Anúncio
Anúncio

Mais conteúdo relacionado

Anúncio

NUMEROS REALES.pptx

  1. UNIDAD II MATEMATICAS TRAYECTO INICIAL MARRIA VERONICA MOGOLLON CI.26357178 MATEMATICAS
  2. DEFINICIÓN DE CONJUNTOS  En matemáticas, un conjunto es una colección de elementos considerada en sí misma como un objeto. Los elementos de un conjunto, pueden ser las siguientes: personas, números, colores, letras, figuras, etc. Se dice que un elemento (o miembro) pertenece al conjunto si está definido como incluido de algún modo dentro de él.  Un conjunto suele definirse mediante una propiedad que todos sus elementos poseen. Por ejemplo, para los números naturales, si se considera la propiedad de ser un número primo, el conjunto de los números primos es:  P = {2, 3, 5, 7, 11, 13, ...}
  3. Las operaciones con conjuntos también conocidas como álgebra de conjuntos, nos permiten realizar operaciones sobre los conjuntos para obtener otro conjunto. De las operaciones con conjuntos veremos las siguientes unión, intersección, diferencia, diferencia simétrica y complemento. OPERACIONES DE CONJUNTOS
  4. UNIÓN O REUNIÓN DE CONJUNTOS 01 Es la operación que nos permite unir dos o más conjuntos para formar otro conjunto que contendrá a todos los elementos que queremos unir, pero sin que se repitan. Es decir, dado un conjunto A y un conjunto B, la unión de los conjuntos A y B será otro conjunto formado por todos los elementos de A, con todos los elementos de B sin repetir ningún elemento. El símbolo que se usa para indicar la operación de unión es el siguiente: ∪. Cuando usamos diagramas de Ven, para representar la unió de conjuntos, se sombrean los conjuntos que se unen o se forma uno nuevo. Luego se escribe por fuera la operación de unión. OPERACIONES DE CONJUNTOS
  5. INTERSECCIÓN DE CONJUNTOS 02 Es la operación que nos permite formar un conjunto, sólo con los elementos comunes involucrados en la operación. Es decir dados dos conjuntos A y B, la de intersección de los conjuntos A y B, estará formado por los elementos de A y los elementos de B que sean comunes, los elementos no comunes A y B, será excluidos. El símbolo que se usa para indicar la operación de intersección es el siguiente: ∩. . DIFERENCIA DE CONJUNTOS 03 Es la operación que nos permite formar un conjunto, en donde de dos conjuntos el conjunto resultante es el que tendrá todos los elementos que pertenecen al primero pero no al segundo. Es decir dados dos conjuntos A y B, la diferencia de los conjuntos entra A y B, estará formado por todos los elementos de A que no pertenezcan a B. El símbolo que se usa para esta operación es el mismo que se usa para la resta o sustracción, que es el siguiente: -. OPERACIONES DE CONJUNTOS
  6. DIF. SIMÉTRICA DE CONJUNTOS 04 Es la operación que nos permite formar un conjunto, en donde de dos conjuntos el conjunto resultante es el que tendrá todos los elementos que no sean comunes a ambos conjuntos. Es decir dados dos conjuntos A y B, la diferencia simétrica estará formado por todos los elementos no comunes a los conjuntos A y B. El símbolo que se usa para indicar la operación de diferencia simétrica es el siguiente: △. COMPLEMENTO DE UN CONJUNTO 05 Es la operación que nos permite formar un conjunto, en donde de dos conjuntos el conjunto resultante es el que tendrá todos los elementos que pertenecen al primero pero no al segundo. Es decir dados dos conjuntos A y B, la diferencia de los conjuntos entra A y B, estará formado por todos los elementos de A que no pertenezcan a B. El símbolo que se usa para esta operación es el mismo que se usa para la resta o sustracción, que es el siguiente: -. OPERACIONES DE CONJUNTOS
  7. NÚMEROS REALES ● Los números reales son cualquier número que corresponda a un punto en la recta real y pueden clasificarse en números naturales, enteros, racionales e irracionales. En otras palabras, cualquier número real está comprendido entre menos infinito y más infinito y podemos representarlo en la recta real. Los números reales son todos los números que encontramos más frecuentemente dado que los números complejos no se encuentran de manera accidental, sino que tienen que buscarse expresamente. Los números reales se representan mediante la letra R ↓.
  8. DESIGUALDADES En matemáticas, una desigualdad es una relación de orden que se da entre dos valores cuando estos son distintos (en caso de ser iguales, lo que se tiene es una igualdad). Si los valores en cuestión son elementos de un conjunto ordenado, como los enteros o los reales, entonces pueden ser comparados. La notación a < b significa a es menor que b; La notación a > b significa a es mayor que b Estas relaciones se conocen como desigualdades estrictas, puesto que a no puede ser igual a b; también puede leerse como "estrictamente menor que" o "estrictamente mayor que" La notación a ≤ b significa a es menor o igual que b;
  9. DESIGUALDADES La notación a ≥ b significa a es mayor o igual que b; este tipo de desigualdades reciben el nombre de desigualdades amplias (o no estrictas). La notación a ≪ b significa a es mucho menor que b; La notación a ≫ b significa a es mucho mayor que b; esta relación indica por lo general una diferencia de varios órdenes de magnitud. La notación a ≠ b significa que a no es igual a b. Tal expresión no indica si uno es mayor que el otro, o siquiera si son comparables. Generalmente se tienden a confundir los operadores según la posición de los elementos que se están comparando; didácticamente se enseña que la abertura está del lado del elemento mayor. Otra forma de recordar el significado, es recordando que el signo señala/apunta al elemento menor. La relación a no mayor que b también puede representarse con a ≯ b, con el símbolo de «mayor que» cortado con una barra, «no». Lo mismo ocurre con a no menor que b y la notación a ≮ b.
  10. VALOR NUMÉRICO El valor numérico de una expresión algebraica, para un determinado valor, es el número que se obtiene al sustituir en ésta por valor numérico dado y realizar las operaciones indicadas
  11. VALOR ABSOLUTO ● El valor absoluto de un número entero es el número natural que resulta al suprimir su signo. ● El valor absoluto lo escribiremos entre barras verticales. ● |−5| = 5 ● |5| = 5 Valor absoluto de un número real a, se escribe |a|, es el mismo número a cuando es positivo o cero, y opuesto de a, si a es negativo.
  12. DESIGUALDAD CON VALOR ABSOLUTO ● Una desigualdad de valor absoluto es una desigualdad que tiene un signo de valor absoluto con una variable dentro. ● Desigualdades de valor absoluto (<): ● La desigualdad | x | < 4 significa que la distancia entre x y 0 es menor que 4. Así, x > -4 Y x < 4. El conjunto solución es
Anúncio