O slideshow foi denunciado.
Utilizamos seu perfil e dados de atividades no LinkedIn para personalizar e exibir anúncios mais relevantes. Altere suas preferências de anúncios quando desejar.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
Business Intelligence La Chaîne Décisionne...
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
Business Intelligence La Chaîne Décisionne...
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
Business Intelligence La Chaîne Décisionne...
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
Business Intelligence La Chaîne Décisionne...
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
Business Intelligence La Chaîne Décisionne...
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
Business Intelligence La Chaîne Décisionne...
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
Business Intelligence La Chaîne Décisionne...
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
Business Intelligence La Chaîne Décisionne...
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
Business Intelligence La Chaîne Décisionne...
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
Business Intelligence La Chaîne Décisionne...
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
Business Intelligence La Chaîne Décisionne...
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
Business Intelligence La Chaîne Décisionne...
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
Business Intelligence La Chaîne Décisionne...
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
Business Intelligence La Chaîne Décisionne...
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
Business Intelligence La Chaîne Décisionne...
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
Business Intelligence La Chaîne Décisionne...
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
Business Intelligence La Chaîne Décisionne...
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
Business Intelligence La Chaîne Décisionne...
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
Business Intelligence La Chaîne Décisionne...
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
Business Intelligence La Chaîne Décisionne...
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
Business Intelligence La Chaîne Décisionne...
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
Business Intelligence La Chaîne Décisionne...
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
Business Intelligence La Chaîne Décisionne...
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
Business Intelligence La Chaîne Décisionne...
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
Business Intelligence La Chaîne Décisionne...
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
Business Intelligence La Chaîne Décisionne...
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
Business Intelligence La Chaîne Décisionne...
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
Business Intelligence La Chaîne Décisionne...
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
Business Intelligence La Chaîne Décisionne...
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
Business Intelligence La Chaîne Décisionne...
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
Business Intelligence La Chaîne Décisionne...
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
Business Intelligence La Chaîne Décisionne...
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
Business Intelligence La Chaîne Décisionne...
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
Business Intelligence La Chaîne Décisionne...
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
Business Intelligence La Chaîne Décisionne...
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
Business Intelligence La Chaîne Décisionne...
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
Business Intelligence La Chaîne Décisionne...
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
Business Intelligence La Chaîne Décisionne...
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
Business Intelligence La Chaîne Décisionne...
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
Business Intelligence La Chaîne Décisionne...
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
Business Intelligence La Chaîne Décisionne...
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
Business Intelligence La Chaîne Décisionne...
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
Business Intelligence La Chaîne Décisionne...
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
Business Intelligence La Chaîne Décisionne...
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
Business Intelligence La Chaîne Décisionne...
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
Business Intelligence La Chaîne Décisionne...
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
Business Intelligence La Chaîne Décisionne...
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
Business Intelligence La Chaîne Décisionne...
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
Business Intelligence La Chaîne Décisionne...
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
Business Intelligence La Chaîne Décisionne...
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
Business Intelligence La Chaîne Décisionne...
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
Business Intelligence La Chaîne Décisionne...
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
Business Intelligence La Chaîne Décisionne...
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
Business Intelligence La Chaîne Décisionne...
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
Business Intelligence La Chaîne Décisionne...
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
Business Intelligence La Chaîne Décisionne...
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
Business Intelligence La Chaîne Décisionne...
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
Business Intelligence La Chaîne Décisionne...
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
Business Intelligence La Chaîne Décisionne...
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
Business Intelligence La Chaîne Décisionne...
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
Business Intelligence La Chaîne Décisionne...
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
Business Intelligence La Chaîne Décisionne...
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
Business Intelligence La Chaîne Décisionne...
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
Business Intelligence La Chaîne Décisionne...
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
Business Intelligence La Chaîne Décisionne...
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
Business Intelligence La Chaîne Décisionne...
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
Business Intelligence La Chaîne Décisionne...
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
Business Intelligence La Chaîne Décisionne...
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
Business Intelligence La Chaîne Décisionne...
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
Business Intelligence La Chaîne Décisionne...
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
Business Intelligence La Chaîne Décisionne...
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
Business Intelligence La Chaîne Décisionne...
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
Business Intelligence La Chaîne Décisionne...
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
Business Intelligence La Chaîne Décisionne...
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
Business Intelligence La Chaîne Décisionne...
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
Business Intelligence La Chaîne Décisionne...
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
Business Intelligence La Chaîne Décisionne...
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
Business Intelligence La Chaîne Décisionne...
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
Business Intelligence La Chaîne Décisionne...
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
Business Intelligence La Chaîne Décisionne...
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
Business Intelligence La Chaîne Décisionne...
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
Business Intelligence La Chaîne Décisionne...
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
Business Intelligence La Chaîne Décisionne...
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
Business Intelligence La Chaîne Décisionne...
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
Business Intelligence La Chaîne Décisionne...
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
Business Intelligence La Chaîne Décisionne...
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
Business Intelligence La Chaîne Décisionne...
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
Business Intelligence La Chaîne Décisionne...
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
Business Intelligence La Chaîne Décisionne...
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
Business Intelligence La Chaîne Décisionne...
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
Business Intelligence La Chaîne Décisionne...
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
Business Intelligence La Chaîne Décisionne...
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
Business Intelligence La Chaîne Décisionne...
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
Business Intelligence La Chaîne Décisionne...
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
Business Intelligence La Chaîne Décisionne...
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
Business Intelligence La Chaîne Décisionne...
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
Business Intelligence La Chaîne Décisionne...
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
Business Intelligence La Chaîne Décisionne...
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
Business Intelligence La Chaîne Décisionne...
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
Business Intelligence La Chaîne Décisionne...
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
Business Intelligence La Chaîne Décisionne...
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
Business Intelligence La Chaîne Décisionne...
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
Business Intelligence La Chaîne Décisionne...
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
Business Intelligence La Chaîne Décisionne...
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
Business Intelligence La Chaîne Décisionne...
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
Business Intelligence La Chaîne Décisionne...
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
Business Intelligence La Chaîne Décisionne...
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
Business Intelligence La Chaîne Décisionne...
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
Business Intelligence La Chaîne Décisionne...
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
Business Intelligence La Chaîne Décisionne...
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
Business Intelligence La Chaîne Décisionne...
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
Business Intelligence La Chaîne Décisionne...
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
Business Intelligence La Chaîne Décisionne...
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
Business Intelligence La Chaîne Décisionne...
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
Business Intelligence La Chaîne Décisionne...
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
Business Intelligence La Chaîne Décisionne...
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
Business Intelligence La Chaîne Décisionne...
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
Business Intelligence La Chaîne Décisionne...
Próximos SlideShares
Carregando em…5
×

Business Intelligence

Formation accélérée en Business Intelligence, concepts et principes

  • Seja o primeiro a comentar

Business Intelligence

  1. 1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Business Intelligence La Chaîne Décisionnelle Data Warehouse Aspects Fondamentaux Conclusion Formation Business Intelligence Ou comment intégrer de l’intelligence au métier ? Dr. Lilia SFAXI Institut National des Sciences Appliquées et de Technologie (INSAT) Laboratoire LIP2 Novembre 2015 L. SFAXI Formation Business Intelligence 1 / 91
  2. 2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Business Intelligence La Chaîne Décisionnelle Data Warehouse Aspects Fondamentaux Conclusion Objectifs de la formation Comprendre les notions de : • Informatique décisionnelle • OLAP et Cubes • ETL, Entrepôt de données, data mining Prérequis : • Connaissances en bases de données relationnelles L. SFAXI Formation Business Intelligence 2 / 91
  3. 3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Business Intelligence La Chaîne Décisionnelle Data Warehouse Aspects Fondamentaux Conclusion /me Lilia SFAXI ep. YOUSSEF • Docteur/Ingénieur en Informatique • Maître-Assistant à l’Institut National des Sciences Appliquées et de Technologie (INSAT) • Chercheuse au laboratoire LIP2 L. SFAXI Formation Business Intelligence 3 / 91
  4. 4. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Business Intelligence La Chaîne Décisionnelle Data Warehouse Aspects Fondamentaux Conclusion Programme Jour 1 Introduction à la chaîne BI, besoins et étapes Exemple d’une chaîne BI avec les outils Jaspersoft L. SFAXI Formation Business Intelligence 4 / 91
  5. 5. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Business Intelligence La Chaîne Décisionnelle Data Warehouse Aspects Fondamentaux Conclusion Programme Jour 1 Introduction à la chaîne BI, besoins et étapes Exemple d’une chaîne BI avec les outils Jaspersoft Jour 2 Conception du Datawarehouse : Aspects Fondamentaux Exemple simple de conception de Datawarehouse et de Data Mining avec Mondrian L. SFAXI Formation Business Intelligence 4 / 91
  6. 6. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Business Intelligence La Chaîne Décisionnelle Data Warehouse Aspects Fondamentaux Conclusion Sommaire Business Intelligence : Besoins et Étapes Introduction au BI Risques et Facteurs de Succès La Chaîne Décisionnelle Étapes de la Chaîne Décisionnelle Architectures et Technologies Structures de Stockage Phases de la Chaîne Décisionnelle Les Entrepôts de Données (Datawarehouse) Systèmes Opérationnels vs. Systèmes Décisionnels Modélisation Multi-Dimensionnelle Caractéristiques de la Modélisation Multidimensionnelle Aspects Fondamentaux de la Modélisation Multidimensionnelle Modèles d’un Entrepôt de Données Aspects Fondamentaux de la MMD Opérations OLAP Modèles de Stockage Conclusion L. SFAXI Formation Business Intelligence 5 / 91
  7. 7. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Business Intelligence La Chaîne Décisionnelle Data Warehouse Aspects Fondamentaux Conclusion Sommaire Business Intelligence : Besoins et Étapes Introduction au BI Risques et Facteurs de Succès La Chaîne Décisionnelle Les Entrepôts de Données (Datawarehouse) Aspects Fondamentaux de la Modélisation Multidimensionnelle Conclusion L. SFAXI Formation Business Intelligence 6 / 91
  8. 8. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Business Intelligence La Chaîne Décisionnelle Data Warehouse Aspects Fondamentaux Conclusion Aide à la Décision : Mise en Situation • Le chiffre d’affaires a baissé en octobre. Pour y remédier, des décisions sont à prendre. • Pour prendre les bonnes décisions, il faut savoir : • Pourquoi le CA a-t-il baissé ? • Comment a-t-il baissé ? • Dans quelle gamme de produits ? • Dans quels pays, quelles régions ? • Dans le portefeuille de clientèle de quels commerciaux ? • Dans quels segments de distribution ? • N avait-on pas une baisse semblable en octobre chaque année ? L. SFAXI Formation Business Intelligence 7 / 91
  9. 9. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Business Intelligence La Chaîne Décisionnelle Data Warehouse Aspects Fondamentaux Conclusion Définition de l’Informatique Décisionnelle Terme générique qui englobe les applications, l’infrastructure, les outils et les meilleures pratiques permettant l’accès et l’analyse de l’information afin d’améliorer et d’optimiser les décisions et les performances. Source : GARTNER L. SFAXI Formation Business Intelligence 8 / 91
  10. 10. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Business Intelligence La Chaîne Décisionnelle Data Warehouse Aspects Fondamentaux Conclusion Pourquoi Construire un Système Décisionnel ? • Un des actifs les plus importants des sociétés, c’est leur capital d’informations qu’elles collectent au jour le jour • Généralement, la plupart de ces informations sont inaccessibles, ou réparties dans une multitude de systèmes • Besoin de : • Avoir une vision globale homogène et cohérente des informations manipulées par les différents départements • Accéder directement à l’information nécessaire • Donner un sens unique aux données de gestion (marge, CA...) L. SFAXI Formation Business Intelligence 9 / 91
  11. 11. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Business Intelligence La Chaîne Décisionnelle Data Warehouse Aspects Fondamentaux Conclusion Pourquoi Construire un Système Décisionnel ? • Le Système d’Information Décisionnel (SID) résulte d’un processus qui consiste à : • extraire les données à partir des systèmes opérationnels et d’autres sources externes à l’entreprise • les transformer en information de pilotage • les rendre accessibles aux utilisateurs • La Base Décisionnelle est aujourd’hui reconnue comme un actif stratégique par beaucoup d’entreprises. L. SFAXI Formation Business Intelligence 10 / 91
  12. 12. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Business Intelligence La Chaîne Décisionnelle Data Warehouse Aspects Fondamentaux Conclusion Métriques d’Aide à la Décision Figure : Les Concepts Clef L. SFAXI Formation Business Intelligence 11 / 91
  13. 13. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Business Intelligence La Chaîne Décisionnelle Data Warehouse Aspects Fondamentaux Conclusion Métriques d’Aide à la Décision Donnée • Résultat direct d’une mesure • Peut être collectée par un outil de mesure, ou peut être présente dans une base de données • Ne permet pas de prendre de décision sur une action à lancer L. SFAXI Formation Business Intelligence 12 / 91
  14. 14. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Business Intelligence La Chaîne Décisionnelle Data Warehouse Aspects Fondamentaux Conclusion Métriques d’Aide à la Décision Information • Donnée à laquelle un sens et une interprétation ont été donnés • Permet au responsable de prendre une décision sur une action L. SFAXI Formation Business Intelligence 13 / 91
  15. 15. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Business Intelligence La Chaîne Décisionnelle Data Warehouse Aspects Fondamentaux Conclusion Métriques d’Aide à la Décision Connaissance • Résultat d’une réflexion sur les informations analysées • Se base sur les expériences, les idées, valeurs, avis de personnes consultées L. SFAXI Formation Business Intelligence 14 / 91
  16. 16. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Business Intelligence La Chaîne Décisionnelle Data Warehouse Aspects Fondamentaux Conclusion Métriques d’Aide à la Décision Sagesse • État d’esprit général de discernement final sur le contenu et de jugement de bon sens • Permet de lancer des actions d’adaptation de l’organisation, des personnes, des processus et outils L. SFAXI Formation Business Intelligence 15 / 91
  17. 17. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Business Intelligence La Chaîne Décisionnelle Data Warehouse Aspects Fondamentaux Conclusion Risques d’un Projet Décisionnel • Orientation technologique du projet, plutôt qu’utilisateur • Mise en cause de la fiabilité et/ou cohérence des informations • Alimentations trop longues et irrégulières • Outils et architecture technique inadaptés • Fraîcheur insuffisante des informations • Pas d’administrateur du système • Surenchère fonctionnelle concernant les analyses et les outils à utiliser par rapport aux réels enjeux métiers L. SFAXI Formation Business Intelligence 16 / 91
  18. 18. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Business Intelligence La Chaîne Décisionnelle Data Warehouse Aspects Fondamentaux Conclusion Facteurs Clefs de Succès Pour la Conduite de Projet • Adopter une démarche incrémentale avec des objectifs précis et quantifiés à l’avance • Miser dès le départ sur un socle informatique stable, puis coordonner des itérations courtes avec des résultats tangibles Dans la Conception Fonctionnelle Pour la Mise en œuvre Technique Dans la Prise en compte des Impacts Organisationnels L. SFAXI Formation Business Intelligence 17 / 91
  19. 19. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Business Intelligence La Chaîne Décisionnelle Data Warehouse Aspects Fondamentaux Conclusion Facteurs Clefs de Succès Pour la Conduite de Projet Dans la Conception Fonctionnelle • Préférer des états figés mais utiles à des analyses libres mais compliquées • Raisonner en flux amont-aval et en échanges transverses entre utilisateurs Pour la Mise en œuvre Technique Dans la Prise en compte des Impacts Organisationnels L. SFAXI Formation Business Intelligence 17 / 91
  20. 20. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Business Intelligence La Chaîne Décisionnelle Data Warehouse Aspects Fondamentaux Conclusion Facteurs Clefs de Succès Pour la Conduite de Projet Dans la Conception Fonctionnelle Pour la Mise en œuvre Technique • S’assurer de l’évolutivité de la solution technique • Privilégier les solutions paramétrables par un administrateur fonctionnel • Insérer dans la recette technique des tests de montée en charge Dans la Prise en compte des Impacts Organisationnels L. SFAXI Formation Business Intelligence 17 / 91
  21. 21. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Business Intelligence La Chaîne Décisionnelle Data Warehouse Aspects Fondamentaux Conclusion Facteurs Clefs de Succès Pour la Conduite de Projet Dans la Conception Fonctionnelle Pour la Mise en œuvre Technique Dans la Prise en compte des Impacts Organisationnels • Préparer le changement et l’insérer dans le plan de projet • Fonder et associer le plus tôt possible le futur administrateur du système L. SFAXI Formation Business Intelligence 17 / 91
  22. 22. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Business Intelligence La Chaîne Décisionnelle Data Warehouse Aspects Fondamentaux Conclusion Sommaire Business Intelligence : Besoins et Étapes La Chaîne Décisionnelle Étapes de la Chaîne Décisionnelle Architectures et Technologies Structures de Stockage Phases de la Chaîne Décisionnelle Les Entrepôts de Données (Datawarehouse) Aspects Fondamentaux de la Modélisation Multidimensionnelle Conclusion L. SFAXI Formation Business Intelligence 18 / 91
  23. 23. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Business Intelligence La Chaîne Décisionnelle Data Warehouse Aspects Fondamentaux Conclusion La Chaîne Décisionnelle Les 5 grandes étapes : L. SFAXI Formation Business Intelligence 19 / 91
  24. 24. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Business Intelligence La Chaîne Décisionnelle Data Warehouse Aspects Fondamentaux Conclusion La Chaîne Décisionnelle Planification • Pour mettre en place une plate-forme décisionnelle d’entreprise intégrée, la première étape est donc la planification de ce projet • Un tel projet nécessite une administration solide • Exemple : les ressources humaines • Un responsable peut voir le salaire des personnes de son équipe • Mais ne peut pas voir celui de son chef ⇒ Nécessité d’une stratégie de sécurité rigoureuse L. SFAXI Formation Business Intelligence 20 / 91
  25. 25. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Business Intelligence La Chaîne Décisionnelle Data Warehouse Aspects Fondamentaux Conclusion La Chaîne Décisionnelle ETL • ETL : Extract, Transform, Load • Extraction des données à partir d’une ou plusieurs sources de données : fichiers texte, Excel, base de données... • Transformation des données agrégées • Chargement des données dans la banque de données de destination (datawarehouse) ⇒ La phase d’ETL est incontournable car elle conditionne et influence la qualité du projet par la suite L. SFAXI Formation Business Intelligence 21 / 91
  26. 26. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Business Intelligence La Chaîne Décisionnelle Data Warehouse Aspects Fondamentaux Conclusion La Chaîne Décisionnelle Stockage • Plusieurs manières de stocker la donnée dans un datawarehouse • Chacune ayant ses avantages et ses inconvénients • L’administrateur des bases de données décisionnelles pourra notamment choisir entre plusieurs modèles (en étoile, en flocon...) L. SFAXI Formation Business Intelligence 22 / 91
  27. 27. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Business Intelligence La Chaîne Décisionnelle Data Warehouse Aspects Fondamentaux Conclusion La Chaîne Décisionnelle Analyse • Regroupement de l’ensemble des techniques de statistique, d’économétrie, de Data Mining, et de recherche opérationnelle • Demande souvent des compétences statistiques avancées • Néanmoins certaines solutions embarquent ces fonctionnalités pré-paramétrées à des cas de figures bien définies, afin d’offrir leur valeur ajoutée à des personnes fonctionnelles L. SFAXI Formation Business Intelligence 23 / 91
  28. 28. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Business Intelligence La Chaîne Décisionnelle Data Warehouse Aspects Fondamentaux Conclusion La Chaîne Décisionnelle Restitution • La génération de tableau de bord, est la partie émergée de l’iceberg : l’informatique décisionnelle. • C’est la partie que voient la plupart des utilisateurs. • Ce sont généralement de jolies interfaces intuitives permettant à un utilisateur lambda, en fonction de ses droits, de consulter des rapports, des tableaux de bord, de les annoter, voire de les créer lui-même L. SFAXI Formation Business Intelligence 24 / 91
  29. 29. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Business Intelligence La Chaîne Décisionnelle Data Warehouse Aspects Fondamentaux Conclusion Architecture d’un Système Décisionnel À votre avis, quelle partie de la chaîne est la plus importante et la plus coûteuse ? L. SFAXI Formation Business Intelligence 25 / 91
  30. 30. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Business Intelligence La Chaîne Décisionnelle Data Warehouse Aspects Fondamentaux Conclusion L’Alimentation ! • Sur le plan des données • Définir un langage commun • Localiser les données utiles dans les systèmes sources • Harmoniser les nomenclatures • Sur le plan technique • Les règles d’alimentation changent sans cesse • Développements modulaires auto-documentés, traçabilité des données • Temps de chargement compatibles avec la fenêtre d’exploitation L. SFAXI Formation Business Intelligence 26 / 91
  31. 31. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Business Intelligence La Chaîne Décisionnelle Data Warehouse Aspects Fondamentaux Conclusion Structure d’un Système Décisionnel L. SFAXI Formation Business Intelligence 27 / 91
  32. 32. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Business Intelligence La Chaîne Décisionnelle Data Warehouse Aspects Fondamentaux Conclusion Structures de Stockage des Données L. SFAXI Formation Business Intelligence 28 / 91
  33. 33. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Business Intelligence La Chaîne Décisionnelle Data Warehouse Aspects Fondamentaux Conclusion Structures de Stockage des Données Définitions ODS(Operational Data Store) • Collection de données orientées sujet, volatiles, organisées pour le support d’un processus de décision ponctuel, en support à une activité opérationnelle particulière • Donne la vision immédiate et intégrée de l’état d’un ou plusieurs systèmes opérants Datawarehouse Data Mart Data Mining L. SFAXI Formation Business Intelligence 29 / 91
  34. 34. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Business Intelligence La Chaîne Décisionnelle Data Warehouse Aspects Fondamentaux Conclusion Structures de Stockage des Données Définitions ODS(Operational Data Store) Datawarehouse • Entrepôt de données spécifique au monde décisionnel, destiné principalement à analyser les leviers business potentiels • Collection de données orientées sujet, intégrées, non volatiles et historisées, organisées pour le support d’un processus d’aide à la décision Data Mart Data Mining L. SFAXI Formation Business Intelligence 29 / 91
  35. 35. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Business Intelligence La Chaîne Décisionnelle Data Warehouse Aspects Fondamentaux Conclusion Structures de Stockage des Données Définitions ODS(Operational Data Store) Datawarehouse Data Mart • Magasin de données orienté sujet, non volatile, mis à la disposition des utilisateurs dans un contexte décisionnel décentralisé, ciblé pour un usage particulier Data Mining L. SFAXI Formation Business Intelligence 29 / 91
  36. 36. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Business Intelligence La Chaîne Décisionnelle Data Warehouse Aspects Fondamentaux Conclusion Structures de Stockage des Données Définitions ODS(Operational Data Store) Datawarehouse Data Mart Data Mining • Ensemble d’outils, méthodes et technologies d’analyse mises en œuvre pour définir des tendances, pour segmenter l’information ou pour établir des corrélations entre les données L. SFAXI Formation Business Intelligence 29 / 91
  37. 37. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Business Intelligence La Chaîne Décisionnelle Data Warehouse Aspects Fondamentaux Conclusion Structures de Stockage des Données Datawarehouse vs. ODS • Datawarehouse • Intégration des données hors ligne • ODS • Intégration des données en ligne • Sauvegarde des données récentes • Utilisé quand les données sont dispersées sur plusieurs supports de stockage, et on a besoin de les rassembler • Exemple • On veut avoir une vue unique sur un patient, qu’on pourra modifier en ligne • Les données de ce patient sont disposées dans plusieurs bases de données (liste des hospitalisations, liste des diagnostics, liste des achats pharmaceutiques...) • ODS peut être utilisé pour extraire les données et les afficher L. SFAXI Formation Business Intelligence 30 / 91
  38. 38. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Business Intelligence La Chaîne Décisionnelle Data Warehouse Aspects Fondamentaux Conclusion Structures de Stockage des Données Datawarehouse vs. Data Mart • Datawarehouse • Dépôt des données au niveau entreprise • Combinaison de plusieurs Data Marts • Contient toutes les mesures et dimensions nécessaires • Assure l’intégrité de ces dimensions à travers tous les Data Marts • Data Mart • Ensemble de dimensions et mesures limitées • Utilisées pour des thèmes métier spécifiques • Construites à partir des données des entrepôts • Exemple • Dans une entreprise, il existe un seul entrepôt de données mais plusieurs magasins de données : Finance, Vente... L. SFAXI Formation Business Intelligence 31 / 91
  39. 39. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Business Intelligence La Chaîne Décisionnelle Data Warehouse Aspects Fondamentaux Conclusion Entrepôts de Données Objectifs • Regrouper, organiser des informations provenant de sources diverses L. SFAXI Formation Business Intelligence 32 / 91
  40. 40. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Business Intelligence La Chaîne Décisionnelle Data Warehouse Aspects Fondamentaux Conclusion Entrepôts de Données Objectifs • Regrouper, organiser des informations provenant de sources diverses • Les intégrer et les stocker pour donner à l’utilisateur une vue orientée métier L. SFAXI Formation Business Intelligence 32 / 91
  41. 41. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Business Intelligence La Chaîne Décisionnelle Data Warehouse Aspects Fondamentaux Conclusion Entrepôts de Données Objectifs • Regrouper, organiser des informations provenant de sources diverses • Les intégrer et les stocker pour donner à l’utilisateur une vue orientée métier • Retrouver et analyser l’information selon plusieurs critères L. SFAXI Formation Business Intelligence 32 / 91
  42. 42. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Business Intelligence La Chaîne Décisionnelle Data Warehouse Aspects Fondamentaux Conclusion Entrepôts de Données Objectifs • Regrouper, organiser des informations provenant de sources diverses • Les intégrer et les stocker pour donner à l’utilisateur une vue orientée métier • Retrouver et analyser l’information selon plusieurs critères • Transformer un système d’information qui avait une vocation de production en un SI décisionnel L. SFAXI Formation Business Intelligence 32 / 91
  43. 43. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Business Intelligence La Chaîne Décisionnelle Data Warehouse Aspects Fondamentaux Conclusion Entrepôts de Données Objectifs • Regrouper, organiser des informations provenant de sources diverses • Les intégrer et les stocker pour donner à l’utilisateur une vue orientée métier • Retrouver et analyser l’information selon plusieurs critères • Transformer un système d’information qui avait une vocation de production en un SI décisionnel • Doit contenir des informations cohérentes L. SFAXI Formation Business Intelligence 32 / 91
  44. 44. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Business Intelligence La Chaîne Décisionnelle Data Warehouse Aspects Fondamentaux Conclusion Entrepôts de Données Objectifs • Regrouper, organiser des informations provenant de sources diverses • Les intégrer et les stocker pour donner à l’utilisateur une vue orientée métier • Retrouver et analyser l’information selon plusieurs critères • Transformer un système d’information qui avait une vocation de production en un SI décisionnel • Doit contenir des informations cohérentes • Les données doivent pouvoir être séparées et combinées au moyen de toutes les mesures possibles de l’activité L. SFAXI Formation Business Intelligence 32 / 91
  45. 45. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Business Intelligence La Chaîne Décisionnelle Data Warehouse Aspects Fondamentaux Conclusion Entrepôts de Données Objectifs • Regrouper, organiser des informations provenant de sources diverses • Les intégrer et les stocker pour donner à l’utilisateur une vue orientée métier • Retrouver et analyser l’information selon plusieurs critères • Transformer un système d’information qui avait une vocation de production en un SI décisionnel • Doit contenir des informations cohérentes • Les données doivent pouvoir être séparées et combinées au moyen de toutes les mesures possibles de l’activité • Le DW ne contient pas uniquement des données, mais aussi un ensemble d’outils de requêtes, d’analyse et de présentation de l’information. L. SFAXI Formation Business Intelligence 32 / 91
  46. 46. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Business Intelligence La Chaîne Décisionnelle Data Warehouse Aspects Fondamentaux Conclusion Entrepôts de Données Définition Le Data Warehouse est une collection de données orientées sujet, intégrées, non volatiles et historisées, organisées pour la prise de décision. L. SFAXI Formation Business Intelligence 33 / 91
  47. 47. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Business Intelligence La Chaîne Décisionnelle Data Warehouse Aspects Fondamentaux Conclusion Entrepôts de Données Données Orientées Sujet Les données collectées doivent être orientées métier, donc triées par thème. L. SFAXI Formation Business Intelligence 34 / 91
  48. 48. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Business Intelligence La Chaîne Décisionnelle Data Warehouse Aspects Fondamentaux Conclusion Entrepôts de Données Données Intégrées Un nettoyage préalable des données est nécessaire dans un souci de rationalisation et de normalisation. L. SFAXI Formation Business Intelligence 35 / 91
  49. 49. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Business Intelligence La Chaîne Décisionnelle Data Warehouse Aspects Fondamentaux Conclusion Entrepôts de Données Données Historisées et Non Volatiles Non Volatiles : une donnée entrée dans un entrepôt l’est pour de bon et n’a pas vocation à être supprimée. Historisées : les données sont datées, et un historique est conservé. L. SFAXI Formation Business Intelligence 36 / 91
  50. 50. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Business Intelligence La Chaîne Décisionnelle Data Warehouse Aspects Fondamentaux Conclusion Phases de la Chaîne Décisionnelle ETL : Extract, Transform, Load • Outils d’alimentation pour : • Extraire les données sources • Transformer les données sources • Charger ces données dans le DW L. SFAXI Formation Business Intelligence 37 / 91
  51. 51. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Business Intelligence La Chaîne Décisionnelle Data Warehouse Aspects Fondamentaux Conclusion Phases de la Chaîne Décisionnelle Extraction • Extraction des données de leur environnement d’origine (base de données relationnelles, fichiers plats...) • Besoin d’outils spécifiques pour accéder aux bases de production (requêtes sur des BD hétérogènes) • Besoin d’une technique appropriée pour n’extraire que les données nécessaires • Données créées ou modifiées depuis la dernière opération d’extraction • Attention : L’extraction ne doit pas perturber l’activité de production L. SFAXI Formation Business Intelligence 38 / 91
  52. 52. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Business Intelligence La Chaîne Décisionnelle Data Warehouse Aspects Fondamentaux Conclusion Phases de la Chaîne Décisionnelle Transformation • Homogénéisation du vocabulaire, structures, valeurs • Suppression et fusion des redondances • Épuration des données (suppression des données incohérentes) • Transformation des données dans un format cible L. SFAXI Formation Business Intelligence 39 / 91
  53. 53. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Business Intelligence La Chaîne Décisionnelle Data Warehouse Aspects Fondamentaux Conclusion Phases de la Chaîne Décisionnelle Chargement • Opérations de calcul et d’agrégation des données • Remplacement de certaines bases si aucune solution d’extraction satisfaisante n’est possible • Mise en place de procédures de chargement (nocturne ?) et de restauration (en cas de problème) • Envisager la mise en place de systèmes redondants si la disponibilité du système ne peut être interrompue • Prise en compte de la notion de granularité • Conservation des données détaillées • Possibilité d’agrégation des données pour la synthèse L. SFAXI Formation Business Intelligence 40 / 91
  54. 54. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Business Intelligence La Chaîne Décisionnelle Data Warehouse Aspects Fondamentaux Conclusion Phases de la Chaîne Décisionnelle Structure de l’Entrepôt Directe Simple : On fait des mises à jour de l’entrepôt avec des laps de temps importants L. SFAXI Formation Business Intelligence 41 / 91
  55. 55. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Business Intelligence La Chaîne Décisionnelle Data Warehouse Aspects Fondamentaux Conclusion Phases de la Chaîne Décisionnelle Structure de l’Entrepôt Cumul Simple : On stocke les données de chaque mise à jour, les mises à jour étant fréquentes (par ex. tous les jours). On a un espace occupé important, mais on ne perd pas d’information. L. SFAXI Formation Business Intelligence 41 / 91
  56. 56. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Business Intelligence La Chaîne Décisionnelle Data Warehouse Aspects Fondamentaux Conclusion Phases de la Chaîne Décisionnelle Structure de l’Entrepôt Résumé Déroulant : À chaque mise à jour, on stocke des données détaillées et on synthétise les données anciennes en fonction de leur âge. Plus une donnée est vieille, moins elle est détaillée. L. SFAXI Formation Business Intelligence 41 / 91
  57. 57. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Business Intelligence La Chaîne Décisionnelle Data Warehouse Aspects Fondamentaux Conclusion Sommaire Business Intelligence : Besoins et Étapes La Chaîne Décisionnelle Les Entrepôts de Données (Datawarehouse) Systèmes Opérationnels vs. Systèmes Décisionnels Modélisation Multi-Dimensionnelle Caractéristiques de la Modélisation Multidimensionnelle Aspects Fondamentaux de la Modélisation Multidimensionnelle Conclusion L. SFAXI Formation Business Intelligence 42 / 91
  58. 58. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Business Intelligence La Chaîne Décisionnelle Data Warehouse Aspects Fondamentaux Conclusion Systèmes Opérationnels vs. Systèmes Décisionnels Systèmes Opérationnels • OLTP (On-Line Transaction Processing) • Dédiés aux métiers de l’entreprise pour les assister dans leurs tâches de gestion quotidienne • Utilisation des ERP pour la gestion des données • Utilisateurs : Agents opérationnels, nombreux et concurrents • Données : • Détaillées • Récentes • Réparties • Non homogènes Systèmes Décisionnels • OLAP (On-Line Analytical Processing) • Dédiés à la gestion de l’entreprise pour l’aider au pilotage de l’activité pour une vision transversale de l’entreprise • Utilisation des entrepôts de données • Utilisateurs : Décideurs, peu nombreux et non concurrents • Données • Globalisées • Historiques • Centralisées • Intégrées L. SFAXI Formation Business Intelligence 43 / 91
  59. 59. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Business Intelligence La Chaîne Décisionnelle Data Warehouse Aspects Fondamentaux Conclusion Systèmes Opérationnels vs. Systèmes Décisionnels OLTP vs. OLAP OLTP : On-Line Transactional Processing • Système destiné à offrir le moyen à une application d’utiliser de façon transactionnelle un serveur de base de données. • Ensemble de logiciels que l’utilisateur peut employer de façon interactive pour accéder aux données de la manière la plus rapide et simple possible. • Exemple : Le 15/01/2012 à 13h12, le client X a retiré 500dt du compte Y OLAP : On-Line Analytical Processing • Catégorie de technologie logicielle permettant aux analystes, managers et décideurs d’accéder de manière rapide, consistante et interactive à une large variété d’information, transformée pour refléter la dimension réelle d’une entreprise. • Exemple : Quel est le volume des ventes par produit et par région durant le deuxième trimestre de 2012 ? L. SFAXI Formation Business Intelligence 44 / 91
  60. 60. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Business Intelligence La Chaîne Décisionnelle Data Warehouse Aspects Fondamentaux Conclusion Systèmes Opérationnels vs. Systèmes Décisionnels OLTP vs. OLAP L. SFAXI Formation Business Intelligence 45 / 91
  61. 61. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Business Intelligence La Chaîne Décisionnelle Data Warehouse Aspects Fondamentaux Conclusion Systèmes Opérationnels vs. Systèmes Décisionnels Charge sur le Serveur de Données L. SFAXI Formation Business Intelligence 46 / 91
  62. 62. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Business Intelligence La Chaîne Décisionnelle Data Warehouse Aspects Fondamentaux Conclusion Systèmes Opérationnels vs. Systèmes Décisionnels Modélisation Entité/Relation • Discipline permettant d’éclairer les relations microscopiques entre les données (Suppression des redondances, simplification des transactions...) • Principes • Notion d’identifiant • Dépendance fonctionnelle • Formes normales L. SFAXI Formation Business Intelligence 47 / 91
  63. 63. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Business Intelligence La Chaîne Décisionnelle Data Warehouse Aspects Fondamentaux Conclusion Systèmes Opérationnels vs. Systèmes Décisionnels Modélisation Entité/Relation • Il existe 8 formes normales • Exemples : FN1 : Les attributs d’une table doivent contenir une valeur scalaire, non répétitives et constante dans le temps L. SFAXI Formation Business Intelligence 48 / 91
  64. 64. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Business Intelligence La Chaîne Décisionnelle Data Warehouse Aspects Fondamentaux Conclusion Systèmes Opérationnels vs. Systèmes Décisionnels Modélisation Entité/Relation • Il existe 8 formes normales • Exemples : FN2 : Les attributs d’une relation sont divisés en deux groupes : La clé (une ou plusieurs)et les autres attributs (éventuellement vides). Tout attribut du deuxième groupe ne peut pas dépendre que d’un sous-ensemble (strict) d’attribut(s) du premier groupe. L. SFAXI Formation Business Intelligence 48 / 91
  65. 65. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Business Intelligence La Chaîne Décisionnelle Data Warehouse Aspects Fondamentaux Conclusion Systèmes Opérationnels vs. Systèmes Décisionnels Modélisation Entité/Relation • Il existe 8 formes normales • Exemples : FN3 : Tout attribut du deuxième groupe ne peut pas dépendre que d’un sous-ensemble (strict) d’attribut(s) du deuxième groupe. L. SFAXI Formation Business Intelligence 48 / 91
  66. 66. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Business Intelligence La Chaîne Décisionnelle Data Warehouse Aspects Fondamentaux Conclusion Systèmes Opérationnels vs. Systèmes Décisionnels Limites de la Modélisation Entité/Relation • Modèle complexe : plusieurs tables et jointures • Risque de dégradation des performances • Pas de compréhension par l’utilisateur • Données historiques difficilement représentées • Contraire aux objectifs du DataWarehouse L. SFAXI Formation Business Intelligence 49 / 91
  67. 67. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Business Intelligence La Chaîne Décisionnelle Data Warehouse Aspects Fondamentaux Conclusion Modélisation Multi-Dimensionnelle Notions de Base • Méthode de conception logique qui vise à présenter les données sous une forme standardisée, intuitive, qui permet des accès hautement performants • Permet de considérer un sujet analysé comme point dans un espace à plusieurs dimensions • Les données sont organisées de manière à mettre en évidence : • Le sujet ⇒ Le Fait • Les perspectives de l’analyse ⇒ Les Dimensions L. SFAXI Formation Business Intelligence 50 / 91
  68. 68. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Business Intelligence La Chaîne Décisionnelle Data Warehouse Aspects Fondamentaux Conclusion Modélisation Multi-Dimensionnelle Les Faits • Un fait • Sujet d’analyse • Grain de mesure de l’activité • Résultat d’une opération d’agrégation des données • Valeur d’une mesure, telle que : Chiffre d’affaires, ventes, gain, nombre de transactions • En général, une valeur numérique • Une table des faits • Clé composite référençant les clés primaires des tables de dimension • Contient les valeurs des mesures et des clefs vers les tables des dimensions • Plusieurs tables de fait dans un datawarehouse • A en général plusieurs lignes et peu de colonnes L. SFAXI Formation Business Intelligence 51 / 91
  69. 69. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Business Intelligence La Chaîne Décisionnelle Data Warehouse Aspects Fondamentaux Conclusion Modélisation Multi-Dimensionnelle Les Faits Fait : Montant des ventes, chaque jour pour chaque produit dans chaque magasin. L. SFAXI Formation Business Intelligence 51 / 91
  70. 70. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Business Intelligence La Chaîne Décisionnelle Data Warehouse Aspects Fondamentaux Conclusion Modélisation Multi-Dimensionnelle Les Dimensions • Une Dimension • Thème ou axe selon lequel les données sont analysées • En général sous forme textuelle • Parfois discrète (ensemble de valeurs) • Une table des dimensions • Représente le point d’entrée de l’entrepôt de données • Contient une clef primaire unique qui correspond à l’un des composants de la clef multiple de la table des faits • A en général plusieurs colonnes et peu de lignes L. SFAXI Formation Business Intelligence 52 / 91
  71. 71. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Business Intelligence La Chaîne Décisionnelle Data Warehouse Aspects Fondamentaux Conclusion Modélisation Multi-Dimensionnelle Les Dimensions L. SFAXI Formation Business Intelligence 52 / 91
  72. 72. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Business Intelligence La Chaîne Décisionnelle Data Warehouse Aspects Fondamentaux Conclusion Modélisation Multi-Dimensionnelle Vue • Représentation d’une ou plusieurs requêtes de l’utilisateur du SID • À une requête correspond une et une seule vue • À une vue peuvent correspondre plusieurs requêtes • Une vue correspond également à un hyper-cube dont : • Chaque dimension est décrite par une entité dont le contenu est décrit par l’association de ces entités • Les propriétés de l’association sont des faits ou mesures • Les propriétés des entités intervenant dans la vue sont des conditions • Les combinaisons des conditions sont les coordonnées qui déterminent des valeurs de faits • Un fait n’est pas seulement un élément du résultat de la requête, mais il doit être déterminé par l’association des conditions L. SFAXI Formation Business Intelligence 53 / 91
  73. 73. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Business Intelligence La Chaîne Décisionnelle Data Warehouse Aspects Fondamentaux Conclusion Modélisation Multi-Dimensionnelle Exemples de Vue Exp1 : Quelles ont été les marges sur les ventes du produit ’P023’ pour le client "Ahmed Ben Salah" à Hammamet durant le mois de janvier ? L. SFAXI Formation Business Intelligence 54 / 91
  74. 74. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Business Intelligence La Chaîne Décisionnelle Data Warehouse Aspects Fondamentaux Conclusion Modélisation Multi-Dimensionnelle Exemples de Vue Exp2 : Quels ont été les revenus sur les ventes de la marque ’Teams’ en Tunisie durant l’année 2011 ? L. SFAXI Formation Business Intelligence 54 / 91
  75. 75. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Business Intelligence La Chaîne Décisionnelle Data Warehouse Aspects Fondamentaux Conclusion Modélisation Multi-Dimensionnelle Exemples de Vue Exp3 : Quels ont été les quantités vendues de la gamme ’G006’ durant le Trimestre 2 pour la région du nord ? L. SFAXI Formation Business Intelligence 54 / 91
  76. 76. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Business Intelligence La Chaîne Décisionnelle Data Warehouse Aspects Fondamentaux Conclusion Modélisation Multi-Dimensionnelle Domaine et Contexte Domaine • Concerne un utilisateur ou un ensemble cohérent d’utilisateurs • Implique un vocabulaire commun et une manière commune d’appréhender l’information Contexte • Ensemble de faits et dimensions assemblées selon des critères sémantiques formels de cohérence • Caractérisé par une association unique, groupant tous les faits relevés dans les vues L. SFAXI Formation Business Intelligence 55 / 91
  77. 77. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Business Intelligence La Chaîne Décisionnelle Data Warehouse Aspects Fondamentaux Conclusion Modélisation Multi-Dimensionnelle Exemple de Contexte L. SFAXI Formation Business Intelligence 56 / 91
  78. 78. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Business Intelligence La Chaîne Décisionnelle Data Warehouse Aspects Fondamentaux Conclusion Modélisation Multi-Dimensionnelle Hiérarchie • Élément fondamental dans la structure d’un contexte • Représente pour l’utilisateur des chemins de consolidation d’indicateurs (faits) • Chaque niveau est représenté par une entité • Certaines entités sont rattachées à d’autres par des liens d’appartenance ou de regroupement hiérarchique • Certains de ces chemins sont connus (Jour, Mois, Année), d’autres doivent être repérés par une analyse précise du vocabulaire des utilisateurs (Produit, Gamme, Marque) L. SFAXI Formation Business Intelligence 57 / 91
  79. 79. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Business Intelligence La Chaîne Décisionnelle Data Warehouse Aspects Fondamentaux Conclusion Modélisation Multi-Dimensionnelle Hiérarchie L. SFAXI Formation Business Intelligence 57 / 91
  80. 80. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Business Intelligence La Chaîne Décisionnelle Data Warehouse Aspects Fondamentaux Conclusion Modélisation Multi-Dimensionnelle Granularité • Le "grain" d’une dimension est le niveau de sélection le plus fin possible de cette dimension • Le grain de la dimension Temps est Mois • Le grain de la dimension Territoire est Région • L’intégration de chaque nouvelle vue est donc susceptible de modifier le grain sur une ou plusieurs dimensions • Le grain d’un contexte découle de la combinaison des grains de toutes les dimensions. Il définit le niveau de détail pouvant être obtenu par la requête la plus sélective et la plus fine possible mettant en jeu toutes les dimensions. L. SFAXI Formation Business Intelligence 58 / 91
  81. 81. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Business Intelligence La Chaîne Décisionnelle Data Warehouse Aspects Fondamentaux Conclusion Modélisation Multi-Dimensionnelle Granularité • Grain du contexte : combinaison Produit-Mois-Client-Région • S’applique à tous les faits • Règle : Tous les faits d’un contexte doivent être définis pour le grain de ce contexte • Si les 3 indicateurs marge, revenu et quantité sont dans le contexte, alors ils ont un sens à tous les niveaux • Exemple : si la marge n’est définie que par Pays et par Mois, alors que les autres le sont par Région et par Trimestre, il y aurait décalage de grain entre les faits • Décalage de grain : les faits n’appartiennent pas tous au même contexte ⇒Facteur d’incohérence ! L. SFAXI Formation Business Intelligence 58 / 91
  82. 82. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Business Intelligence La Chaîne Décisionnelle Data Warehouse Aspects Fondamentaux Conclusion Modélisation Multi-Dimensionnelle Granularité L. SFAXI Formation Business Intelligence 58 / 91
  83. 83. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Business Intelligence La Chaîne Décisionnelle Data Warehouse Aspects Fondamentaux Conclusion Caractéristiques de la Modélisation Multidimensionnelle • Lisibilité • Performances (chargement + exécution des requêtes) • Évolutivité • Redondances envisageables • Pas de mise à jour en ligne (chargement uniquement) • Pas de problème d’intégrité des données (contrôles à l’acquisition) • Privilégier l’accessibilité plutôt que la normalisation • Requêtes ensemblistes, portant sur de gros volumes de données • Projections, restrictions, regroupements, agrégations • Adaptation du modèle pour des requêtes ad-hoc • Techniques d’optimisation basées sur les chemins d’accès • Pré-calcul de certains agrégats + dé-normalisation L. SFAXI Formation Business Intelligence 59 / 91
  84. 84. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Business Intelligence La Chaîne Décisionnelle Data Warehouse Aspects Fondamentaux Conclusion Avantages de la Modélisation Multidimensionnelle • Structure prévisible et standardisée • Diminution du nombre de tables et de jointures • Modèle évolutif qui peut être modifié sans peine : • Ajout de nouveaux faits non prévus initialement, à partir du moment où ils sont cohérents avec la granularité de la table des faits existante • Ajout de nouvelles dimensions, à partir du moment où une seule valeur de la dimension est définie pour chaque enregistrement factuel existant • Ajout d’attributs dimensionnels nouveaux • Changement de granularité : Décomposition des enregistrements d’une dimension existante en un niveau de détail plus fin à partir d’une date déterminée L. SFAXI Formation Business Intelligence 60 / 91
  85. 85. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Business Intelligence La Chaîne Décisionnelle Data Warehouse Aspects Fondamentaux Conclusion Inconvénients de la Modélisation Multidimensionnelle • Tables plus volumineuses • Fréquence d’accès très variable aux contenus des tables L. SFAXI Formation Business Intelligence 61 / 91
  86. 86. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Business Intelligence La Chaîne Décisionnelle Data Warehouse Aspects Fondamentaux Conclusion Règles d’Élaboration et d’Intégration des Vues • La structure des vues externes se déduit directement des requêtes des utilisateurs, non des connexions possibles entre les entités • Dans un domaine, il existe un ou plusieurs sous-ensembles de vues liées entre elles par des critères de cohérence sémantique et structurelles. ⇒ Contextes • La liste exhaustive des vues n’est jamais figée • La normalisation du MDD permet d’anticiper et d’intégrer automatiquement dans chaque contexte le plus grand nombre possible de vues probables d’après la structure vue connues. • Entre deux entités intervenant dans une vue, il doit exister un et un seul chemin de navigation sémantique et ce chemin doit être le plus court possible L. SFAXI Formation Business Intelligence 62 / 91
  87. 87. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Business Intelligence La Chaîne Décisionnelle Data Warehouse Aspects Fondamentaux Conclusion Normalisation des Contextes • Un contexte regroupant un nombre élevé de dimensions a peu de chances de correspondre à une réalité et serait d’un maniement trop complexe • En général, le nombre de dimensions d’un contexte varie entre 4 et 12 dimensions • Au delà de ce nombre, la probabilité de redondance dimensionnelle devient de plus en plus importante • Un contexte est dit cohérent lorsque toutes les vues qu’il autorise ont une signification dans le domaine de l’utilisateur L. SFAXI Formation Business Intelligence 63 / 91
  88. 88. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Business Intelligence La Chaîne Décisionnelle Data Warehouse Aspects Fondamentaux Conclusion Normalisation des Contextes Règle I • Il ne doit pas y avoir de dépendance fonctionnelle entre deux entités appartenant à des dimensions différentes d’un même contexte • Conséquence : Regroupement des entités dépendantes dans une même dimension • Exemple : Si les produits sont organisés par région, on doit intégrer l’entité Région dans la dimension Produit L. SFAXI Formation Business Intelligence 64 / 91
  89. 89. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Business Intelligence La Chaîne Décisionnelle Data Warehouse Aspects Fondamentaux Conclusion Normalisation des Contextes Règle II • Tous les faits d’un contexte doivent être définis d’une manière cohérente pour toutes les combinaisons dimensionnelles de ce contexte • Conséquence : Les faits qui ne sont valables que pour certaines dimensions nécessitent l’éclatement du contexte • Exemple : L. SFAXI Formation Business Intelligence 65 / 91
  90. 90. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Business Intelligence La Chaîne Décisionnelle Data Warehouse Aspects Fondamentaux Conclusion Normalisation des Contextes Règle III • Tous les faits d’un contexte doivent être définis pour le grain de ce contexte • Le grain d’un contexte découle de la combinaison des grains de toutes les dimensions • Le grain d’une dimension est le niveau de sélection le plus fin possible de cette dimension L. SFAXI Formation Business Intelligence 66 / 91
  91. 91. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Business Intelligence La Chaîne Décisionnelle Data Warehouse Aspects Fondamentaux Conclusion Normalisation des Contextes Règle IV • Le graphe de chaque dimension doit être acyclique • Conséquence : Il faut rompre les cycles L. SFAXI Formation Business Intelligence 67 / 91
  92. 92. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Business Intelligence La Chaîne Décisionnelle Data Warehouse Aspects Fondamentaux Conclusion Sommaire Business Intelligence : Besoins et Étapes La Chaîne Décisionnelle Les Entrepôts de Données (Datawarehouse) Aspects Fondamentaux de la Modélisation Multidimensionnelle Modèles d’un Entrepôt de Données Aspects Fondamentaux de la MMD Opérations OLAP Modèles de Stockage Conclusion L. SFAXI Formation Business Intelligence 68 / 91
  93. 93. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Business Intelligence La Chaîne Décisionnelle Data Warehouse Aspects Fondamentaux Conclusion Modèles d’un Entrepôt de Données Modèle en Étoile • Une (ou plusieurs) table(s) de faits comprenant une ou plusieurs mesures • Plusieurs tables de dimension dé-normalisées : descripteurs des dimensions. • Les tables de dimension n’ont pas de lien entre elles. • Avantages • Facilité de navigation. • Performances : nombre de jointures limité ; gestion des données creuses. • Gestion des agrégats • Inconvénients • Redondances dans les dimensions. • Alimentation complexe.. L. SFAXI Formation Business Intelligence 69 / 91
  94. 94. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Business Intelligence La Chaîne Décisionnelle Data Warehouse Aspects Fondamentaux Conclusion Modèles d’un Entrepôt de Données Modèle en Étoile L. SFAXI Formation Business Intelligence 69 / 91
  95. 95. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Business Intelligence La Chaîne Décisionnelle Data Warehouse Aspects Fondamentaux Conclusion Modèles d’un Entrepôt de Données Modèle en Flocon de Neige • Dérivé du schéma en étoile où les tables de dimensions sont normalisées • La table des faits reste inchangée • Chacune des dimensions est décomposée selon sa (ou ses) hiérarchie(s) • Exemple : Commune, Département, Région, Pays, Continent • Utilisé lorsque les tables sont très volumineuses • Avantages • Réduction du volume • Permettre des analyses par pallier (drill down) sur la dimension hiérarchisée • Inconvénients • Navigation difficile • Nombreuses jointures L. SFAXI Formation Business Intelligence 70 / 91
  96. 96. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Business Intelligence La Chaîne Décisionnelle Data Warehouse Aspects Fondamentaux Conclusion Modèles d’un Entrepôt de Données Modèle en Flocon de Neige L. SFAXI Formation Business Intelligence 70 / 91
  97. 97. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Business Intelligence La Chaîne Décisionnelle Data Warehouse Aspects Fondamentaux Conclusion Modèles d’un Entrepôt de Données Modèle en Constellation • Fusionner plusieurs modèles en étoile qui utilisent des dimensions communes • Un modèle en constellation comprend donc : • Plusieurs tables des faits • Des tables de dimension communes ou non à ces tables de faits L. SFAXI Formation Business Intelligence 71 / 91
  98. 98. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Business Intelligence La Chaîne Décisionnelle Data Warehouse Aspects Fondamentaux Conclusion Modèles d’un Entrepôt de Données Modèle en Constellation L. SFAXI Formation Business Intelligence 71 / 91
  99. 99. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Business Intelligence La Chaîne Décisionnelle Data Warehouse Aspects Fondamentaux Conclusion Modèles d’un Entrepôt de Données Synthèse • Modèle en étoile • Taille de dimension plus grosse • Modèle en flocon de neige • Jointures pour reconstruire ⇒ Modèle en étoile << Modèle en flocon L. SFAXI Formation Business Intelligence 72 / 91
  100. 100. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Business Intelligence La Chaîne Décisionnelle Data Warehouse Aspects Fondamentaux Conclusion Aspects Fondamentaux Dimension • Une dimension peut être définie comme un thème, ou un axe (attributs), selon lequel les données seront analysées. • Ex : Temps, Découpage administratif, Produits. • Une dimension contient des membres organisés en hiérarchie : • Chacun des membres appartient à un niveau hiérarchique (ou niveau de granularité) particulier • Exemple : pour la dimension Temps : année - semestre - mois - jour L. SFAXI Formation Business Intelligence 73 / 91
  101. 101. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Business Intelligence La Chaîne Décisionnelle Data Warehouse Aspects Fondamentaux Conclusion Aspects Fondamentaux Dimensions : Vocabulaire Dimension • Temps, Produit, Géographie, ... Niveau : hiérarchisation des dimensions • Temps : Année, Semestre, Trimestre, Mois, Semaine, ... • Produit : Rayon, Catégorie, Nature,... • Géographie : Région, Département, Ville, Magasin, ... Membres d’un Niveau • Produit ::Rayon : Frais, Surgelé, Liquide • Produit ::Rayon.Catégorie : Frais.Laitage, Liquide.Jus • Produit ::Rayon.Catégorie.Nature : Frais.Laitage.Yaourt, Liquide.Jus.Orange Cellule • Intersection des membres des différentes dimensions Formule • Calcul, expression, règle, croisement des dimensions • Exemple : Somme(Qte*PrixVente), Moyenne(Qte*(PrixVente-PrixAchat))... L. SFAXI Formation Business Intelligence 74 / 91
  102. 102. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Business Intelligence La Chaîne Décisionnelle Data Warehouse Aspects Fondamentaux Conclusion Aspects Fondamentaux Dimension Temps • Commune à tout entrepôt • Reliée à toute table de fait • 2 choix d’implantation • Type SQL DATE • Calendrier + Table Temps + Informations supplémentaires • Évènement (match de finale de coupe du monde) • Jours fériés, vacances, période fiscale, • Saison haute ou basse,... L. SFAXI Formation Business Intelligence 75 / 91
  103. 103. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Business Intelligence La Chaîne Décisionnelle Data Warehouse Aspects Fondamentaux Conclusion Aspects Fondamentaux Fait Mesure • Élément de donnée sur lequel portent les analyses, en fonction des différentes dimensions • Exemple : coût des travaux, nombre d’accidents, ventes Fait • Valeur d’une mesure, mesurée ou calculée, selon un membre de chacune des dimensions • Exemple : ń 250 000 euros ż est un fait qui exprime la valeur de la mesure ń coût des travaux ż pour le membre ń 2002 ż du niveau année de la dimension ń temps ż et le membre ń Versailles ż du niveau ń ville ż de la dimension ń découpage administratif ż L. SFAXI Formation Business Intelligence 76 / 91
  104. 104. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Business Intelligence La Chaîne Décisionnelle Data Warehouse Aspects Fondamentaux Conclusion Aspects Fondamentaux Faits : Vocabulaire Fait Additif • Additionnable suivant toutes les dimensions • Exemples : quantité vendue, chiffre d’affaires, coût Fait Semi-Additif • Additionnable selon certaines dimensions • Exemples : Niveau de stock (excepté sur la dimension temps), Nombre de transactions, de clients (excepté sur la dimension produit) Fait Non-Additif • Non additionnable • Exemple : attribut ratio (marge brute = 1- Coût/CA) L. SFAXI Formation Business Intelligence 77 / 91
  105. 105. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Business Intelligence La Chaîne Décisionnelle Data Warehouse Aspects Fondamentaux Conclusion Aspects Fondamentaux Métabase de Données • Existence d’une Métabase de données ou Catalogue de métadonnées : • Contient les métadonnées du DW • Idéalement : Lieu de stockage unique des informations qui pilotent les processus dans l’entrepôt • Détails sur : • Les données entreposées,leur format, leur signification, leur degré d’exactitude • Les processus de récupération/extraction dans les bases sources • La date du dernier chargement de l’entrepôt • L’historique des données sources et de celles de l’entrepôt L. SFAXI Formation Business Intelligence 78 / 91
  106. 106. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Business Intelligence La Chaîne Décisionnelle Data Warehouse Aspects Fondamentaux Conclusion Opérations OLAP • Drill-up / Drill-down • Rotate • Slicing • Scoping L. SFAXI Formation Business Intelligence 79 / 91
  107. 107. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Business Intelligence La Chaîne Décisionnelle Data Warehouse Aspects Fondamentaux Conclusion Opérations OLAP Drill-Up / Drill-Down L. SFAXI Formation Business Intelligence 80 / 91
  108. 108. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Business Intelligence La Chaîne Décisionnelle Data Warehouse Aspects Fondamentaux Conclusion Opérations OLAP Rotate L. SFAXI Formation Business Intelligence 81 / 91
  109. 109. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Business Intelligence La Chaîne Décisionnelle Data Warehouse Aspects Fondamentaux Conclusion Opérations OLAP Slicing L. SFAXI Formation Business Intelligence 82 / 91
  110. 110. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Business Intelligence La Chaîne Décisionnelle Data Warehouse Aspects Fondamentaux Conclusion Opérations OLAP Scoping L. SFAXI Formation Business Intelligence 83 / 91
  111. 111. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Business Intelligence La Chaîne Décisionnelle Data Warehouse Aspects Fondamentaux Conclusion Modèles de Stockage • ROLAP : Relational OLAP • MOLAP : Multi-Dimentional OLAP • HOLAP : Hybrid OLAP • DOLAP : Desktop OLAP L. SFAXI Formation Business Intelligence 84 / 91
  112. 112. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Business Intelligence La Chaîne Décisionnelle Data Warehouse Aspects Fondamentaux Conclusion Modèles de Stockage ROLAP (Relational OLAP) • OLAP relationnel • Données obtenues à partir de tables relationnelles et de jointures entre celles-ci • En fonction de la granularité, la requête générée est plus ou moins complexe • À chaque consultation, la requête est recalculée • Les résultats ne sont pas stockés • Langage : SQL Avantages • Faible coût (car tire partie des ressources existantes) Inconvénients • Temps de réponse long car sollicitation de la base à chaque relance d’un rapport L. SFAXI Formation Business Intelligence 85 / 91
  113. 113. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Business Intelligence La Chaîne Décisionnelle Data Warehouse Aspects Fondamentaux Conclusion Modèles de Stockage MOLAP (Multi-Dimentional OLAP) • OLAP multi-dimentionnel (Plus de relationnel !) • Données stockées dans une base de données multi-dimensionnelle appelée CUBE (Exemple : Essbase) • Tous les croisements possibles sont pré-calculés => Restitution des données instantanée • Langage : MDX Avantages • Temps de réponse très court (tout est stocké) Inconvénients • Coût élevé des licences pour les bases multi-dimensionnelles • Coût élevé de développement des cubes • Difficile à mettre en place pour les gros volumes de données, à cause de tous les résultats précompilés L. SFAXI Formation Business Intelligence 86 / 91
  114. 114. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Business Intelligence La Chaîne Décisionnelle Data Warehouse Aspects Fondamentaux Conclusion Modèles de Stockage HOLAP (Hybrid OLAP) • Association du ROLAP et du MOLAP • Concept de Drill-Through • Accès aux données agrégées avec MOLAP (Cube) • Accès aux détails avec le ROLAP (tables relationnelles) • Étapes : • Données agrégées stockées dans une table multi-dimensionnelle • Restitution de ces données à partir d’un outil de reporting • Affichage des données agrégées extraites à partir des tables multi-dimensionnelles • Affichage des détails des opérations issus des bases relationnelles Avantages • Temps de réponse assez court • Moins coûteux que MOLAP car moins de développement Inconvénients • Ne pourra pas être utilisé si les rapports sont trop complexes et font trop de croisements de données L. SFAXI Formation Business Intelligence 87 / 91
  115. 115. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Business Intelligence La Chaîne Décisionnelle Data Warehouse Aspects Fondamentaux Conclusion Modèles de Stockage DOLAP (Desktop OLAP) • Ce n’est pas une technologie de stockage, mais un mode de fonctionnement. • Base de donnée OLAP limitée en taille • Permet à l’utilisateur d’enregistrer une partie de la base de données multi-dimensionnelle en local L. SFAXI Formation Business Intelligence 88 / 91
  116. 116. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Business Intelligence La Chaîne Décisionnelle Data Warehouse Aspects Fondamentaux Conclusion Sommaire Business Intelligence : Besoins et Étapes La Chaîne Décisionnelle Les Entrepôts de Données (Datawarehouse) Aspects Fondamentaux de la Modélisation Multidimensionnelle Conclusion L. SFAXI Formation Business Intelligence 89 / 91
  117. 117. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Business Intelligence La Chaîne Décisionnelle Data Warehouse Aspects Fondamentaux Conclusion Conclusion Réfléchis avec lenteur, mais exécute rapidement tes décisions. L. SFAXI Formation Business Intelligence 90 / 91
  118. 118. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Business Intelligence La Chaîne Décisionnelle Data Warehouse Aspects Fondamentaux Conclusion Références Bibliographiques Jacky Akoka et Isabelle Comyn-Wattiau (Univ. de Versailles). Le data warehouse et les systèmes multidimentionnels. Fatma Baklouti (INSAT). Data warehouse. Didier Donsez (Université Joseph Fourier). Conception de bases décisionnelles. Ralph Kimball. Concevoir et déployer un Data Warehouse. Eyrolles edition, 2000. E. Grislin-Le Strugeon (Univ. de Valenciennes). Systèmes d’information décisionnels (data warehouse/ data mining). Open Source Solutions Smile. L. SFAXI Formation Business Intelligence 91 / 91

×