data to program from standards books for getting proper cooling loads and losses .