SlideShare uma empresa Scribd logo

Funcoes1

1 de 4
Baixar para ler offline
Funções 10º. ano                                                                     Pág.1


                                              Exercícios

1. Considera a seguinte representação gráfica de uma função f e indica:

    1.1. A imagem do objecto –1.

    1.2. O objecto cuja imagem é 5.

    1.3. O domínio da função.

    1.4. O contradomínio.

    1.5. Os zeros, caso existam.

    1.6. Os intervalos de monotonia.

    1.7. Os extremos absolutos, caso existam.




2. Elabora um pequeno texto sobre uma situação que possa ser descrita pela
    representação gráfica seguinte.




3. Considera a função

                   f : x ֏ f ( x) = x 2 − 2 x − 3 .

    3.1. Determina as coordenadas do vértice da parábola que representa a função f.

    3.2. Escreve uma condição que define o eixo de simetria da parábola.

    3.3. Indica o contradomínio da função.

    3.4. Determina os zeros da função.

    3.5. Indica os intervalos em que f é positiva e os intervalos em que f é negativa.

    3.6. A função f é par? Justifica.




Prof. Eva Figueiredo                     www.matematica.com.pt              tlm. 919 380 994
Funções 10º. ano                                                                           Pág.2


4. Considere a função, real de variável real, definida por f ( x) = 2( x − 1) 2 + 3 .
    a) Indique o extremo da função explicitando se se trata de um máximo ou de um
         mínimo. Justifique a resposta.
    b) Indique os intervalos de monotonia da função.
    c) A função tem zeros? Justifique a resposta.
    d) Prove que -1 não pertence ao contradomínio da função.
    e) Resolva, em R, a inequação f ( x) ≥ 5 .




5. Considere a função, real de variável real, definida por      f ( x) =| 2 x − 1| −3 .
    a) Indique o extremo da função explicitando se se trata de um máximo ou de um
         mínimo. Justifique a resposta.
    b) Indique os intervalos de monotonia da função.
    c) A função tem zeros? Identifique-os.
    d) Prove que -2 não pertence ao contradomínio da função.
    e) Resolva, em R, a inequação            f ( x) ≥ 5 .



6. Admita que uma função h , de domínio R tem um único máximo absoluto 4, um
    único mínimo absoluto -1 e tem um único zero para x = −3 .
    a) Indique, justificando, o máximo e o mínimo absolutos da função − 2h( x) .

    b) Indique, justificando, o zero da função h( x − 5) .
    c) Justifique a afirmação: “ O ponto de coordenadas (-2,2) pertence ao gráfico da
         função g ( x ) = h( x − 1) + 2 .”




7. O gráfico da função é constituído por parte de uma                                y
                                                                                     4

    parábola de eixo Oy e por uma semi-recta de declive
                                                                         y=f(x)
    a) Escreva o polinómio que define a função f ,                                                   y=0,5x+1
                                                                                     2

         considerando que o gráfico é uma parábola.
    b) Indique os intervalos de variação de f .
                                                                           a         0      1             x
    c) Indique o contradomínio de f .
    d) Indique o número de soluções das equações:                                    -2




Prof. Eva Figueiredo                    www.matematica.com.pt                     tlm. 919 380 994
Funções 10º. ano                                                                    Pág.3

         i)     f ( x) − 1 = 0,5 x .

         ii)     f ( x) = 1
    e) Por observação do gráfico, indique o conjunto - solução da seguinte condição:
          f ( x) ≥ 0 ∧ x < 0 .

    f)   Resolva analiticamente a inequação 0,5 x + 1 − 1 ≤ 0




8. Num treino de futebol um jogador, em posição frontal à baliza e a uma distância de
    20 metros dela, remata a bola. A altura A , em metros, que a bola atinge, em
    função da distância d ao jogador, medida na horizontal também em metros, é
                                          1
    dada pela expressão: A( d ) = −          d (d − 28) .
                                          49
    Resolva analiticamente as questões seguintes:
    a) Determine o valor de A(0) e explique o seu significado no contexto do
         problema.
    b) Qual é a altura máxima a que sobe a bola? E a que distância está do jogador?
    c) Admita que a baliza tem uma altura de 2,4 metros. Será que a bola rematada
         pelo jogador entra na baliza ou pelo contrário, passa por cima dela?
    Recorrendo à calculadora gráfica responda à questão, apresentando o resultado
    arredondado às décimas e incluindo os esboços dos gráficos que considerar
    pertinentes.




9. Considere a função f, definida por
                1
     f ( x) =     ( x − 4) + 3
                          2

                8

    Admita que         f ( x ) é a distância ao solo,
    em metros, do ponto do fio situado a x
    metros à direita do 1º poste.

    a) Calcule a altura dos postes.

    b) Determine a distância ao 2º poste do ponto do fio que está à distância mínima
         do solo.

    c) Calcule o valor de x, sabendo que o ponto do fio correspondente está a 7,5 m
         do solo.



Prof. Eva Figueiredo                     www.matematica.com.pt             tlm. 919 380 994
Funções 10º. ano                                                                         Pág.4

10. Lança-se uma flecha para o ar a partir de um ponto situado a quatro metros do
    solo. Durante o movimento a distância da flecha ao solo, em metros, no instante t,
    em segundos, é dada por h(t ) = −t 2 + 3t + 4 .
    10.1.         Em que momentos a flecha está a uma distância do solo de 2 metros?
    10.2.         Quando é que a flecha atinge o solo?
    10.3.         A flecha atingirá a altura de 8 metros? Justifica convenientemente a tua
          resposta.
    10.4.         Para que valores de t a flecha se encontra a uma distância do solo
          superior a 6 metros?


Porto Editora texto pagina 107,21

11. Considere um triângulo rectângulo de catetos 4 e 6 cm. O ponto P desliza sobre a
    hipotenusa e vai gerando vários rectângulos.


                  P
                                                    P
                                                                                P

              x                              x                       x
    Mostre que a área dos rectângulos é dada em função de x pela função
                       2 2
     A( x) = 4 x −       x e indique e seu domínio.
                       3


12. Mostre analiticamente que − 1 é a única raiz do polinómio x 3 − x 2 + 2 .




13. Considera o polinómio P ( x) = − x3 + 4 x 2 − x − 6 .

    13.1.         Determina o resto da divisão de P(x) por x − 4 .

    13.2.         Mostra que 2 é raiz do polinómio.

    13.3.         Indica o conjunto-solução da equação P ( x) = 0 .Didáctica pag17 prova4
          3




Prof. Eva Figueiredo                   www.matematica.com.pt                    tlm. 919 380 994

Recomendados

Calculo numerico capitulo 2
Calculo numerico capitulo 2Calculo numerico capitulo 2
Calculo numerico capitulo 2Bruno Mulina
 
Ft 8 FunçõEs Racionais
Ft 8 FunçõEs RacionaisFt 8 FunçõEs Racionais
Ft 8 FunçõEs Racionaisdynysfernandes
 
Trabalho individual objetos de aprendizagem
Trabalho individual objetos de aprendizagemTrabalho individual objetos de aprendizagem
Trabalho individual objetos de aprendizagemEdson Júnio
 
Exame de Matematica A, 11º ano,2016.Versão 2
Exame de Matematica A, 11º ano,2016.Versão 2Exame de Matematica A, 11º ano,2016.Versão 2
Exame de Matematica A, 11º ano,2016.Versão 2Yolanda Acurcio
 
Exame de Matemática A_v1_2011
Exame de Matemática A_v1_2011Exame de Matemática A_v1_2011
Exame de Matemática A_v1_2011David Azevedo
 
Exercícios sobre função
Exercícios sobre funçãoExercícios sobre função
Exercícios sobre funçãoDayanne Sousa
 

Mais conteúdo relacionado

Mais procurados

Função exponencial e função logarítmica
Função exponencial e função logarítmicaFunção exponencial e função logarítmica
Função exponencial e função logarítmicaEverton Moraes
 
Produto cartesiano e função 1º ano do ensino medio
Produto cartesiano e função   1º ano do ensino medioProduto cartesiano e função   1º ano do ensino medio
Produto cartesiano e função 1º ano do ensino medioSimone Smaniotto
 
Matematica aplic economia_201101
Matematica  aplic economia_201101Matematica  aplic economia_201101
Matematica aplic economia_201101Acacio Chimenes
 
MatemáTica Intro FunçõEs
MatemáTica Intro FunçõEsMatemáTica Intro FunçõEs
MatemáTica Intro FunçõEseducacao f
 
Teste da Concavidade - explicação
Teste da Concavidade - explicaçãoTeste da Concavidade - explicação
Teste da Concavidade - explicaçãorogerlui
 
Exercicios resolv3 mat
Exercicios resolv3 matExercicios resolv3 mat
Exercicios resolv3 mattrigono_metria
 
Funções de varias variáveis calculo 2
Funções de varias variáveis calculo 2Funções de varias variáveis calculo 2
Funções de varias variáveis calculo 2Fábio Kataoka
 
Funções racionais. hipérbole.
Funções racionais. hipérbole.Funções racionais. hipérbole.
Funções racionais. hipérbole.silvia_lfr
 
Projeto final Informática educativa I - Michele Zacharias
Projeto final Informática educativa I - Michele ZachariasProjeto final Informática educativa I - Michele Zacharias
Projeto final Informática educativa I - Michele ZachariasMichele Zacharias Dos Santos
 
Matematica 1 exercicios gabarito 05
Matematica 1 exercicios gabarito 05Matematica 1 exercicios gabarito 05
Matematica 1 exercicios gabarito 05comentada
 

Mais procurados (20)

Função exponencial e função logarítmica
Função exponencial e função logarítmicaFunção exponencial e função logarítmica
Função exponencial e função logarítmica
 
Apostila de matemática cursinho
Apostila de matemática   cursinhoApostila de matemática   cursinho
Apostila de matemática cursinho
 
Produto cartesiano e função 1º ano do ensino medio
Produto cartesiano e função   1º ano do ensino medioProduto cartesiano e função   1º ano do ensino medio
Produto cartesiano e função 1º ano do ensino medio
 
16598764 apostila-de-calculo
16598764 apostila-de-calculo16598764 apostila-de-calculo
16598764 apostila-de-calculo
 
Função polinomial
Função polinomialFunção polinomial
Função polinomial
 
Matematica aplic economia_201101
Matematica  aplic economia_201101Matematica  aplic economia_201101
Matematica aplic economia_201101
 
MatemáTica Intro FunçõEs
MatemáTica Intro FunçõEsMatemáTica Intro FunçõEs
MatemáTica Intro FunçõEs
 
Calculo1 aula07
Calculo1 aula07Calculo1 aula07
Calculo1 aula07
 
Teste da Concavidade - explicação
Teste da Concavidade - explicaçãoTeste da Concavidade - explicação
Teste da Concavidade - explicação
 
Lista reta tangente
Lista   reta tangenteLista   reta tangente
Lista reta tangente
 
Exercicios resolv3 mat
Exercicios resolv3 matExercicios resolv3 mat
Exercicios resolv3 mat
 
Funções de varias variáveis calculo 2
Funções de varias variáveis calculo 2Funções de varias variáveis calculo 2
Funções de varias variáveis calculo 2
 
Cálculo numérico
Cálculo numéricoCálculo numérico
Cálculo numérico
 
Funções racionais. hipérbole.
Funções racionais. hipérbole.Funções racionais. hipérbole.
Funções racionais. hipérbole.
 
Ex algebra (11)
Ex algebra  (11)Ex algebra  (11)
Ex algebra (11)
 
Projeto final Informática educativa I - Michele Zacharias
Projeto final Informática educativa I - Michele ZachariasProjeto final Informática educativa I - Michele Zacharias
Projeto final Informática educativa I - Michele Zacharias
 
Aula no
Aula noAula no
Aula no
 
Matematica2 2
Matematica2 2Matematica2 2
Matematica2 2
 
Matematica 1 exercicios gabarito 05
Matematica 1 exercicios gabarito 05Matematica 1 exercicios gabarito 05
Matematica 1 exercicios gabarito 05
 
Apostila calculo
Apostila calculoApostila calculo
Apostila calculo
 

Destaque

Questão de aula 2 funções + critérios 10 ano
Questão de aula 2 funções + critérios 10 anoQuestão de aula 2 funções + critérios 10 ano
Questão de aula 2 funções + critérios 10 anoPedro Teixeira
 
12º Ano Fórmulas Matemáticas
12º Ano Fórmulas Matemáticas12º Ano Fórmulas Matemáticas
12º Ano Fórmulas MatemáticasAna Teresa
 
11º Ano Fórmulas Matemáticas
11º Ano Fórmulas Matemáticas11º Ano Fórmulas Matemáticas
11º Ano Fórmulas MatemáticasAna Teresa
 
11º Ano Fórmulas Matemáticas
11º Ano Fórmulas Matemáticas11º Ano Fórmulas Matemáticas
11º Ano Fórmulas MatemáticasAna Teresa
 
10º Ano Fórmulas Matemáticas
10º Ano Fórmulas Matemáticas10º Ano Fórmulas Matemáticas
10º Ano Fórmulas MatemáticasAna Teresa
 
Memorial do convento, cap. 13 14
Memorial do convento,  cap. 13 14Memorial do convento,  cap. 13 14
Memorial do convento, cap. 13 14Ana Teresa
 

Destaque (9)

Ficha1 mat5 09 10 sol geo
Ficha1 mat5 09 10 sol geoFicha1 mat5 09 10 sol geo
Ficha1 mat5 09 10 sol geo
 
Questão de aula 2 funções + critérios 10 ano
Questão de aula 2 funções + critérios 10 anoQuestão de aula 2 funções + critérios 10 ano
Questão de aula 2 funções + critérios 10 ano
 
4 tur11
4 tur114 tur11
4 tur11
 
12º Ano Fórmulas Matemáticas
12º Ano Fórmulas Matemáticas12º Ano Fórmulas Matemáticas
12º Ano Fórmulas Matemáticas
 
11º Ano Fórmulas Matemáticas
11º Ano Fórmulas Matemáticas11º Ano Fórmulas Matemáticas
11º Ano Fórmulas Matemáticas
 
11º Ano Fórmulas Matemáticas
11º Ano Fórmulas Matemáticas11º Ano Fórmulas Matemáticas
11º Ano Fórmulas Matemáticas
 
10º Ano Fórmulas Matemáticas
10º Ano Fórmulas Matemáticas10º Ano Fórmulas Matemáticas
10º Ano Fórmulas Matemáticas
 
Função injectiva
Função injectivaFunção injectiva
Função injectiva
 
Memorial do convento, cap. 13 14
Memorial do convento,  cap. 13 14Memorial do convento,  cap. 13 14
Memorial do convento, cap. 13 14
 

Semelhante a Funcoes1 (20)

Apostila 2 calculo i derivadas
Apostila 2 calculo i derivadasApostila 2 calculo i derivadas
Apostila 2 calculo i derivadas
 
Funcao Polinomial De 2 Grau
Funcao Polinomial De 2 GrauFuncao Polinomial De 2 Grau
Funcao Polinomial De 2 Grau
 
P2 calculo i_ (10)
P2 calculo i_ (10)P2 calculo i_ (10)
P2 calculo i_ (10)
 
Mtm basica 25.09
Mtm basica 25.09Mtm basica 25.09
Mtm basica 25.09
 
P2 calculo i_ (8)
P2 calculo i_ (8)P2 calculo i_ (8)
P2 calculo i_ (8)
 
Função polinomial do 1º grau
Função polinomial do 1º grauFunção polinomial do 1º grau
Função polinomial do 1º grau
 
Função 2o grau
Função 2o grauFunção 2o grau
Função 2o grau
 
Anexo ma aula_fd_unidade1
Anexo ma aula_fd_unidade1Anexo ma aula_fd_unidade1
Anexo ma aula_fd_unidade1
 
Matematica2 1
Matematica2 1Matematica2 1
Matematica2 1
 
Apostila 3 funções
Apostila 3 funçõesApostila 3 funções
Apostila 3 funções
 
Final do 9º ano
Final do 9º anoFinal do 9º ano
Final do 9º ano
 
Mtm basica 18.09
Mtm basica 18.09Mtm basica 18.09
Mtm basica 18.09
 
Derivadas
DerivadasDerivadas
Derivadas
 
Apostila matematica
Apostila matematicaApostila matematica
Apostila matematica
 
Lista de exercícios 8
Lista de exercícios 8Lista de exercícios 8
Lista de exercícios 8
 
Editdocument15107902255388
Editdocument15107902255388Editdocument15107902255388
Editdocument15107902255388
 
Lista de revisão 01
Lista de revisão 01Lista de revisão 01
Lista de revisão 01
 
Cálculo usando MatLab
Cálculo usando MatLabCálculo usando MatLab
Cálculo usando MatLab
 
Apostila função do 1 grau
Apostila   função do 1 grauApostila   função do 1 grau
Apostila função do 1 grau
 
Derivadas
DerivadasDerivadas
Derivadas
 

Último

PLANO DE CURSO 2O24- ENSINO RELIGIOSO 7º ANO.pdf
PLANO DE CURSO 2O24- ENSINO RELIGIOSO 7º ANO.pdfPLANO DE CURSO 2O24- ENSINO RELIGIOSO 7º ANO.pdf
PLANO DE CURSO 2O24- ENSINO RELIGIOSO 7º ANO.pdfkeiciany
 
O Guia Definitivo para Investir em Bitcoin: Domine o Mercado Hoje!
O Guia Definitivo para Investir em Bitcoin: Domine o Mercado Hoje!O Guia Definitivo para Investir em Bitcoin: Domine o Mercado Hoje!
O Guia Definitivo para Investir em Bitcoin: Domine o Mercado Hoje!Psyc company
 
004820000101011 (15).pdffdfdfdddddddddddddddddddddddddddddddddddd
004820000101011 (15).pdffdfdfdddddddddddddddddddddddddddddddddddd004820000101011 (15).pdffdfdfdddddddddddddddddddddddddddddddddddd
004820000101011 (15).pdffdfdfddddddddddddddddddddddddddddddddddddRenandantas16
 
2) Descreva os princípios fundamentais para uma prescrição de exercícios físi...
2) Descreva os princípios fundamentais para uma prescrição de exercícios físi...2) Descreva os princípios fundamentais para uma prescrição de exercícios físi...
2) Descreva os princípios fundamentais para uma prescrição de exercícios físi...azulassessoriaacadem3
 
LUSSOCARS TRABAJO PARA LA CLASE QUE TENGO
LUSSOCARS TRABAJO PARA LA CLASE QUE TENGOLUSSOCARS TRABAJO PARA LA CLASE QUE TENGO
LUSSOCARS TRABAJO PARA LA CLASE QUE TENGOxogilo3990
 
2. Como o entrevistado descreve a gestão e execução dos principais processos ...
2. Como o entrevistado descreve a gestão e execução dos principais processos ...2. Como o entrevistado descreve a gestão e execução dos principais processos ...
2. Como o entrevistado descreve a gestão e execução dos principais processos ...azulassessoriaacadem3
 
3° ENSINO MÉDIO PLANO ANUAL ARTES 2024.pdf
3° ENSINO MÉDIO PLANO ANUAL ARTES 2024.pdf3° ENSINO MÉDIO PLANO ANUAL ARTES 2024.pdf
3° ENSINO MÉDIO PLANO ANUAL ARTES 2024.pdfkelvindasilvadiasw
 
1. Ciente das novas dinâmicas do mundo do trabalho, você deve pesquisar e des...
1. Ciente das novas dinâmicas do mundo do trabalho, você deve pesquisar e des...1. Ciente das novas dinâmicas do mundo do trabalho, você deve pesquisar e des...
1. Ciente das novas dinâmicas do mundo do trabalho, você deve pesquisar e des...azulassessoriaacadem3
 
5. ​Agora suponha que esse mesmo aluno é do sexo feminino, você irá utilizar ...
5. ​Agora suponha que esse mesmo aluno é do sexo feminino, você irá utilizar ...5. ​Agora suponha que esse mesmo aluno é do sexo feminino, você irá utilizar ...
5. ​Agora suponha que esse mesmo aluno é do sexo feminino, você irá utilizar ...azulassessoriaacadem3
 
2. Considerando todas as informações que você obteve, descritas acima, sabend...
2. Considerando todas as informações que você obteve, descritas acima, sabend...2. Considerando todas as informações que você obteve, descritas acima, sabend...
2. Considerando todas as informações que você obteve, descritas acima, sabend...azulassessoriaacadem3
 
Sobre os princípios da teoria burocrática de Max Weber e com base em suas exp...
Sobre os princípios da teoria burocrática de Max Weber e com base em suas exp...Sobre os princípios da teoria burocrática de Max Weber e com base em suas exp...
Sobre os princípios da teoria burocrática de Max Weber e com base em suas exp...azulassessoriaacadem3
 
Transforme seu Corpo em Casa_ Dicas e Estratégias de Rotinas de Exercícios Si...
Transforme seu Corpo em Casa_ Dicas e Estratégias de Rotinas de Exercícios Si...Transforme seu Corpo em Casa_ Dicas e Estratégias de Rotinas de Exercícios Si...
Transforme seu Corpo em Casa_ Dicas e Estratégias de Rotinas de Exercícios Si...manoelaarmani
 
5. Na sua opinião, em que medida os princípios da ORT de Taylor ainda são rel...
5. Na sua opinião, em que medida os princípios da ORT de Taylor ainda são rel...5. Na sua opinião, em que medida os princípios da ORT de Taylor ainda são rel...
5. Na sua opinião, em que medida os princípios da ORT de Taylor ainda são rel...azulassessoriaacadem3
 
2. Como o entrevistado descreve a gestão e execução dos principais processos ...
2. Como o entrevistado descreve a gestão e execução dos principais processos ...2. Como o entrevistado descreve a gestão e execução dos principais processos ...
2. Como o entrevistado descreve a gestão e execução dos principais processos ...azulassessoriaacadem3
 
1) Cite os componentes que devem fazer parte de uma sessão de treinamento.
1) Cite os componentes que devem fazer parte de uma sessão de treinamento.1) Cite os componentes que devem fazer parte de uma sessão de treinamento.
1) Cite os componentes que devem fazer parte de uma sessão de treinamento.azulassessoriaacadem3
 
1. Considerando todas as informações que você obteve, descritas acima, calcul...
1. Considerando todas as informações que você obteve, descritas acima, calcul...1. Considerando todas as informações que você obteve, descritas acima, calcul...
1. Considerando todas as informações que você obteve, descritas acima, calcul...azulassessoriaacadem3
 
Discuta as principais mudanças e desafios enfrentados pelos profissionais de ...
Discuta as principais mudanças e desafios enfrentados pelos profissionais de ...Discuta as principais mudanças e desafios enfrentados pelos profissionais de ...
Discuta as principais mudanças e desafios enfrentados pelos profissionais de ...azulassessoriaacadem3
 
1) Cálculo completo e o resultado da densidade corporal da Carolina. Utilize ...
1) Cálculo completo e o resultado da densidade corporal da Carolina. Utilize ...1) Cálculo completo e o resultado da densidade corporal da Carolina. Utilize ...
1) Cálculo completo e o resultado da densidade corporal da Carolina. Utilize ...azulassessoriaacadem3
 
Quando iniciamos os estudos sobre a história da Educação de Jovens e Adultos,...
Quando iniciamos os estudos sobre a história da Educação de Jovens e Adultos,...Quando iniciamos os estudos sobre a história da Educação de Jovens e Adultos,...
Quando iniciamos os estudos sobre a história da Educação de Jovens e Adultos,...AaAssessoriadll
 
1. Solicitar ao entrevistado uma breve apresentação da organização, mencionan...
1. Solicitar ao entrevistado uma breve apresentação da organização, mencionan...1. Solicitar ao entrevistado uma breve apresentação da organização, mencionan...
1. Solicitar ao entrevistado uma breve apresentação da organização, mencionan...azulassessoriaacadem3
 

Último (20)

PLANO DE CURSO 2O24- ENSINO RELIGIOSO 7º ANO.pdf
PLANO DE CURSO 2O24- ENSINO RELIGIOSO 7º ANO.pdfPLANO DE CURSO 2O24- ENSINO RELIGIOSO 7º ANO.pdf
PLANO DE CURSO 2O24- ENSINO RELIGIOSO 7º ANO.pdf
 
O Guia Definitivo para Investir em Bitcoin: Domine o Mercado Hoje!
O Guia Definitivo para Investir em Bitcoin: Domine o Mercado Hoje!O Guia Definitivo para Investir em Bitcoin: Domine o Mercado Hoje!
O Guia Definitivo para Investir em Bitcoin: Domine o Mercado Hoje!
 
004820000101011 (15).pdffdfdfdddddddddddddddddddddddddddddddddddd
004820000101011 (15).pdffdfdfdddddddddddddddddddddddddddddddddddd004820000101011 (15).pdffdfdfdddddddddddddddddddddddddddddddddddd
004820000101011 (15).pdffdfdfdddddddddddddddddddddddddddddddddddd
 
2) Descreva os princípios fundamentais para uma prescrição de exercícios físi...
2) Descreva os princípios fundamentais para uma prescrição de exercícios físi...2) Descreva os princípios fundamentais para uma prescrição de exercícios físi...
2) Descreva os princípios fundamentais para uma prescrição de exercícios físi...
 
LUSSOCARS TRABAJO PARA LA CLASE QUE TENGO
LUSSOCARS TRABAJO PARA LA CLASE QUE TENGOLUSSOCARS TRABAJO PARA LA CLASE QUE TENGO
LUSSOCARS TRABAJO PARA LA CLASE QUE TENGO
 
2. Como o entrevistado descreve a gestão e execução dos principais processos ...
2. Como o entrevistado descreve a gestão e execução dos principais processos ...2. Como o entrevistado descreve a gestão e execução dos principais processos ...
2. Como o entrevistado descreve a gestão e execução dos principais processos ...
 
3° ENSINO MÉDIO PLANO ANUAL ARTES 2024.pdf
3° ENSINO MÉDIO PLANO ANUAL ARTES 2024.pdf3° ENSINO MÉDIO PLANO ANUAL ARTES 2024.pdf
3° ENSINO MÉDIO PLANO ANUAL ARTES 2024.pdf
 
1. Ciente das novas dinâmicas do mundo do trabalho, você deve pesquisar e des...
1. Ciente das novas dinâmicas do mundo do trabalho, você deve pesquisar e des...1. Ciente das novas dinâmicas do mundo do trabalho, você deve pesquisar e des...
1. Ciente das novas dinâmicas do mundo do trabalho, você deve pesquisar e des...
 
5. ​Agora suponha que esse mesmo aluno é do sexo feminino, você irá utilizar ...
5. ​Agora suponha que esse mesmo aluno é do sexo feminino, você irá utilizar ...5. ​Agora suponha que esse mesmo aluno é do sexo feminino, você irá utilizar ...
5. ​Agora suponha que esse mesmo aluno é do sexo feminino, você irá utilizar ...
 
2. Considerando todas as informações que você obteve, descritas acima, sabend...
2. Considerando todas as informações que você obteve, descritas acima, sabend...2. Considerando todas as informações que você obteve, descritas acima, sabend...
2. Considerando todas as informações que você obteve, descritas acima, sabend...
 
Sobre os princípios da teoria burocrática de Max Weber e com base em suas exp...
Sobre os princípios da teoria burocrática de Max Weber e com base em suas exp...Sobre os princípios da teoria burocrática de Max Weber e com base em suas exp...
Sobre os princípios da teoria burocrática de Max Weber e com base em suas exp...
 
Transforme seu Corpo em Casa_ Dicas e Estratégias de Rotinas de Exercícios Si...
Transforme seu Corpo em Casa_ Dicas e Estratégias de Rotinas de Exercícios Si...Transforme seu Corpo em Casa_ Dicas e Estratégias de Rotinas de Exercícios Si...
Transforme seu Corpo em Casa_ Dicas e Estratégias de Rotinas de Exercícios Si...
 
5. Na sua opinião, em que medida os princípios da ORT de Taylor ainda são rel...
5. Na sua opinião, em que medida os princípios da ORT de Taylor ainda são rel...5. Na sua opinião, em que medida os princípios da ORT de Taylor ainda são rel...
5. Na sua opinião, em que medida os princípios da ORT de Taylor ainda são rel...
 
2. Como o entrevistado descreve a gestão e execução dos principais processos ...
2. Como o entrevistado descreve a gestão e execução dos principais processos ...2. Como o entrevistado descreve a gestão e execução dos principais processos ...
2. Como o entrevistado descreve a gestão e execução dos principais processos ...
 
1) Cite os componentes que devem fazer parte de uma sessão de treinamento.
1) Cite os componentes que devem fazer parte de uma sessão de treinamento.1) Cite os componentes que devem fazer parte de uma sessão de treinamento.
1) Cite os componentes que devem fazer parte de uma sessão de treinamento.
 
1. Considerando todas as informações que você obteve, descritas acima, calcul...
1. Considerando todas as informações que você obteve, descritas acima, calcul...1. Considerando todas as informações que você obteve, descritas acima, calcul...
1. Considerando todas as informações que você obteve, descritas acima, calcul...
 
Discuta as principais mudanças e desafios enfrentados pelos profissionais de ...
Discuta as principais mudanças e desafios enfrentados pelos profissionais de ...Discuta as principais mudanças e desafios enfrentados pelos profissionais de ...
Discuta as principais mudanças e desafios enfrentados pelos profissionais de ...
 
1) Cálculo completo e o resultado da densidade corporal da Carolina. Utilize ...
1) Cálculo completo e o resultado da densidade corporal da Carolina. Utilize ...1) Cálculo completo e o resultado da densidade corporal da Carolina. Utilize ...
1) Cálculo completo e o resultado da densidade corporal da Carolina. Utilize ...
 
Quando iniciamos os estudos sobre a história da Educação de Jovens e Adultos,...
Quando iniciamos os estudos sobre a história da Educação de Jovens e Adultos,...Quando iniciamos os estudos sobre a história da Educação de Jovens e Adultos,...
Quando iniciamos os estudos sobre a história da Educação de Jovens e Adultos,...
 
1. Solicitar ao entrevistado uma breve apresentação da organização, mencionan...
1. Solicitar ao entrevistado uma breve apresentação da organização, mencionan...1. Solicitar ao entrevistado uma breve apresentação da organização, mencionan...
1. Solicitar ao entrevistado uma breve apresentação da organização, mencionan...
 

Funcoes1

  • 1. Funções 10º. ano Pág.1 Exercícios 1. Considera a seguinte representação gráfica de uma função f e indica: 1.1. A imagem do objecto –1. 1.2. O objecto cuja imagem é 5. 1.3. O domínio da função. 1.4. O contradomínio. 1.5. Os zeros, caso existam. 1.6. Os intervalos de monotonia. 1.7. Os extremos absolutos, caso existam. 2. Elabora um pequeno texto sobre uma situação que possa ser descrita pela representação gráfica seguinte. 3. Considera a função f : x ֏ f ( x) = x 2 − 2 x − 3 . 3.1. Determina as coordenadas do vértice da parábola que representa a função f. 3.2. Escreve uma condição que define o eixo de simetria da parábola. 3.3. Indica o contradomínio da função. 3.4. Determina os zeros da função. 3.5. Indica os intervalos em que f é positiva e os intervalos em que f é negativa. 3.6. A função f é par? Justifica. Prof. Eva Figueiredo www.matematica.com.pt tlm. 919 380 994
  • 2. Funções 10º. ano Pág.2 4. Considere a função, real de variável real, definida por f ( x) = 2( x − 1) 2 + 3 . a) Indique o extremo da função explicitando se se trata de um máximo ou de um mínimo. Justifique a resposta. b) Indique os intervalos de monotonia da função. c) A função tem zeros? Justifique a resposta. d) Prove que -1 não pertence ao contradomínio da função. e) Resolva, em R, a inequação f ( x) ≥ 5 . 5. Considere a função, real de variável real, definida por f ( x) =| 2 x − 1| −3 . a) Indique o extremo da função explicitando se se trata de um máximo ou de um mínimo. Justifique a resposta. b) Indique os intervalos de monotonia da função. c) A função tem zeros? Identifique-os. d) Prove que -2 não pertence ao contradomínio da função. e) Resolva, em R, a inequação f ( x) ≥ 5 . 6. Admita que uma função h , de domínio R tem um único máximo absoluto 4, um único mínimo absoluto -1 e tem um único zero para x = −3 . a) Indique, justificando, o máximo e o mínimo absolutos da função − 2h( x) . b) Indique, justificando, o zero da função h( x − 5) . c) Justifique a afirmação: “ O ponto de coordenadas (-2,2) pertence ao gráfico da função g ( x ) = h( x − 1) + 2 .” 7. O gráfico da função é constituído por parte de uma y 4 parábola de eixo Oy e por uma semi-recta de declive y=f(x) a) Escreva o polinómio que define a função f , y=0,5x+1 2 considerando que o gráfico é uma parábola. b) Indique os intervalos de variação de f . a 0 1 x c) Indique o contradomínio de f . d) Indique o número de soluções das equações: -2 Prof. Eva Figueiredo www.matematica.com.pt tlm. 919 380 994
  • 3. Funções 10º. ano Pág.3 i) f ( x) − 1 = 0,5 x . ii) f ( x) = 1 e) Por observação do gráfico, indique o conjunto - solução da seguinte condição: f ( x) ≥ 0 ∧ x < 0 . f) Resolva analiticamente a inequação 0,5 x + 1 − 1 ≤ 0 8. Num treino de futebol um jogador, em posição frontal à baliza e a uma distância de 20 metros dela, remata a bola. A altura A , em metros, que a bola atinge, em função da distância d ao jogador, medida na horizontal também em metros, é 1 dada pela expressão: A( d ) = − d (d − 28) . 49 Resolva analiticamente as questões seguintes: a) Determine o valor de A(0) e explique o seu significado no contexto do problema. b) Qual é a altura máxima a que sobe a bola? E a que distância está do jogador? c) Admita que a baliza tem uma altura de 2,4 metros. Será que a bola rematada pelo jogador entra na baliza ou pelo contrário, passa por cima dela? Recorrendo à calculadora gráfica responda à questão, apresentando o resultado arredondado às décimas e incluindo os esboços dos gráficos que considerar pertinentes. 9. Considere a função f, definida por 1 f ( x) = ( x − 4) + 3 2 8 Admita que f ( x ) é a distância ao solo, em metros, do ponto do fio situado a x metros à direita do 1º poste. a) Calcule a altura dos postes. b) Determine a distância ao 2º poste do ponto do fio que está à distância mínima do solo. c) Calcule o valor de x, sabendo que o ponto do fio correspondente está a 7,5 m do solo. Prof. Eva Figueiredo www.matematica.com.pt tlm. 919 380 994
  • 4. Funções 10º. ano Pág.4 10. Lança-se uma flecha para o ar a partir de um ponto situado a quatro metros do solo. Durante o movimento a distância da flecha ao solo, em metros, no instante t, em segundos, é dada por h(t ) = −t 2 + 3t + 4 . 10.1. Em que momentos a flecha está a uma distância do solo de 2 metros? 10.2. Quando é que a flecha atinge o solo? 10.3. A flecha atingirá a altura de 8 metros? Justifica convenientemente a tua resposta. 10.4. Para que valores de t a flecha se encontra a uma distância do solo superior a 6 metros? Porto Editora texto pagina 107,21 11. Considere um triângulo rectângulo de catetos 4 e 6 cm. O ponto P desliza sobre a hipotenusa e vai gerando vários rectângulos. P P P x x x Mostre que a área dos rectângulos é dada em função de x pela função 2 2 A( x) = 4 x − x e indique e seu domínio. 3 12. Mostre analiticamente que − 1 é a única raiz do polinómio x 3 − x 2 + 2 . 13. Considera o polinómio P ( x) = − x3 + 4 x 2 − x − 6 . 13.1. Determina o resto da divisão de P(x) por x − 4 . 13.2. Mostra que 2 é raiz do polinómio. 13.3. Indica o conjunto-solução da equação P ( x) = 0 .Didáctica pag17 prova4 3 Prof. Eva Figueiredo www.matematica.com.pt tlm. 919 380 994