Função Quadrática

5.795 visualizações

Publicada em

Aula sobre o conteúdo de Função Quadrática.

Publicada em: Educação
0 comentários
3 gostaram
Estatísticas
Notas
  • Seja o primeiro a comentar

Sem downloads
Visualizações
Visualizações totais
5.795
No SlideShare
0
A partir de incorporações
0
Número de incorporações
3
Ações
Compartilhamentos
0
Downloads
222
Comentários
0
Gostaram
3
Incorporações 0
Nenhuma incorporação

Nenhuma nota no slide

Função Quadrática

  1. 1. Explorando as Funções Quadráticas com o auxílio do Winplot Universidade Federal de Viçosa Centro de Ciências Exatas Departamento de Matemática Heitor Carvalho – 68117 Lucas Silveira - 68112 Matheus Brasiel – 68101 Mayara Permanhane - 68204
  2. 2. • Links para baixar o Winplot: • http://www.winportal.com.br/winplot Qualquer dúvida, consultem o seguinte arquivo: http://math.exeter.edu/rparris/peanut/Explorando%20W http://pibid.mat.ufrgs.br/2009- 2010/arquivos_publicacoes1/indicacoes_01/aplicacoes_win plot_PIBID_bahia1.pdfinplot%20-%20Vol%201.pdf
  3. 3. Assista ao vídeo Roda de Samba disponível no link abaixo: http://www.youtube.com/watch?v=apT g7Xe3cAA
  4. 4. Função Quadrática Definição: A função f: R → R, dada por f(x) = ax² + bx + c, com a, b, c reais e a ≠ 0, denomina-se função quadrática ou função polinomial do 2º grau.
  5. 5. São exemplos de função de função do 2º grau: f(x) = x² - 4x – 3, onde a = 1, b = - 4 e c = - 3 f(x) = - 4x² + 2x, onde a = - 4, b = 2 e c = 0 f(x) = x² - 9, onde a = 1, b = 0 e c = - 9 f(x) = 6x², onde a = 6, b = 0 e c = 0
  6. 6. O gráfico de uma função quadrática é composto por três partes fundamentais: 01) Zeros da função: é ou são os pontos em que o gráfico corta o eixo das abscissas (eixo x), ou seja, onde y = 0. 02) Vértice: ponto mais alto ou mais baixo do gráfico. 03) Termo independente: ponto que o gráfico corta o eixo das ordenadas (eixo y). Neste ponto x = 0. Toda gráfico de uma função do 2° grau é uma parábola.
  7. 7. Zeros de uma Função Quadrática Denomina-se zeros ou raízes de uma função quadrática os valores de x que anulam a função, ou seja, que tornam f(x) = 0. •Se ∆ > 0, a função tem duas raízes reais e distintos (x’ ≠ x’’). •Se ∆ = 0, a função apresenta duas raízes reais e iguais (x’ = x’’). •Se ∆ < 0, a função não tem raíz real.
  8. 8. Exemplo: Vamos encontrar, se existir, os zeros da função f(x) = x² - 4x – 5. Solução: 054² xx )5.(1.4)²4( 4² acb 0362016 Como ∆ > 0 a função tem dois zeros reais. Assim: a b x 2 Calculemos agora seus zeros:
  9. 9. 1.2 36)4( x 1 2 2 2 64 '' 5 2 10 2 64 ' 2 64 x x x Logo, os zeros da função são – 1 e 5.
  10. 10. Obs: Também podemos calcular o valor do x do vértice se fizermos a média aritmética entre os valores de suas raízes. Estudo do Vértice da Parábola A parábola, que representa o gráfico da função f(x) = ax² + bx + c, passa por um ponto V, chamado vértice, cujas coordenadas são: )( 2 abscissa a b xv )( 4 ordenada a yv
  11. 11. -1 2 3 1 2 3 4 5 -2 410 -1 -2 -3 x y -4 Vértice da função: y = x2 – 2x – 3 a2 b x v a4 y v 12 2 x v 2 2 x v 1x v 14 16 y v 4 16 y v 4y v )4,1(V V Exemplo:
  12. 12. Observações: I: Na função y = ax2 + bx +c, a concavidade da parábola depende do valor de a: a > 0 a < 0 II: A coordenada y do vértice pode ser chamado de valor da função, podendo ser mínimo ou máximo: a > 0 a < 0 mínimo máximo
  13. 13. 0 a b 2 a4
  14. 14. 0
  15. 15. 0 Relembrando: vértice da parábola é o ponto aa b V 4 , 2
  16. 16. Construção de gráfico de uma função quadrática usando o Winplot
  17. 17. Através do gráfico responda: qual é a concavidade da parábola? O que acontece se alterarmos o sinal de a? E se multiplicarmos a por uma constante maior que 1. O que acontece? (Reflita sobre as perguntas através dos gráficos construídos por você no Winplot) Note que quando mudamos o sinal do coeficiente a , ela é refletida em ralação ao eixo x, ou seja, passa a ter concavidade voltada para cima. Quando multiplicamos esse a por uma constante maior que 1, a amplitude da parábola diminui isto é, se aproxima do eixo y.
  18. 18. Agora, feche a janela. Iremos representar o vértice da parábola de uma função quadrática. Seja a função dada por y = x² + 2x + 1. Represente essa função usando os comandos citados anteriormente e digite na caixa de texto “x^2+2x+1”.
  19. 19. Use os comandos: “Um”  “Extremos”. Para encontrar os zeros da função use os comandos: “Um”  ”zeros”  ”Marcar ponto” (OBS: Os zeros são os valores que x assume quando y = 0, isto é, onde o gráfico corta o eixo das abcissas).
  20. 20. • Para estudarmos o sinal da função quadrática os comando do Winplot que facilitam essa tarefa são: “Um” ”traço” ”marcar ponto”.
  21. 21. • Também podemos variar o valor do coeficiente angular da função quadrática e observar o que acontece, use os comandos: “Anim”  “Parâmetros A – W ...”. (Escolha o parâmetro A, utilize a barra de rolagem para fazer A variar e verifique o que acontece para fazer o gráfico de F).
  22. 22. Fixação: 1) Repita o procedimento anterior com as seguintes funções: a) Y = -x² + 6x b) Y = x² - 4 c) Y = x² + 2x + 6 Muito obrigado!!!!!

×