O slideshow foi denunciado.
Seu SlideShare está sendo baixado. ×

Elipse- hiperbola

Anúncio
Anúncio
Anúncio
Anúncio
Anúncio
Anúncio
Anúncio
Anúncio
Anúncio
Anúncio
Anúncio
Anúncio
Próximos SlideShares
Elipse hiperbola resueltos
Elipse hiperbola resueltos
Carregando em…3
×

Confira estes a seguir

1 de 28 Anúncio

Mais Conteúdo rRelacionado

Diapositivos para si (20)

Semelhante a Elipse- hiperbola (20)

Anúncio

Mais recentes (20)

Elipse- hiperbola

  1. 1. LA ELIPSE Y LA HIPÉRBOLA EJERCICIOS RESUELTOS UNIDAD 14
  2. 2. Ejercicios Resueltos OBJETIVO 1 OBJETIVO 2 OBJETIVO 3
  3. 3. Objetivo 1. Recordarás y aplicarás la definición de la elipse como un lugar geométrico y su ecuación en la forma canónica y en la forma general.
  4. 4. 1) Encuentra la ecuación de la elipse con focos F(0, 3) y F’(0, –3), y cada uno de sus lados rectos igual a 9. Como los focos tienen la misma abscisa, el eje focal es el eje y. El centro se encuentra en el punto medio entre ellos: C(0, 0). • La distancia c es: • El lado recto es: 330 c 2 2 2 b a c  922  ab , 9 2 2  a b LR
  5. 5. • Sustituyendo: • El valor negativo de a no se considera puesto que a es una longitud. Por tanto a = 6.   9 92 2   a a 01892 2  aa         22 182499 2  a 4 159 4 144819    a 6 4 24 1 a 2 3 4 6 2 a
  6. 6. • La ecuación de la elipse es: 922  ab 279362 b 1 3627 22  yx
  7. 7. 2) Los focos de una elipse son los puntos F(3, 8) y F’(3, 2) y la longitud de su eje menor es 8. Encuentra la ecuación de la elipse, las coordenadas de sus vértices y su excentricidad. • El eje focal es paralelo al eje y. • El centro tiene la misma abscisa que los focos: h = 3. La distancia entre los focos es: k = 2 + c = 2 + 3 = 5 → C(3, 5) 2b = 8 b = 4 8 2 3 2 c    222 cba  259162 a
  8. 8. • Ecuación de la elipse: • Vértices: V(h, k + a) = (3, 5 + 5) = (3, 10); V’(h, k – a) = (3, 5 – 5) = (3, 0) • Excentricidad:     1 25 5 16 3 22     yx c e a   5 3
  9. 9. 3) Encuentra la ecuación del lugar geométrico de los puntos cuya distancia al punto (4, 0) es igual a la mitad de su distancia a la recta x – 16 = 0 e interpreta el resultado. • Distancia de un punto (x, y) al punto (4, 0): • Distancia del mismo punto (x, y) a la recta x – 16 = 0: 1d     22 04  yx 2d  2 1 16  x
  10. 10. El lugar geométrico descrito es una elipse horizontal con centro en el origen, eje mayor igual a 2(8) = 16 y eje menor igual a 1 2 1 2 d d   2 2 4x y     1 16 2 x      2 22 1 4 16 4 x y x     25632 4 1 168 222  xxyxx 21 8 64 4 x x   2 23 48 4 x y    2 2 3 1 4 48 48 x y   1 4864 22  yx 482
  11. 11. 4) Un arco con forma de semi-elipse tiene una altura máxima de 45m y un claro de 150m. Encuentra la longitud de dos soportes verticales situados de manera que dividan en claro en tres espacios iguales. Si el eje x es la base del arco (el eje focal de la elipse) y el origen es su punto medio, la ecuación es del tipo , con el semieje mayor, a = 75 y el semieje menor, b = 45. Para que el claro se divida en tres partes iguales, la distancia de los soportes a cada vértice y entre ellos debe ser de 50m. 12 2 2 2  b y a x
  12. 12. • La ecuación es: 1 20255625 22  yx
  13. 13. Para determinar la altura de los soportes, se hace x = 25 en la ecuación y se despeja el valor de y: Puesto que y es una longitud (la altura de los postes), se toma sólo la raíz positiva.   2 2 25 1 5625 2025 y   1 20255625 625 2  y 1 20259 1 2  y 9 8 2025 2  y 1800 9 162002 y 230y
  14. 14. Objetivo 2. Recordarás y aplicarás la definición de la hipérbola como un lugar geométrico y su ecuación en la forma canónica.
  15. 15. 1) Encuentra los elementos de la hipérbola 1 169 22  xy 92 a 2 16 a = 3; b = 4b   222 bac  251692 c 5 (la raíz negativa se descarta)c  Centro C(0, 0) Eje focal El eje y Vértices V(0, 3), V’(0, –3) Focos F(0, 5), F’(0, –5) Distancia focal 10 Longitud del eje transverso 6 Longitud del eje conjugado 8 Longitud de cada lado recto Excentricidad Asíntotas a b2 2 3 32 a c e  5 3  xy 4 3  xy 4 3 
  16. 16. 2)Encuentra la ecuación de la hipérbola horizontal que tiene su centro en (0, 0), su lado recto mide 6 unidades y su excentricidad es 7 2 2 2 6 b LR a    ab 32  2 2 7 2 c a b e a a      4 7 2 22   a ba   22 734 aaa  01247 22  aaa 0123 a 4 3 12 a 162 a 12)4(32 b 1 1216 22  yx 12 2 2 2  b y a x
  17. 17. 3) Determina la ecuación de la hipérbola con C(0, 0), eje focal sobre el eje y, y que pasa por los puntos (4, 6) y (1, –3) Hipérbola vertical: Se sustituyen las coordenadas de los puntos por los que pasa: 12 2 2 2  b x a y 2 2 2 2 (6) (4) 1 a b    1 1636 22  ba 2222 1636 baab  2 2 2 2 ( 3) (1) 1 a b     1 19 22  ba 2222 9 baab 
  18. 18. Se despeja a2 en la segunda ecuación: y se sustituye en la primera: 2222 9baba    222 91 bba  1 9 2 2 2   b b a 2 2 2 2 2 2 1 9 1 9 1636 b b b b b b                  1 9 1 144139 2 4 2 222     b b b bbb 4224 91443636 bbbb  010827 24  bb
  19. 19. Se resuelve para b y se sustituye para calcular a: La ecuación de la hipérbola es: 10827 2 b 4 27 1082 b 5 36 14 )4(92   a 1 4 5 36 22  xy
  20. 20. 4) Los vértices de una hipérbola son los puntos (–3, 2) y (–3, –2) y la longitud de su eje conjugado es 6. Encuentra la ecuación de la hipérbola, las coordenadas de sus focos y su excentricidad. V(–3, 2) y V’(–3, –2) → la hipérbola es vertical: Centro de la hipérbola: h = –3,     12 2 2 2     b hx a ky  2 2 4 2 ( 3,0) 2 2 k C       
  21. 21. Semieje transverso: Eje conjugado 2b = 6 → semieje conjugado: b = 3 Ecuación de la hipérbola: Focos: Excentricidad: a = 0 2 2      1 9 3 4 0 22     xy 2 2 c a b   1394   13,3  13,3  2 13 e
  22. 22. Objetivo 3. Recordarás y aplicarás la forma general de la ecuación de una elipse o de una hipérbola y las características de los coeficientes de una ecuación de segundo grado que representa a una elipse o a una hipérbola.
  23. 23. 1) Comprueba que el lugar geométrico de la ecuación es una elipse y encuentra las coordenadas del centro, de los vértices y focos. A = 2, C = 4, 2 ≠ 4, ambos son positivos. D = 3, E = –12, F = 6; la ecuación sí representa una elipse. Por los valores de A y de C, tiene su eje focal paralelo al eje x. 0612342 22  yxyx 2 2 4CD AE ACF          642412234 22  = 36 + 288 - 192 = 132 > 0
  24. 24. Por lo tanto: a2 = 4; a = 2; b2 = 2; b = 2 bA  2 aC  hbD 2 2 kaE 2 2 222222 bakahbF  2 2 2 2 c a b   2242 c 2 2b D h  3 4  2 2a E k  12 3 8 2            2 3 , 4 3 C 3 3 2, 4 2 V               2 3 , 4 5 11 3 ' , 4 2 V       3 3 2, 4 2 F        3 3 ' 2, 2 2 F       
  25. 25. 2) Encuentra el lugar geométrico de los puntos P(x, y) tales que el producto de las pendientes de las rectas que los unen con los puntos fijos (–2, 1) y (4, 5) es igual a 3 Pendiente de las rectas que pasan por los puntos (x, y) y (–2, 1): Pendiente de las rectas que pasan por los puntos (x, y) y (4, 5): El lugar geométrico es una hipérbola.  1 1 m = 2 y x    2 5 m = 4 y x   1 2 1 5 m m = 3 2 4 y y x x            3 842 55 2 2    xxx yyy  82356 22  xxyy 029663 22  yxyx
  26. 26. 3) Encuentra el lugar geométrico de los puntos P(x, y) tal que el producto de las pendientes de las rectas que unen el punto P con los puntos fijos (3, –2) y (–2, 1) es igual a . Pendiente de la recta que une a P con (3, –2): Pendiente de la recta que une a P con (–2, 1): Es una elipse. 1m  3 2   x y 2m  2 1   x y 1 2m m  6 2 1 3 2                 x y x y 6 6 2 2 2    xx yy  662 22  xxyy 03866 22  yxyx
  27. 27. 4) Encuentra todos los elemento de la elipse • A = 2, C = 9, D = 0, E = 0, F = -18; 2 ≠ 9, ambos son positivos y C > A. La ecuación no tiene términos en x ni en y por lo que el centro está en el origen. C(0, 0), V(3, 0), V’(-3, 0); 01892 22  yx 01892 22  yx 1892 22  yx 1 29 22  yx 7292 c ( 7,0)F '( 7,0)F  3 4 LR 3 7 e 2a = 6 2b = 2 2

×