SlideShare a Scribd company logo
1 of 36
Download to read offline
Compatible discretizations in our hearts and minds
Marie E. Rognes
ENUMATH, Voss, Norway
Sept 28 2017
1 / 36
Act I: Simulating the brain’s waterscape
2 / 36
3 / 36
Several neurodegenerative diseases are associated with abnormal
aggregations of proteins in the brain nerve cells
Alzheimer’s disease: extracellular
aggregations of β-amyloid in the gray
matter of the brain
[Glenner and Wong, Biochem Biophys ..., 1984;
Selkoe, Neuron, 1991]
Parkinson’s disease/Dementia with Lewy
bodies: aggregations of α-synuclein in
neurons
[Dawson and Dawson, Science, 2003;
McKeith et al, Lancet, 2004]
Lewy-body (brown) in Parkinson’s disease
[Wikimedia Commons]4 / 36
The lymphatic system clears the body of metabolic waste, what plays the
role of the lymphatics in the brain?
[Wikimedia Commons, Morris et al [2014]]
5 / 36
In the context of cerebral fluid flow and transport, the brain can be viewed
as a multi-porous and elastic medium
A small region of rat cerebral cortex with
black areas representing extracellular space
(Scale bar: ≈ 1µm)
[Nicolson, 2001]
.
The brain parenchyma includes multiple fluid networks
(extracellular spaces, arteries, capillaries, veins, paravascular
spaces)
[Zlokovic, 2011]
. 6 / 36
Multiple-network poroelastic theory (MPET) is a macroscopic model for
poroelastic media with multiple fluid networks
[Bai, Elsworth, Roegiers (1993); Tully and Ventikos (2011)]
7 / 36
The MPET equations describe displacement and A-network pressures under
balance of momentum and mass
Given A ∈ N, f and ga, find the displacement u(x, t) and the pressures pa = pa(x, t)
for a = 1, . . . , A such that
ρ¨u − div(σ∗
− a αapa I) = f,
− div ρaKa ¨u + ca ˙pa + αa div ˙u − div Ka grad pa + Sa = ga, a = 1, . . . , A,
Transfer between networks:
Sa = b sa←b = b ξa←b(pa − pb),
Linearly elastic (isotropic) tissue matrix/pseudo-stress:
σ∗
(u) = 2µε(u) + λ div u I,
A = 1 corresponds to Biot’s equations, A = 2 Barenblatt-Biot. λ → ∞, ca → 0 and
K → 0 interesting regimes.
8 / 36
Standard finite element formulation suffers from Poisson locking (loss of
convergence) in the incompressible limit λ → ∞
u − uh L∞(0,T,L2) Rate u − uh L∞(0,T,H1) Rate
h 0.169 2.066
h/2 0.040 2.09 0.980 1.08
h/4 0.010 2.04 0.480 1.03
h/8 0.002 2.03 0.235 1.03
h/16 0.001 2.09 0.110 1.10
Optimal 3 2
Test case A: Smooth manufactured solution test case inspired by [Yi, 2017 [Section 7.1]] with
div u → 0 as λ → ∞, but linear in time, A = 2, T = 0.5, µ = 0.33, λ = 1.67 × 104
, S = 0, all
other parameters 1, Crank-Nicolson discretization in time. Standard Taylor-Hood
(uh, ph) ∈ Pd
2 × PA
1 discretization in space:
(σ∗
(u), grad v) − a(αapa, div v) = (f, v) ∀ v ∈ Vh
(ca ˙pa + αa div ˙u + Sa, qa) + (Ka grad pa, grad qa) = (ga, qa) ∀ qa ∈ Qa,h
9 / 36
Extensive research on robust finite element methods for Biot’s equations for
all relevant parameter regimes
Stokes-type (two-field) formulations for solid displacement and pore pressure:
(u, p) ∈ H1
(Ω; Rd
) × H1
(Ω);
[Murad, Thomée and Loula (1992-1996)]
Elasticity/Darcy-type (three-field) formulations for solid displacement, fluid
velocity and pore pressure: (u, v, p) ∈ H1
(Ω; Rd
) × H(div, Ω) × L2
(Ω);
[Phillips and Wheeler (2007-2008)]
Mixed Elasticity/Darcy-type (four-field) formulations for solid displacement,
pseudo-stress tensor, fluid flux, pore pressure: (u, σ∗
, v, p);
[Korsake and Starke (2005), Yi (2014), Lee (2016)]
Stabilization techniques;
[Aguilar, Gaspar, Lisbona, and Rodrigo (2008); many others]
Total pressure formulation;
[Ruiz-Bayer (2016); Lee, Mardal and Winther (2017)]
10 / 36
Preliminaries and notation for total-pressure augmented variational
formulation of the quasi-static MPET equations
Let Ω ⊂ Rd
with boundary ∂Ω and T > 0. Minimal complexity boundary conditions:
u = 0 on Γ ⊂ ∂Ω
σ · n ≡ (σ∗
(u) − a αa grad pa) · n = 0 on ∂Ω − Γ = ∅
pa = 0 on ∂Ω, a = 1, . . . , A
Initial conditions for the displacement and all pressures:
u(t = 0) = u0, pa(t = 0) = pa,0 a = 1, . . . , A
Define V = {v ∈ H1
(Ω; Rd
) s.t. v|Γ = 0}, Q0 = L2
(Ω), Qa = H1
0 (Ω), a = 1, . . . , A.
(a, b) ≡
Ω
a · b dx, (a, b)β ≡
Ω
βa · b dx, a 2
β ≡ (a, a)β β ∈ R+
11 / 36
Introducing a total-pressure-augmented variational formulation of the
MPET equations
Key idea: inspired by [Lee, Mardal, Winther, 2017]: introduce the total pressure
p0 = λ div u − A
a=1 αapa ↔ div u = λ−1
α · p
with α = (1, α1, . . . , αA), p = (p0, . . . , pA).
Variational formulation of total-pressure augmented quasi-static MPET
Given ga for a = 1, . . . , A, find u ∈ H1
((0, T]; V ) and pa ∈ H1
((0, T]; Qa) for
a = 0, . . . , A such that
(2µε(u), ε(v)) + (p0, div v) = 0 ∀ v ∈ V
(div u, q0) − (λ−1
α · p, q0) = 0 ∀ q0 ∈ Q0
(ca ˙pa + αaλ−1
α · ˙p + Sa, qa) + (Ka grad pa, grad qa) = (ga, qa) ∀ qa ∈ Qa, a = 1, . . . , A
[Lee, Mardal, Piersanti, R., in prep., 2017]
12 / 36
In the incompressible limit λ → ∞, the total-pressure augmented
quasi-static MPET system decouples
In the incompressible limit λ → ∞, the total-pressure augmented quasi-static MPET
system decouple to an incompressible Stokes system and a set of parabolic/elliptic
equations.
Find u ∈ H1
((0, T]; V ) and pa ∈ H1
((0, T]; Qa) for a = 0, . . . , A such that
(2µε(u), ε(v)) + (p0, div v) = 0 ∀ v ∈ V
(div u, q0) = 0 ∀ q0 ∈ Q0
(ca ˙pa + Sa, qa) + (Ka grad pa, grad qa) = (ga, qa) ∀ qa ∈ Qa
13 / 36
Robust energy estimate for total-pressure augmented quasi-static MPET
Theorem
Assume that u ∈ H1
((0, T]; V ) and pa ∈ H1
((0, T]; Qa) are solutions of the
total-pressure augmented quasi-static MPET variational formulation. Then for all
t ∈ (0, T] and uniformly in λ, ca:
ε(u(t)) 2µ +
A
a=1
pa(t) ca + α · p(t) λ−1 +
A
a=1
grad pa Ka L2(0,t)
ε(u(0)) 2µ +
A
a=1
pa(0) ca + α · p(0) λ−1 +
A
a=1
ga L2(0,t)
Proof.
Standard techniques, summing with v = ˙u, qa = pa for a = 1, . . . , A, q0 = −p0 in
time-derivative of 2nd eq., combined with improved Grönwall-type estimate.
14 / 36
Introducing compatible discrete finite element spaces
Let Th denote a conforming, shape-regular, simplicial
discretization of Ω with discretization size h > 0.
Relative to Th, we define finite element spaces Vh ⊂ V
and Qa,h ⊂ Qa for a = 0, . . . , A.
Assume that
A1: Vh × Q0,h is a stable (in the Brezzi sense) finite element pair for the Stokes
equations;
A2: Qa,h is Poisson-convergent finite element of polynomial order la for a = 1, . . . , A.
These two assumptions are fulfilled by for instance:
Vh × Qh = Pl+1(Th) × PA+1
l (Th) for l = 1, . . . , (Taylor-Hood-type elements).
15 / 36
Semi-discrete variational formulation of the total-pressure augmented
quasi-static MPET equations
Semi-discrete variational formulation of total-pressure quasi-static MPET
For t ∈ (0, T], find uh(t) ∈ Vh and pa,h(t) ∈ Qa,h for a = 0, . . . , A such that
(2µε(uh), ε(v)) + (p0,h, div v) = 0 ∀ v ∈ Vh,
(div uh, q0) − (λ−1
α · ph, q0) = 0 ∀ q0 ∈ Q0,h,
(ca ˙pa,h + αaλ−1
α · ˙ph + Sa,h, qa) + (Ka grad pa,h, grad qa) = (ga, qa) ∀ qa ∈ Qa,h,
for a = 1, . . . , A. Here Sa,h = A
i=1 ξa←b(pa,h − pb,h) and ph = (p0,h, . . . , pA,h).
16 / 36
Introducing Stokes-type and weighted elliptic-type projections as auxiliary
interpolation operators
For any (u, p0) ∈ V × Q0, define the interpolant (ΠV
h u, ΠQ0
h p0) ∈ Vh × Q0,h as the
unique (A1) solution of:
(2µε(ΠV
h u), ε(v)) + (ΠQ0
h p0, div v) = (2µε(u), ε(v)) + (p0, div v) ∀ v ∈ Vh,
(div ΠV
h u, q0) = (div u, q0) ∀ q0 ∈ Q0,h.
For any pa ∈ Qa, define the interpolant ΠQa
h pa ∈ Qa,h as the unique (A2) solution of:
(Ka grad ΠQa
h pa, qa) = (Ka grad pa, grad qa) ∀ qa ∈ Qa,h.
For example, for Taylor-Hood type elements of order l:
u − ΠV
h u 1 + p0 − ΠQ0
h p0 0 hm
( u m+1 + p0 m) 1 ≤ m ≤ l + 1,
pa − ΠQa
h pa 0 h pa − ΠQa
h pa 1 hm+1
pa m+1 1 ≤ m ≤ l.
17 / 36
Uniform semi-discrete a-priori discretization error estimates for the
quasi-static total pressure augmented MPET equations
Introduce standard error decomposition
eu ≡ eI
u + eh
u, eI
u ≡ u − ΠV
h u, eh
u ≡ ΠV
h u − uh;
epa ≡ eI
pa
+ eh
pa
, eI
pa
≡ pa − ΠQa
h pa, eh
pa
≡ ΠQa
h pa − pa,h a = 0, . . . , A.
Lemma
The discretization errors of the total pressure augmented, quasi-static MPET equations, with
Taylor-Hood-type elements of order l, are bounded uniformly in h, ca and λ:
ε(eh
u(t)) 2µ +
A
a=1 eh
pa
(t) ca
+ α · eh
p (t) λ−1 +
A
a=1 grad eh
pa Ka L2(0,t)
hm+1
E(0)µ,ca,λ−1 + p m+1,λ−1 L1(0,t) +
A
a=1 ca ˙pa m+1 + p m+1 L2(0,t)
for 1 ≤ m ≤ l.
Proof.
As for energy estimate using auxiliary interpolation estimates.
18 / 36
The total-pressure augmented formulation restores optimal convergence,
including in the incompressible limit
u − uh L∞(0,T,L2) Rate u − uh L∞(0,T,H1) Rate
h 6.27 × 10−2
1.46 × 100
h/2 7.28 × 10−3
3.11 3.95 × 10−1
1.88
h/4 8.70 × 10−4
3.06 1.01 × 10−1
1.97
h/8 1.07 × 10−4
3.02 2.55 × 10−2
1.99
h/16 1.33 × 10−5
3.01 6.38 × 10−3
2.00
Optimal 3 2
p1 − p1,h L∞(0,T,L2) Rate p1 − p1,h L∞(0,T,H1) Rate
h 1.53 × 10−1
1.68 × 100
h/2 4.07 × 10−2
1.91 8.65 × 10−1
0.96
h/4 1.03 × 10−2
1.98 4.35 × 10−1
0.99
h/8 2.60 × 10−3
1.99 2.18 × 10−1
1.00
h/16 6.49 × 10−4
2.00 1.09 × 10−1
1.00
Optimal 2 1
Test case A with
total-pressure
augmented
Taylor-Hood
Pd
2 × PA+1
1
discretization.
19 / 36
The total-pressure augmented formulation restores optimal convergence,
including in the incompressible limit and zero saturation coefficient
u − uh L∞(0,T,L2) Rate u − uh L∞(0,T,H1) Rate
h 6.27 × 10−2
1.46 × 100
h/2 7.28 × 10−3
3.11 3.95 × 10−1
1.88
h/4 8.70 × 10−4
3.06 1.01 × 10−1
1.97
h/8 1.07 × 10−4
3.02 2.55 × 10−2
1.99
h/16 1.33 × 10−5
3.01 6.38 × 10−3
2.00
Optimal 3 2
p1 − p1,h L∞(0,T,L2) Rate p1 − p1,h L∞(0,T,H1) Rate
h 1.58 × 10−1
1.68 × 100
h/2 4.22 × 10−2
1.90 8.65 × 10−1
0.96
h/4 1.08 × 10−2
1.97 4.35 × 10−1
0.99
h/8 2.70 × 10−3
1.99 2.18 × 10−1
1.00
h/16 6.76 × 10−4
2.00 1.09 × 10−1
1.00
Optimal 2 1
Test case A with
total-pressure
augmented
Taylor-Hood
Pd
2 × PA+1
1
discretization but
with ca = 0.
20 / 36
Total-pressure augmented variational formulation yields natural robust
block-diagonal preconditioner
Total-pressure MPET operator (time-discrete)
A∆t : H1
0 × L2 × (H1
0 )A
→ H−1
× L2 × (H−1
)A
Block-diagonal preconditioner
P−1
A∆tx∆t ≈ P−1
b∆t
P = diag


−µ div grad
I
(ca + αaλ−1
)I + ∆t Sa − ∆tKa div grad


[Piersanti, Lee, R., Mardal, in prep., 2017]
N
λ K1,2 8 16 32 64
100
100
56 57 56 55
10−3
60 61 65 68
10−5
60 61 65 65
10−8
61 61 64 65
103
100
68 72 73 73
10−3
70 72 73 73
10−5
71 73 72 73
10−8
71 72 72 53
105
100
78 52 53 54
10−3
52 54 50 54
10−5
53 54 54 55
10−8
54 52 52 55
# iterations for linear solver convergence
(FEniCS, PETSc, Minres, AMG (hypre))
21 / 36
Investigating paravascular fluid flow driven by subarachnoid space arterial
pressure variations in the murine brain
Pressure pulsation on outer boundary: σ · n = psas · n with psas = 0.008 × 133 sin(2πt) (Pa)
Semi-permeable outer and inner membranes: −K grad p · n = β(p − pin).
Displacement Paravascular fluid pressure Paravascular fluid velocity
[Simulations courtesy of M. Croci; Mesh courtesy of Allen Brain Atlas, Alexandra Diem and Janis Grobovs]
[Vinje, Croci, Mardal, R., in prep., 2017]
22 / 36
How will a highly uncertain permeability field affect peak paravascular flow?
(u, p) quasi-static MPET solutions, v = −Kφ−1
grad p.
Assume that K is a stochastic field:
K(x, (α, β)) = K0eu(x,α)
10v(β)
, x ∈ Ω
u(x, ·) ∼ N(µ, σ2
) | E[eu(x,·)
] = 1, V[eu(x,·)
]1/2
= 0.2
v(·) ∼ U(−2, 2),
Output functional: F(α, β) = C max
t∈(0,T] ROI
|v(t)| dx (α, β)
Preliminary estimates: P(F ∈ [0, 8 × 10−5
] mm/s) ≈ 0.95
E[F] ≈ 2.5 × 10−5
mm/s
V[F] ≈ (3.2 × 10−5
mm/s)2
Techniques: MLMC, white noise on non-nested mesh hierarchies. [Croci, R., Farrell, Giles, in prep., 2017]
23 / 36
Act II: Finite collections of biological cells
24 / 36
The paradigm in computational cardiac modelling has been classical
homogenized models (bidomain, monodomain)
vt − div(Mi grad v + Mi grad ue) = −Iion(v, s)
div(Mi grad v + (Mi + Me) grad ue) = 0
st = F(v, s)
Heart cell: h ≈ 100µm
FEM cell: h ≤ 100µm (!)
25 / 36
[The Guardian, Feb 2 2014]
26 / 36
The emerging EMI framework use a geometrically explicit representation of
the cellular domains
Find the intracellular potential ui in Ωi = ∪kΩk
i ⊂ Rd
, the extracellular potential ue in
Ωe ⊂ Rd
and the membrane potential v (and other membrane variables) on
Γ = Γ1 ∪ Γ2 ∪ Γ1,2.
Ω1
i Ω2
i
Ωe
Γ1 Γ2
Γ1,2
[Stinstra et al, 2010; Agudelo-Toro and Neef, 2013]
27 / 36
The EMI equations describe the dynamics of extracellular, membrane and
intracellular electrical potentials
Find the electric potential u(t) : Ω → R, and the transmembrane potential
v(t) : Γ → R s.t:
div σ grad u = f in Ωi, Ωe
Cmvt + σ grad u · n|Ωi + Iion(v) = 0 on Γ,
with interface conditions on Γ
u = v, (v is the jump in u)
σ grad u · n = 0 (continuity of flux/current)
Boundary condition u = 0 on ∂Ω and initial conditions for v.
For now, Iion(v) = v. (Generally Iion = I(v, s) highly non-linear.)
[Stinstra et al, 2010; Agudelo-Toro and Neef, 2013]
28 / 36
Introducing an H(div)-based variational formulation for the EMI equations
Introduce s = σ grad u in Ωi and Ωe.
Let
U = L2
(Ω), S = H(div, Ω), V = H
1
2 (Γ)
Note that trΓ S = H−1/2
(Γ).
Variational formulation
Find u(t) ∈ U, s(t) ∈ S and v(t) ∈ V satisfying
(div s, φ) = (f, φ) ∀ φ ∈ U,
(σ−1
s, τ) + (div τ, u) − τ · n, v Γ = 0 ∀ τ ∈ S,
−(Cmvt + Iion(v), w)Γ − s · n, w Γ = 0 ∀ w ∈ V.
where n is an outward normal on Γ and (·, ·) is the L2
(Ω)-norm and ·, · Γ the duality
pairing on H−1/2
(Γ) × H1/2
(Γ). [Tveito, Jæger, Kuchta, Mardal, R., 2017]
29 / 36
Semi-discrete H(div)-conforming mixed finite element formulation for the
EMI equations
Take a mesh Th of Ω that conforms to Ωi, Ωe and Γ, and denote by Γh the resulting
mesh of Γ. Define Sh ⊆ S, Uh ⊆ U and Vh ⊆ V for instance:
Sh = RTj(Th), Uh = Pj−1(Th), Vh = Pj−1(Γh)
for j = 1, 2, . . . where P denotes the space of (discontinuous) piecewise polynomials
defined relative to the relevant mesh.
Semi-discrete finite element formulation
Find uh ∈ Uh, s ∈ Sh and v ∈ Vh satisfying
(div sh, φ) = 0 ∀ φ ∈ Uh,
(σ−1
sh, τ) + (div τ, uh) − τ · n, vh Γ = 0 ∀ τ ∈ Sh,
−(Cmvh,t + Iion(vh), w)Γ − sh · n, w Γ = 0 ∀ w ∈ Vh.
[Tveito, Jæger, Kuchta, Mardal, R., 2017]
30 / 36
H(div)-based formulation converges at optimal rates for the EMI equations
Notes
Piecewise smooth manufactured test case [Tveito et al, 2017] ( ˆJ = s).
Convergence rates as expected
Second-order convergence in inf-norm interpolation/superconvergence artifact.
Continuous and discrete Brezzi conditions hold under suitable compatibility
assumptions on the finite element spaces and regularity of the domains. Literature?
31 / 36
A mortar finite element formulation of the EMI equations (I)
Assume K biological cells Ωk
i with
meshes T k
i,h, extracellular domain Ωe
with mesh Te,h, and membrane Γh:
Γh =
K
k=1
Γk ∪
g
Γg
Define finite element spaces:
Ue = {v ∈ C0
(Te,h) | v|T = P1(T) ∀ T ∈ Te,h},
Uk
i = same over T k
i,h for each k,
V = {v ∈ C0
(Γh) | v|γ = P1(γ) ∀ γ ∈ Γh}
[Belgacem 1999; Lamichhane and Wohlmuth, 2004]
32 / 36
A mortar finite element formulation of the EMI equations (II)
Denote Ji
= J|Γi for Γi ⊂ Γh and u Γi the jump in u across a membrane segment Γi.
Mortar finite element formulation
At each time step (or operator splitting step) with step size ∆t, given v ∈ V , find the
extracellular potential ue ∈ Ue,h and intracellular potentials uk
i ∈ Uk
i,h and membrane
current densities J ∈ V such that
(σi grad uk
i , grad φk
i ) + (Jk
, φk
i )Γk
± (Jg(k)
, φk
i )Γg(k)
= 0 ∀ φk
i ∈ Uk
i , ∀ k
(σe grad ue, grad φe) − K
k=1(Jk
, φe)Γk
= 0 ∀ φe ∈ Ue
( u Γi , ψi
)Γi − C−1
m (∆t)(Ji
, ψi
)Γi = (v|Γi , ψi
)Γi ∀ ψ ∈ V, ∀ Γi ⊂ Γh
Update u Γi → v for each Γi.
[Agudelo-Toro and Neef, 2013; Tveito, Jæger, Kuchta, Mardal, R., 2017]
33 / 36
Mortar formulation converges at optimal rates for the EMI equations
Notes
Piecewise smooth manufactured test case ([Tveito et al, 2017]).
Convergence rates mostly as expected (superconv. in J artifact of test case?)
Rates between 1 − 2 closer to 2 for refined time discretization
34 / 36
The EMI framework allows for investigating fundamentally local variations in
cell and membrane properties
Q: How do the spatial distribution of Na+
channels affect the conduction velocity?
Iion(v) = Iion(v, s, gNa), st = F(v, s, gNa)
Activation times tmin|v(t) ≥ 0 (blue) and conduction
velocities (orange) along length of two (biological) cells
A: Conduction velocity is increased for the
case with a varying value of gNa compared
to the case with a constant value.
35 / 36
Collaborators
Matteo Croci (University of Oxford/Simula)
Per-Kristian Eide (Oslo University Hospital)
Patrick E. Farrell (University of Oxford)
Mike Giles (University of Oxford)
Janis Grobovs (University of Oslo)
Karoline Horgmo Jæger (Simula)
Miroslav Kuchta (University of Oslo)
Jeonghun Lee (ICES/UT Austin)
Kent-Andre Mardal (University of Oslo)
Eleonora Piersanti (Simula)
Aslak Tveito (Simula)
Vegard Vinje (Simula)
Core message
Mathematical models can give new insight
into medicine, – and the human body gives
an extraordinary rich setting for
mathematics and numerics!
Thank you!
36 / 36

More Related Content

What's hot

somenath_fixedpoint_dasguptaIMF17-20-2013
somenath_fixedpoint_dasguptaIMF17-20-2013somenath_fixedpoint_dasguptaIMF17-20-2013
somenath_fixedpoint_dasguptaIMF17-20-2013
Somenath Bandyopadhyay
 

What's hot (20)

2018 MUMS Fall Course - Statistical Representation of Model Input (EDITED) - ...
2018 MUMS Fall Course - Statistical Representation of Model Input (EDITED) - ...2018 MUMS Fall Course - Statistical Representation of Model Input (EDITED) - ...
2018 MUMS Fall Course - Statistical Representation of Model Input (EDITED) - ...
 
somenath_fixedpoint_dasguptaIMF17-20-2013
somenath_fixedpoint_dasguptaIMF17-20-2013somenath_fixedpoint_dasguptaIMF17-20-2013
somenath_fixedpoint_dasguptaIMF17-20-2013
 
Asymptotic Behavior of Solutions of Nonlinear Neutral Delay Forced Impulsive ...
Asymptotic Behavior of Solutions of Nonlinear Neutral Delay Forced Impulsive ...Asymptotic Behavior of Solutions of Nonlinear Neutral Delay Forced Impulsive ...
Asymptotic Behavior of Solutions of Nonlinear Neutral Delay Forced Impulsive ...
 
SIAMSEAS2015
SIAMSEAS2015SIAMSEAS2015
SIAMSEAS2015
 
Existence of positive solutions for fractional q-difference equations involvi...
Existence of positive solutions for fractional q-difference equations involvi...Existence of positive solutions for fractional q-difference equations involvi...
Existence of positive solutions for fractional q-difference equations involvi...
 
Multivariate Gaussin, Rayleigh & Rician distributions
Multivariate Gaussin, Rayleigh & Rician distributionsMultivariate Gaussin, Rayleigh & Rician distributions
Multivariate Gaussin, Rayleigh & Rician distributions
 
Stochastic Processes - part 1
Stochastic Processes - part 1Stochastic Processes - part 1
Stochastic Processes - part 1
 
Cyclo-stationary processes
Cyclo-stationary processesCyclo-stationary processes
Cyclo-stationary processes
 
ON COMPUTATIONS OF THPD MATRICES
ON COMPUTATIONS OF THPD MATRICESON COMPUTATIONS OF THPD MATRICES
ON COMPUTATIONS OF THPD MATRICES
 
Nokton theory-en
Nokton theory-enNokton theory-en
Nokton theory-en
 
On Twisted Paraproducts and some other Multilinear Singular Integrals
On Twisted Paraproducts and some other Multilinear Singular IntegralsOn Twisted Paraproducts and some other Multilinear Singular Integrals
On Twisted Paraproducts and some other Multilinear Singular Integrals
 
Freezing of energy of a soliton in an external potential
Freezing of energy of a soliton in an external potentialFreezing of energy of a soliton in an external potential
Freezing of energy of a soliton in an external potential
 
2018 MUMS Fall Course - Statistical and Mathematical Techniques for Sensitivi...
2018 MUMS Fall Course - Statistical and Mathematical Techniques for Sensitivi...2018 MUMS Fall Course - Statistical and Mathematical Techniques for Sensitivi...
2018 MUMS Fall Course - Statistical and Mathematical Techniques for Sensitivi...
 
Stochastic Processes - part 5
Stochastic Processes - part 5Stochastic Processes - part 5
Stochastic Processes - part 5
 
Stochastic Processes - part 4
Stochastic Processes - part 4Stochastic Processes - part 4
Stochastic Processes - part 4
 
STUDIES ON INTUTIONISTIC FUZZY INFORMATION MEASURE
STUDIES ON INTUTIONISTIC FUZZY INFORMATION MEASURESTUDIES ON INTUTIONISTIC FUZZY INFORMATION MEASURE
STUDIES ON INTUTIONISTIC FUZZY INFORMATION MEASURE
 
Common Fixed Point Theorems For Occasionally Weakely Compatible Mappings
Common Fixed Point Theorems For Occasionally Weakely Compatible MappingsCommon Fixed Point Theorems For Occasionally Weakely Compatible Mappings
Common Fixed Point Theorems For Occasionally Weakely Compatible Mappings
 
On Convergence of Jungck Type Iteration for Certain Contractive Conditions
On Convergence of Jungck Type Iteration for Certain Contractive ConditionsOn Convergence of Jungck Type Iteration for Certain Contractive Conditions
On Convergence of Jungck Type Iteration for Certain Contractive Conditions
 
Random Variables
Random VariablesRandom Variables
Random Variables
 
Neuronal self-organized criticality
Neuronal self-organized criticalityNeuronal self-organized criticality
Neuronal self-organized criticality
 

Similar to Compatible discretizations in our hearts and minds

sublabel accurate convex relaxation of vectorial multilabel energies
sublabel accurate convex relaxation of vectorial multilabel energiessublabel accurate convex relaxation of vectorial multilabel energies
sublabel accurate convex relaxation of vectorial multilabel energies
Fujimoto Keisuke
 

Similar to Compatible discretizations in our hearts and minds (20)

quan2009.pdf
quan2009.pdfquan2009.pdf
quan2009.pdf
 
QMC: Operator Splitting Workshop, Thresholdings, Robustness, and Generalized ...
QMC: Operator Splitting Workshop, Thresholdings, Robustness, and Generalized ...QMC: Operator Splitting Workshop, Thresholdings, Robustness, and Generalized ...
QMC: Operator Splitting Workshop, Thresholdings, Robustness, and Generalized ...
 
QMC: Operator Splitting Workshop, Compactness Estimates for Nonlinear PDEs - ...
QMC: Operator Splitting Workshop, Compactness Estimates for Nonlinear PDEs - ...QMC: Operator Splitting Workshop, Compactness Estimates for Nonlinear PDEs - ...
QMC: Operator Splitting Workshop, Compactness Estimates for Nonlinear PDEs - ...
 
Minimum mean square error estimation and approximation of the Bayesian update
Minimum mean square error estimation and approximation of the Bayesian updateMinimum mean square error estimation and approximation of the Bayesian update
Minimum mean square error estimation and approximation of the Bayesian update
 
Akitoshi Takayasu
Akitoshi TakayasuAkitoshi Takayasu
Akitoshi Takayasu
 
Ph 101-9 QUANTUM MACHANICS
Ph 101-9 QUANTUM MACHANICSPh 101-9 QUANTUM MACHANICS
Ph 101-9 QUANTUM MACHANICS
 
PCA on graph/network
PCA on graph/networkPCA on graph/network
PCA on graph/network
 
590-Article Text.pdf
590-Article Text.pdf590-Article Text.pdf
590-Article Text.pdf
 
590-Article Text.pdf
590-Article Text.pdf590-Article Text.pdf
590-Article Text.pdf
 
Mathematical modelling of human brain transport: from medical images to bioph...
Mathematical modelling of human brain transport: from medical images to bioph...Mathematical modelling of human brain transport: from medical images to bioph...
Mathematical modelling of human brain transport: from medical images to bioph...
 
sublabel accurate convex relaxation of vectorial multilabel energies
sublabel accurate convex relaxation of vectorial multilabel energiessublabel accurate convex relaxation of vectorial multilabel energies
sublabel accurate convex relaxation of vectorial multilabel energies
 
Solving High-order Non-linear Partial Differential Equations by Modified q-Ho...
Solving High-order Non-linear Partial Differential Equations by Modified q-Ho...Solving High-order Non-linear Partial Differential Equations by Modified q-Ho...
Solving High-order Non-linear Partial Differential Equations by Modified q-Ho...
 
A new axisymmetric finite element
A new axisymmetric finite elementA new axisymmetric finite element
A new axisymmetric finite element
 
9 pd es
9 pd es9 pd es
9 pd es
 
COMMON FIXED POINT THEOREMS IN COMPATIBLE MAPPINGS OF TYPE (P*) OF GENERALIZE...
COMMON FIXED POINT THEOREMS IN COMPATIBLE MAPPINGS OF TYPE (P*) OF GENERALIZE...COMMON FIXED POINT THEOREMS IN COMPATIBLE MAPPINGS OF TYPE (P*) OF GENERALIZE...
COMMON FIXED POINT THEOREMS IN COMPATIBLE MAPPINGS OF TYPE (P*) OF GENERALIZE...
 
COMMON FIXED POINT THEOREMS IN COMPATIBLE MAPPINGS OF TYPE (P*) OF GENERALIZE...
COMMON FIXED POINT THEOREMS IN COMPATIBLE MAPPINGS OF TYPE (P*) OF GENERALIZE...COMMON FIXED POINT THEOREMS IN COMPATIBLE MAPPINGS OF TYPE (P*) OF GENERALIZE...
COMMON FIXED POINT THEOREMS IN COMPATIBLE MAPPINGS OF TYPE (P*) OF GENERALIZE...
 
COMMON FIXED POINT THEOREMS IN COMPATIBLE MAPPINGS OF TYPE (P*) OF GENERALIZE...
COMMON FIXED POINT THEOREMS IN COMPATIBLE MAPPINGS OF TYPE (P*) OF GENERALIZE...COMMON FIXED POINT THEOREMS IN COMPATIBLE MAPPINGS OF TYPE (P*) OF GENERALIZE...
COMMON FIXED POINT THEOREMS IN COMPATIBLE MAPPINGS OF TYPE (P*) OF GENERALIZE...
 
COMMON FIXED POINT THEOREMS IN COMPATIBLE MAPPINGS OF TYPE (P*) OF GENERALIZE...
COMMON FIXED POINT THEOREMS IN COMPATIBLE MAPPINGS OF TYPE (P*) OF GENERALIZE...COMMON FIXED POINT THEOREMS IN COMPATIBLE MAPPINGS OF TYPE (P*) OF GENERALIZE...
COMMON FIXED POINT THEOREMS IN COMPATIBLE MAPPINGS OF TYPE (P*) OF GENERALIZE...
 
Estimating structured vector autoregressive models
Estimating structured vector autoregressive modelsEstimating structured vector autoregressive models
Estimating structured vector autoregressive models
 
Physical Chemistry Assignment Help
Physical Chemistry Assignment HelpPhysical Chemistry Assignment Help
Physical Chemistry Assignment Help
 

Recently uploaded

dkNET Webinar "Texera: A Scalable Cloud Computing Platform for Sharing Data a...
dkNET Webinar "Texera: A Scalable Cloud Computing Platform for Sharing Data a...dkNET Webinar "Texera: A Scalable Cloud Computing Platform for Sharing Data a...
dkNET Webinar "Texera: A Scalable Cloud Computing Platform for Sharing Data a...
dkNET
 
SCIENCE-4-QUARTER4-WEEK-4-PPT-1 (1).pptx
SCIENCE-4-QUARTER4-WEEK-4-PPT-1 (1).pptxSCIENCE-4-QUARTER4-WEEK-4-PPT-1 (1).pptx
SCIENCE-4-QUARTER4-WEEK-4-PPT-1 (1).pptx
RizalinePalanog2
 
Module for Grade 9 for Asynchronous/Distance learning
Module for Grade 9 for Asynchronous/Distance learningModule for Grade 9 for Asynchronous/Distance learning
Module for Grade 9 for Asynchronous/Distance learning
levieagacer
 

Recently uploaded (20)

dkNET Webinar "Texera: A Scalable Cloud Computing Platform for Sharing Data a...
dkNET Webinar "Texera: A Scalable Cloud Computing Platform for Sharing Data a...dkNET Webinar "Texera: A Scalable Cloud Computing Platform for Sharing Data a...
dkNET Webinar "Texera: A Scalable Cloud Computing Platform for Sharing Data a...
 
Locating and isolating a gene, FISH, GISH, Chromosome walking and jumping, te...
Locating and isolating a gene, FISH, GISH, Chromosome walking and jumping, te...Locating and isolating a gene, FISH, GISH, Chromosome walking and jumping, te...
Locating and isolating a gene, FISH, GISH, Chromosome walking and jumping, te...
 
Dopamine neurotransmitter determination using graphite sheet- graphene nano-s...
Dopamine neurotransmitter determination using graphite sheet- graphene nano-s...Dopamine neurotransmitter determination using graphite sheet- graphene nano-s...
Dopamine neurotransmitter determination using graphite sheet- graphene nano-s...
 
Pulmonary drug delivery system M.pharm -2nd sem P'ceutics
Pulmonary drug delivery system M.pharm -2nd sem P'ceuticsPulmonary drug delivery system M.pharm -2nd sem P'ceutics
Pulmonary drug delivery system M.pharm -2nd sem P'ceutics
 
GBSN - Biochemistry (Unit 1)
GBSN - Biochemistry (Unit 1)GBSN - Biochemistry (Unit 1)
GBSN - Biochemistry (Unit 1)
 
SCIENCE-4-QUARTER4-WEEK-4-PPT-1 (1).pptx
SCIENCE-4-QUARTER4-WEEK-4-PPT-1 (1).pptxSCIENCE-4-QUARTER4-WEEK-4-PPT-1 (1).pptx
SCIENCE-4-QUARTER4-WEEK-4-PPT-1 (1).pptx
 
Kochi ❤CALL GIRL 84099*07087 ❤CALL GIRLS IN Kochi ESCORT SERVICE❤CALL GIRL
Kochi ❤CALL GIRL 84099*07087 ❤CALL GIRLS IN Kochi ESCORT SERVICE❤CALL GIRLKochi ❤CALL GIRL 84099*07087 ❤CALL GIRLS IN Kochi ESCORT SERVICE❤CALL GIRL
Kochi ❤CALL GIRL 84099*07087 ❤CALL GIRLS IN Kochi ESCORT SERVICE❤CALL GIRL
 
Site Acceptance Test .
Site Acceptance Test                    .Site Acceptance Test                    .
Site Acceptance Test .
 
STS-UNIT 4 CLIMATE CHANGE POWERPOINT PRESENTATION
STS-UNIT 4 CLIMATE CHANGE POWERPOINT PRESENTATIONSTS-UNIT 4 CLIMATE CHANGE POWERPOINT PRESENTATION
STS-UNIT 4 CLIMATE CHANGE POWERPOINT PRESENTATION
 
High Class Escorts in Hyderabad ₹7.5k Pick Up & Drop With Cash Payment 969456...
High Class Escorts in Hyderabad ₹7.5k Pick Up & Drop With Cash Payment 969456...High Class Escorts in Hyderabad ₹7.5k Pick Up & Drop With Cash Payment 969456...
High Class Escorts in Hyderabad ₹7.5k Pick Up & Drop With Cash Payment 969456...
 
COMPUTING ANTI-DERIVATIVES (Integration by SUBSTITUTION)
COMPUTING ANTI-DERIVATIVES(Integration by SUBSTITUTION)COMPUTING ANTI-DERIVATIVES(Integration by SUBSTITUTION)
COMPUTING ANTI-DERIVATIVES (Integration by SUBSTITUTION)
 
CELL -Structural and Functional unit of life.pdf
CELL -Structural and Functional unit of life.pdfCELL -Structural and Functional unit of life.pdf
CELL -Structural and Functional unit of life.pdf
 
Clean In Place(CIP).pptx .
Clean In Place(CIP).pptx                 .Clean In Place(CIP).pptx                 .
Clean In Place(CIP).pptx .
 
GBSN - Microbiology (Unit 1)
GBSN - Microbiology (Unit 1)GBSN - Microbiology (Unit 1)
GBSN - Microbiology (Unit 1)
 
Module for Grade 9 for Asynchronous/Distance learning
Module for Grade 9 for Asynchronous/Distance learningModule for Grade 9 for Asynchronous/Distance learning
Module for Grade 9 for Asynchronous/Distance learning
 
module for grade 9 for distance learning
module for grade 9 for distance learningmodule for grade 9 for distance learning
module for grade 9 for distance learning
 
Feature-aligned N-BEATS with Sinkhorn divergence (ICLR '24)
Feature-aligned N-BEATS with Sinkhorn divergence (ICLR '24)Feature-aligned N-BEATS with Sinkhorn divergence (ICLR '24)
Feature-aligned N-BEATS with Sinkhorn divergence (ICLR '24)
 
Zoology 5th semester notes( Sumit_yadav).pdf
Zoology 5th semester notes( Sumit_yadav).pdfZoology 5th semester notes( Sumit_yadav).pdf
Zoology 5th semester notes( Sumit_yadav).pdf
 
High Profile 🔝 8250077686 📞 Call Girls Service in GTB Nagar🍑
High Profile 🔝 8250077686 📞 Call Girls Service in GTB Nagar🍑High Profile 🔝 8250077686 📞 Call Girls Service in GTB Nagar🍑
High Profile 🔝 8250077686 📞 Call Girls Service in GTB Nagar🍑
 
Justdial Call Girls In Indirapuram, Ghaziabad, 8800357707 Escorts Service
Justdial Call Girls In Indirapuram, Ghaziabad, 8800357707 Escorts ServiceJustdial Call Girls In Indirapuram, Ghaziabad, 8800357707 Escorts Service
Justdial Call Girls In Indirapuram, Ghaziabad, 8800357707 Escorts Service
 

Compatible discretizations in our hearts and minds

  • 1. Compatible discretizations in our hearts and minds Marie E. Rognes ENUMATH, Voss, Norway Sept 28 2017 1 / 36
  • 2. Act I: Simulating the brain’s waterscape 2 / 36
  • 4. Several neurodegenerative diseases are associated with abnormal aggregations of proteins in the brain nerve cells Alzheimer’s disease: extracellular aggregations of β-amyloid in the gray matter of the brain [Glenner and Wong, Biochem Biophys ..., 1984; Selkoe, Neuron, 1991] Parkinson’s disease/Dementia with Lewy bodies: aggregations of α-synuclein in neurons [Dawson and Dawson, Science, 2003; McKeith et al, Lancet, 2004] Lewy-body (brown) in Parkinson’s disease [Wikimedia Commons]4 / 36
  • 5. The lymphatic system clears the body of metabolic waste, what plays the role of the lymphatics in the brain? [Wikimedia Commons, Morris et al [2014]] 5 / 36
  • 6. In the context of cerebral fluid flow and transport, the brain can be viewed as a multi-porous and elastic medium A small region of rat cerebral cortex with black areas representing extracellular space (Scale bar: ≈ 1µm) [Nicolson, 2001] . The brain parenchyma includes multiple fluid networks (extracellular spaces, arteries, capillaries, veins, paravascular spaces) [Zlokovic, 2011] . 6 / 36
  • 7. Multiple-network poroelastic theory (MPET) is a macroscopic model for poroelastic media with multiple fluid networks [Bai, Elsworth, Roegiers (1993); Tully and Ventikos (2011)] 7 / 36
  • 8. The MPET equations describe displacement and A-network pressures under balance of momentum and mass Given A ∈ N, f and ga, find the displacement u(x, t) and the pressures pa = pa(x, t) for a = 1, . . . , A such that ρ¨u − div(σ∗ − a αapa I) = f, − div ρaKa ¨u + ca ˙pa + αa div ˙u − div Ka grad pa + Sa = ga, a = 1, . . . , A, Transfer between networks: Sa = b sa←b = b ξa←b(pa − pb), Linearly elastic (isotropic) tissue matrix/pseudo-stress: σ∗ (u) = 2µε(u) + λ div u I, A = 1 corresponds to Biot’s equations, A = 2 Barenblatt-Biot. λ → ∞, ca → 0 and K → 0 interesting regimes. 8 / 36
  • 9. Standard finite element formulation suffers from Poisson locking (loss of convergence) in the incompressible limit λ → ∞ u − uh L∞(0,T,L2) Rate u − uh L∞(0,T,H1) Rate h 0.169 2.066 h/2 0.040 2.09 0.980 1.08 h/4 0.010 2.04 0.480 1.03 h/8 0.002 2.03 0.235 1.03 h/16 0.001 2.09 0.110 1.10 Optimal 3 2 Test case A: Smooth manufactured solution test case inspired by [Yi, 2017 [Section 7.1]] with div u → 0 as λ → ∞, but linear in time, A = 2, T = 0.5, µ = 0.33, λ = 1.67 × 104 , S = 0, all other parameters 1, Crank-Nicolson discretization in time. Standard Taylor-Hood (uh, ph) ∈ Pd 2 × PA 1 discretization in space: (σ∗ (u), grad v) − a(αapa, div v) = (f, v) ∀ v ∈ Vh (ca ˙pa + αa div ˙u + Sa, qa) + (Ka grad pa, grad qa) = (ga, qa) ∀ qa ∈ Qa,h 9 / 36
  • 10. Extensive research on robust finite element methods for Biot’s equations for all relevant parameter regimes Stokes-type (two-field) formulations for solid displacement and pore pressure: (u, p) ∈ H1 (Ω; Rd ) × H1 (Ω); [Murad, Thomée and Loula (1992-1996)] Elasticity/Darcy-type (three-field) formulations for solid displacement, fluid velocity and pore pressure: (u, v, p) ∈ H1 (Ω; Rd ) × H(div, Ω) × L2 (Ω); [Phillips and Wheeler (2007-2008)] Mixed Elasticity/Darcy-type (four-field) formulations for solid displacement, pseudo-stress tensor, fluid flux, pore pressure: (u, σ∗ , v, p); [Korsake and Starke (2005), Yi (2014), Lee (2016)] Stabilization techniques; [Aguilar, Gaspar, Lisbona, and Rodrigo (2008); many others] Total pressure formulation; [Ruiz-Bayer (2016); Lee, Mardal and Winther (2017)] 10 / 36
  • 11. Preliminaries and notation for total-pressure augmented variational formulation of the quasi-static MPET equations Let Ω ⊂ Rd with boundary ∂Ω and T > 0. Minimal complexity boundary conditions: u = 0 on Γ ⊂ ∂Ω σ · n ≡ (σ∗ (u) − a αa grad pa) · n = 0 on ∂Ω − Γ = ∅ pa = 0 on ∂Ω, a = 1, . . . , A Initial conditions for the displacement and all pressures: u(t = 0) = u0, pa(t = 0) = pa,0 a = 1, . . . , A Define V = {v ∈ H1 (Ω; Rd ) s.t. v|Γ = 0}, Q0 = L2 (Ω), Qa = H1 0 (Ω), a = 1, . . . , A. (a, b) ≡ Ω a · b dx, (a, b)β ≡ Ω βa · b dx, a 2 β ≡ (a, a)β β ∈ R+ 11 / 36
  • 12. Introducing a total-pressure-augmented variational formulation of the MPET equations Key idea: inspired by [Lee, Mardal, Winther, 2017]: introduce the total pressure p0 = λ div u − A a=1 αapa ↔ div u = λ−1 α · p with α = (1, α1, . . . , αA), p = (p0, . . . , pA). Variational formulation of total-pressure augmented quasi-static MPET Given ga for a = 1, . . . , A, find u ∈ H1 ((0, T]; V ) and pa ∈ H1 ((0, T]; Qa) for a = 0, . . . , A such that (2µε(u), ε(v)) + (p0, div v) = 0 ∀ v ∈ V (div u, q0) − (λ−1 α · p, q0) = 0 ∀ q0 ∈ Q0 (ca ˙pa + αaλ−1 α · ˙p + Sa, qa) + (Ka grad pa, grad qa) = (ga, qa) ∀ qa ∈ Qa, a = 1, . . . , A [Lee, Mardal, Piersanti, R., in prep., 2017] 12 / 36
  • 13. In the incompressible limit λ → ∞, the total-pressure augmented quasi-static MPET system decouples In the incompressible limit λ → ∞, the total-pressure augmented quasi-static MPET system decouple to an incompressible Stokes system and a set of parabolic/elliptic equations. Find u ∈ H1 ((0, T]; V ) and pa ∈ H1 ((0, T]; Qa) for a = 0, . . . , A such that (2µε(u), ε(v)) + (p0, div v) = 0 ∀ v ∈ V (div u, q0) = 0 ∀ q0 ∈ Q0 (ca ˙pa + Sa, qa) + (Ka grad pa, grad qa) = (ga, qa) ∀ qa ∈ Qa 13 / 36
  • 14. Robust energy estimate for total-pressure augmented quasi-static MPET Theorem Assume that u ∈ H1 ((0, T]; V ) and pa ∈ H1 ((0, T]; Qa) are solutions of the total-pressure augmented quasi-static MPET variational formulation. Then for all t ∈ (0, T] and uniformly in λ, ca: ε(u(t)) 2µ + A a=1 pa(t) ca + α · p(t) λ−1 + A a=1 grad pa Ka L2(0,t) ε(u(0)) 2µ + A a=1 pa(0) ca + α · p(0) λ−1 + A a=1 ga L2(0,t) Proof. Standard techniques, summing with v = ˙u, qa = pa for a = 1, . . . , A, q0 = −p0 in time-derivative of 2nd eq., combined with improved Grönwall-type estimate. 14 / 36
  • 15. Introducing compatible discrete finite element spaces Let Th denote a conforming, shape-regular, simplicial discretization of Ω with discretization size h > 0. Relative to Th, we define finite element spaces Vh ⊂ V and Qa,h ⊂ Qa for a = 0, . . . , A. Assume that A1: Vh × Q0,h is a stable (in the Brezzi sense) finite element pair for the Stokes equations; A2: Qa,h is Poisson-convergent finite element of polynomial order la for a = 1, . . . , A. These two assumptions are fulfilled by for instance: Vh × Qh = Pl+1(Th) × PA+1 l (Th) for l = 1, . . . , (Taylor-Hood-type elements). 15 / 36
  • 16. Semi-discrete variational formulation of the total-pressure augmented quasi-static MPET equations Semi-discrete variational formulation of total-pressure quasi-static MPET For t ∈ (0, T], find uh(t) ∈ Vh and pa,h(t) ∈ Qa,h for a = 0, . . . , A such that (2µε(uh), ε(v)) + (p0,h, div v) = 0 ∀ v ∈ Vh, (div uh, q0) − (λ−1 α · ph, q0) = 0 ∀ q0 ∈ Q0,h, (ca ˙pa,h + αaλ−1 α · ˙ph + Sa,h, qa) + (Ka grad pa,h, grad qa) = (ga, qa) ∀ qa ∈ Qa,h, for a = 1, . . . , A. Here Sa,h = A i=1 ξa←b(pa,h − pb,h) and ph = (p0,h, . . . , pA,h). 16 / 36
  • 17. Introducing Stokes-type and weighted elliptic-type projections as auxiliary interpolation operators For any (u, p0) ∈ V × Q0, define the interpolant (ΠV h u, ΠQ0 h p0) ∈ Vh × Q0,h as the unique (A1) solution of: (2µε(ΠV h u), ε(v)) + (ΠQ0 h p0, div v) = (2µε(u), ε(v)) + (p0, div v) ∀ v ∈ Vh, (div ΠV h u, q0) = (div u, q0) ∀ q0 ∈ Q0,h. For any pa ∈ Qa, define the interpolant ΠQa h pa ∈ Qa,h as the unique (A2) solution of: (Ka grad ΠQa h pa, qa) = (Ka grad pa, grad qa) ∀ qa ∈ Qa,h. For example, for Taylor-Hood type elements of order l: u − ΠV h u 1 + p0 − ΠQ0 h p0 0 hm ( u m+1 + p0 m) 1 ≤ m ≤ l + 1, pa − ΠQa h pa 0 h pa − ΠQa h pa 1 hm+1 pa m+1 1 ≤ m ≤ l. 17 / 36
  • 18. Uniform semi-discrete a-priori discretization error estimates for the quasi-static total pressure augmented MPET equations Introduce standard error decomposition eu ≡ eI u + eh u, eI u ≡ u − ΠV h u, eh u ≡ ΠV h u − uh; epa ≡ eI pa + eh pa , eI pa ≡ pa − ΠQa h pa, eh pa ≡ ΠQa h pa − pa,h a = 0, . . . , A. Lemma The discretization errors of the total pressure augmented, quasi-static MPET equations, with Taylor-Hood-type elements of order l, are bounded uniformly in h, ca and λ: ε(eh u(t)) 2µ + A a=1 eh pa (t) ca + α · eh p (t) λ−1 + A a=1 grad eh pa Ka L2(0,t) hm+1 E(0)µ,ca,λ−1 + p m+1,λ−1 L1(0,t) + A a=1 ca ˙pa m+1 + p m+1 L2(0,t) for 1 ≤ m ≤ l. Proof. As for energy estimate using auxiliary interpolation estimates. 18 / 36
  • 19. The total-pressure augmented formulation restores optimal convergence, including in the incompressible limit u − uh L∞(0,T,L2) Rate u − uh L∞(0,T,H1) Rate h 6.27 × 10−2 1.46 × 100 h/2 7.28 × 10−3 3.11 3.95 × 10−1 1.88 h/4 8.70 × 10−4 3.06 1.01 × 10−1 1.97 h/8 1.07 × 10−4 3.02 2.55 × 10−2 1.99 h/16 1.33 × 10−5 3.01 6.38 × 10−3 2.00 Optimal 3 2 p1 − p1,h L∞(0,T,L2) Rate p1 − p1,h L∞(0,T,H1) Rate h 1.53 × 10−1 1.68 × 100 h/2 4.07 × 10−2 1.91 8.65 × 10−1 0.96 h/4 1.03 × 10−2 1.98 4.35 × 10−1 0.99 h/8 2.60 × 10−3 1.99 2.18 × 10−1 1.00 h/16 6.49 × 10−4 2.00 1.09 × 10−1 1.00 Optimal 2 1 Test case A with total-pressure augmented Taylor-Hood Pd 2 × PA+1 1 discretization. 19 / 36
  • 20. The total-pressure augmented formulation restores optimal convergence, including in the incompressible limit and zero saturation coefficient u − uh L∞(0,T,L2) Rate u − uh L∞(0,T,H1) Rate h 6.27 × 10−2 1.46 × 100 h/2 7.28 × 10−3 3.11 3.95 × 10−1 1.88 h/4 8.70 × 10−4 3.06 1.01 × 10−1 1.97 h/8 1.07 × 10−4 3.02 2.55 × 10−2 1.99 h/16 1.33 × 10−5 3.01 6.38 × 10−3 2.00 Optimal 3 2 p1 − p1,h L∞(0,T,L2) Rate p1 − p1,h L∞(0,T,H1) Rate h 1.58 × 10−1 1.68 × 100 h/2 4.22 × 10−2 1.90 8.65 × 10−1 0.96 h/4 1.08 × 10−2 1.97 4.35 × 10−1 0.99 h/8 2.70 × 10−3 1.99 2.18 × 10−1 1.00 h/16 6.76 × 10−4 2.00 1.09 × 10−1 1.00 Optimal 2 1 Test case A with total-pressure augmented Taylor-Hood Pd 2 × PA+1 1 discretization but with ca = 0. 20 / 36
  • 21. Total-pressure augmented variational formulation yields natural robust block-diagonal preconditioner Total-pressure MPET operator (time-discrete) A∆t : H1 0 × L2 × (H1 0 )A → H−1 × L2 × (H−1 )A Block-diagonal preconditioner P−1 A∆tx∆t ≈ P−1 b∆t P = diag   −µ div grad I (ca + αaλ−1 )I + ∆t Sa − ∆tKa div grad   [Piersanti, Lee, R., Mardal, in prep., 2017] N λ K1,2 8 16 32 64 100 100 56 57 56 55 10−3 60 61 65 68 10−5 60 61 65 65 10−8 61 61 64 65 103 100 68 72 73 73 10−3 70 72 73 73 10−5 71 73 72 73 10−8 71 72 72 53 105 100 78 52 53 54 10−3 52 54 50 54 10−5 53 54 54 55 10−8 54 52 52 55 # iterations for linear solver convergence (FEniCS, PETSc, Minres, AMG (hypre)) 21 / 36
  • 22. Investigating paravascular fluid flow driven by subarachnoid space arterial pressure variations in the murine brain Pressure pulsation on outer boundary: σ · n = psas · n with psas = 0.008 × 133 sin(2πt) (Pa) Semi-permeable outer and inner membranes: −K grad p · n = β(p − pin). Displacement Paravascular fluid pressure Paravascular fluid velocity [Simulations courtesy of M. Croci; Mesh courtesy of Allen Brain Atlas, Alexandra Diem and Janis Grobovs] [Vinje, Croci, Mardal, R., in prep., 2017] 22 / 36
  • 23. How will a highly uncertain permeability field affect peak paravascular flow? (u, p) quasi-static MPET solutions, v = −Kφ−1 grad p. Assume that K is a stochastic field: K(x, (α, β)) = K0eu(x,α) 10v(β) , x ∈ Ω u(x, ·) ∼ N(µ, σ2 ) | E[eu(x,·) ] = 1, V[eu(x,·) ]1/2 = 0.2 v(·) ∼ U(−2, 2), Output functional: F(α, β) = C max t∈(0,T] ROI |v(t)| dx (α, β) Preliminary estimates: P(F ∈ [0, 8 × 10−5 ] mm/s) ≈ 0.95 E[F] ≈ 2.5 × 10−5 mm/s V[F] ≈ (3.2 × 10−5 mm/s)2 Techniques: MLMC, white noise on non-nested mesh hierarchies. [Croci, R., Farrell, Giles, in prep., 2017] 23 / 36
  • 24. Act II: Finite collections of biological cells 24 / 36
  • 25. The paradigm in computational cardiac modelling has been classical homogenized models (bidomain, monodomain) vt − div(Mi grad v + Mi grad ue) = −Iion(v, s) div(Mi grad v + (Mi + Me) grad ue) = 0 st = F(v, s) Heart cell: h ≈ 100µm FEM cell: h ≤ 100µm (!) 25 / 36
  • 26. [The Guardian, Feb 2 2014] 26 / 36
  • 27. The emerging EMI framework use a geometrically explicit representation of the cellular domains Find the intracellular potential ui in Ωi = ∪kΩk i ⊂ Rd , the extracellular potential ue in Ωe ⊂ Rd and the membrane potential v (and other membrane variables) on Γ = Γ1 ∪ Γ2 ∪ Γ1,2. Ω1 i Ω2 i Ωe Γ1 Γ2 Γ1,2 [Stinstra et al, 2010; Agudelo-Toro and Neef, 2013] 27 / 36
  • 28. The EMI equations describe the dynamics of extracellular, membrane and intracellular electrical potentials Find the electric potential u(t) : Ω → R, and the transmembrane potential v(t) : Γ → R s.t: div σ grad u = f in Ωi, Ωe Cmvt + σ grad u · n|Ωi + Iion(v) = 0 on Γ, with interface conditions on Γ u = v, (v is the jump in u) σ grad u · n = 0 (continuity of flux/current) Boundary condition u = 0 on ∂Ω and initial conditions for v. For now, Iion(v) = v. (Generally Iion = I(v, s) highly non-linear.) [Stinstra et al, 2010; Agudelo-Toro and Neef, 2013] 28 / 36
  • 29. Introducing an H(div)-based variational formulation for the EMI equations Introduce s = σ grad u in Ωi and Ωe. Let U = L2 (Ω), S = H(div, Ω), V = H 1 2 (Γ) Note that trΓ S = H−1/2 (Γ). Variational formulation Find u(t) ∈ U, s(t) ∈ S and v(t) ∈ V satisfying (div s, φ) = (f, φ) ∀ φ ∈ U, (σ−1 s, τ) + (div τ, u) − τ · n, v Γ = 0 ∀ τ ∈ S, −(Cmvt + Iion(v), w)Γ − s · n, w Γ = 0 ∀ w ∈ V. where n is an outward normal on Γ and (·, ·) is the L2 (Ω)-norm and ·, · Γ the duality pairing on H−1/2 (Γ) × H1/2 (Γ). [Tveito, Jæger, Kuchta, Mardal, R., 2017] 29 / 36
  • 30. Semi-discrete H(div)-conforming mixed finite element formulation for the EMI equations Take a mesh Th of Ω that conforms to Ωi, Ωe and Γ, and denote by Γh the resulting mesh of Γ. Define Sh ⊆ S, Uh ⊆ U and Vh ⊆ V for instance: Sh = RTj(Th), Uh = Pj−1(Th), Vh = Pj−1(Γh) for j = 1, 2, . . . where P denotes the space of (discontinuous) piecewise polynomials defined relative to the relevant mesh. Semi-discrete finite element formulation Find uh ∈ Uh, s ∈ Sh and v ∈ Vh satisfying (div sh, φ) = 0 ∀ φ ∈ Uh, (σ−1 sh, τ) + (div τ, uh) − τ · n, vh Γ = 0 ∀ τ ∈ Sh, −(Cmvh,t + Iion(vh), w)Γ − sh · n, w Γ = 0 ∀ w ∈ Vh. [Tveito, Jæger, Kuchta, Mardal, R., 2017] 30 / 36
  • 31. H(div)-based formulation converges at optimal rates for the EMI equations Notes Piecewise smooth manufactured test case [Tveito et al, 2017] ( ˆJ = s). Convergence rates as expected Second-order convergence in inf-norm interpolation/superconvergence artifact. Continuous and discrete Brezzi conditions hold under suitable compatibility assumptions on the finite element spaces and regularity of the domains. Literature? 31 / 36
  • 32. A mortar finite element formulation of the EMI equations (I) Assume K biological cells Ωk i with meshes T k i,h, extracellular domain Ωe with mesh Te,h, and membrane Γh: Γh = K k=1 Γk ∪ g Γg Define finite element spaces: Ue = {v ∈ C0 (Te,h) | v|T = P1(T) ∀ T ∈ Te,h}, Uk i = same over T k i,h for each k, V = {v ∈ C0 (Γh) | v|γ = P1(γ) ∀ γ ∈ Γh} [Belgacem 1999; Lamichhane and Wohlmuth, 2004] 32 / 36
  • 33. A mortar finite element formulation of the EMI equations (II) Denote Ji = J|Γi for Γi ⊂ Γh and u Γi the jump in u across a membrane segment Γi. Mortar finite element formulation At each time step (or operator splitting step) with step size ∆t, given v ∈ V , find the extracellular potential ue ∈ Ue,h and intracellular potentials uk i ∈ Uk i,h and membrane current densities J ∈ V such that (σi grad uk i , grad φk i ) + (Jk , φk i )Γk ± (Jg(k) , φk i )Γg(k) = 0 ∀ φk i ∈ Uk i , ∀ k (σe grad ue, grad φe) − K k=1(Jk , φe)Γk = 0 ∀ φe ∈ Ue ( u Γi , ψi )Γi − C−1 m (∆t)(Ji , ψi )Γi = (v|Γi , ψi )Γi ∀ ψ ∈ V, ∀ Γi ⊂ Γh Update u Γi → v for each Γi. [Agudelo-Toro and Neef, 2013; Tveito, Jæger, Kuchta, Mardal, R., 2017] 33 / 36
  • 34. Mortar formulation converges at optimal rates for the EMI equations Notes Piecewise smooth manufactured test case ([Tveito et al, 2017]). Convergence rates mostly as expected (superconv. in J artifact of test case?) Rates between 1 − 2 closer to 2 for refined time discretization 34 / 36
  • 35. The EMI framework allows for investigating fundamentally local variations in cell and membrane properties Q: How do the spatial distribution of Na+ channels affect the conduction velocity? Iion(v) = Iion(v, s, gNa), st = F(v, s, gNa) Activation times tmin|v(t) ≥ 0 (blue) and conduction velocities (orange) along length of two (biological) cells A: Conduction velocity is increased for the case with a varying value of gNa compared to the case with a constant value. 35 / 36
  • 36. Collaborators Matteo Croci (University of Oxford/Simula) Per-Kristian Eide (Oslo University Hospital) Patrick E. Farrell (University of Oxford) Mike Giles (University of Oxford) Janis Grobovs (University of Oslo) Karoline Horgmo Jæger (Simula) Miroslav Kuchta (University of Oslo) Jeonghun Lee (ICES/UT Austin) Kent-Andre Mardal (University of Oslo) Eleonora Piersanti (Simula) Aslak Tveito (Simula) Vegard Vinje (Simula) Core message Mathematical models can give new insight into medicine, – and the human body gives an extraordinary rich setting for mathematics and numerics! Thank you! 36 / 36