Trabalho matemática - Grupo

7.638 visualizações

Publicada em

  • Seja o primeiro a comentar

Trabalho matemática - Grupo

  1. 1. Trabalho Realizado por: João Raimundo, João Rei,Lenora Ferreira e Miguel Monteiro
  2. 2. Reflexões Numa reflexão em relação a uma reta (eixo de reflexão) os pontos de uma figura são transformados noutros à mesma distância dessa reta, ficando esta perpendicular ao segmento de reta por eles formado. Reflexão de um ponto A em torno de um eixo r.
  3. 3. Reflexões - Propriedades→ 1 – a figura original e o seu transformado são geometricamente iguais;
  4. 4. Reflexões - Propriedades→ 2 – um ponto e o seu transformado estão à mesma distância do eixode reflexão (ficando o segmento de reta que os une perpendicular aoeixo);
  5. 5. Reflexões - Propriedades→ 3 – um ponto da figura pertencente ao eixo é transformado em sipróprio.
  6. 6. Rotações Numa rotação todos os pontos de uma figura rodam à volta de um ponto (centro de rotação), num determinado sentido (positivo ou negativo) e segundo um determinado ângulo (ângulo de rotação). O sentido positivo é ao contrário ao sentido do movimento dos ponteiros do relógio, enquanto que o sentido negativo é igual ao sentido do movimento dos ponteiros do relógio.
  7. 7. Rotações - Propriedades→ 1 – um segmento de reta é transformado num segmento de retacongruente;
  8. 8. Rotações - Propriedades→ 2 – um ponto e o seu transformado estão à mesma distância do centro derotação;
  9. 9. Rotações - Propriedades→ 3 – o centro de rotação mantém-se fixo.
  10. 10. Reflexões Deslizantes Uma Reflexão Deslizante é uma transformação geométrica que consiste: - numa reflexão seguida de uma translação na direção do eixo de reflexão; OU - numa translação seguida de uma reflexão com eixo paralelo à direção da translação. Reflexão Deslizante seguida de uma translação na direção do eixo de reflexão.
  11. 11. Reflexões Deslizantes -Propriedades → 1 – um segmento de reta é transformado num segmento de reta congruente; → 2 – um ângulo é transformado num ângulo congruente; → 3 – não há pontos fixos; → 4 – a distância de um ponto ao eixo de reflexão é igual à distância da imagem desse ponto ao eixo.
  12. 12. Isometrias Isometria é qualquer transformação geométrica que transforma uma figura noutra figura congruente. A Fig. 1 é uma isometria pois o desenho 1 é congruente ao desenho 2 Desenho 1 Desenho 2 (têm ambos as mesmas dimensões). Fig. 1 A Fig. 2 não é uma isometria pois o desenho 1 não é congruente ao desenho 2 (têm dimensões diferentes). Fig. 2
  13. 13. Simetrias Simetria de uma figura é uma isometria que deixa a figura invariante. Uma figura pode ter simetria de translação, simetria de reflexão, simetria de rotação ou simetria de reflexão deslizante.
  14. 14. Rosáceas Uma rosácea é uma figura com simetria de rotação ou rotacional. Pode ter também simetrias de reflexão. Uma rosácea é composta por diversos módulos congruentes que se repetem, por rotação, em torno de um mesmo ponto, sempre com a mesma amplitude. As rosáceas podem ser de dois tipos: As rosáceas cíclicas, que possuem apenas simetrias de rotação em número finito; As rosáceas diedrais, que possuem simetrias de rotação e simetrias de reflexão, em igual número.
  15. 15. Frisos Um friso é uma banda com um padrão que se repete indefinidamente e onde existem simetrias de translação, todas com uma única direção (geralmente horizontal). Se olharmos com atenção para algumas peças de cerâmica, para decorações de certas cozinhas e casas de banho e até para determinadas peças de vestuário, encontramos frisos.
  16. 16. Padrões Padrão (ou mosaico) é um desenho plano que se repete periodicamente em mais do que uma direção (ou seja: um desenho para o qual existem duas translações, em direções diferentes, que mantêm invariante a estrutura do padrão). Basta olhar à nossa volta para repararmos que estamos rodeados por padrões: não apenas as obras de arte, mas também os pavimentos do metropolitano, nas tampas dos esgotos, o mosaico da nossa cozinha, os tecidos trabalhados...
  17. 17. Pavimentações Uma pavimentação do plano é um conjunto de ladrilhos que cobrem o plano sem deixar espaços intermédios nem sobreposições. Em Portugal, existem enumeras calçadas que se tratam de pavimentações…
  18. 18. Calçadas Portuguesas

×