SlideShare una empresa de Scribd logo
1 de 28
LA ELIPSE
Y
LA HIPÉRBOLA
EJERCICIOS RESUELTOS
UNIDAD 14
Ejercicios Resueltos
OBJETIVO 1
OBJETIVO 2
OBJETIVO 3
Objetivo 1. Recordarás y aplicarás la
definición de la elipse como un lugar
geométrico y su ecuación en la forma
canónica y en la forma general.
1) Encuentra la ecuación de la elipse con focos F(0,
3) y F’(0, –3), y cada uno de sus lados rectos igual a
9.
Como los focos tienen la misma abscisa, el eje focal
es el eje y. El centro se encuentra en el punto medio
entre ellos: C(0, 0).
• La distancia c es:
• El lado recto es:
330 c
2 2 2
b a c 
922
 ab
,
9
2 2

a
b
LR
• Sustituyendo:
• El valor negativo de a no se considera puesto que
a es una longitud. Por tanto a = 6.
  9
92 2


a
a
01892 2
 aa       
 22
182499
2

a
4
159
4
144819 


a 6
4
24
1 a
2
3
4
6
2 a
• La ecuación de la elipse es:
922
 ab
279362
b
1
3627
22

yx
2) Los focos de una elipse son los puntos
F(3, 8) y F’(3, 2) y la longitud de su eje
menor es 8. Encuentra la ecuación de la
elipse, las coordenadas de sus vértices y su
excentricidad.
• El eje focal es paralelo al eje y.
• El centro tiene la misma abscisa que los focos:
h = 3.
La distancia entre los focos es:
k = 2 + c = 2 + 3 = 5 → C(3, 5)
2b = 8 b = 4
8 2
3
2
c

 
222
cba  259162
a
• Ecuación de la elipse:
• Vértices: V(h, k + a) = (3, 5 + 5) = (3, 10);
V’(h, k – a) = (3, 5 – 5) = (3, 0)
• Excentricidad:
    1
25
5
16
3
22



 yx
c
e
a
 
5
3
3) Encuentra la ecuación del lugar geométrico
de los puntos cuya distancia al punto (4, 0) es
igual a la mitad de su distancia a la recta x –
16 = 0 e interpreta el resultado.
• Distancia de un punto (x, y) al punto (4, 0):
• Distancia del mismo punto (x, y) a la recta x – 16
= 0:
1d     22
04  yx
2d 
2
1
16

x
El lugar geométrico descrito es una elipse horizontal con
centro en el origen, eje mayor igual a 2(8) = 16 y eje
menor igual a
1 2
1
2
d d  
2 2
4x y    
1
16
2
x 
   
2 22 1
4 16
4
x y x   
 25632
4
1
168 222
 xxyxx
21
8 64
4
x x  
2 23
48
4
x y 
 
2 2
3
1
4 48 48
x y
  1
4864
22

yx
482
4) Un arco con forma de semi-elipse tiene una
altura máxima de 45m y un claro de 150m.
Encuentra la longitud de dos soportes verticales
situados de manera que dividan en claro en tres
espacios iguales.
Si el eje x es la base del arco (el eje focal de la
elipse) y el origen es su punto medio, la ecuación
es del tipo , con el
semieje mayor, a = 75 y el semieje menor, b = 45.
Para que el claro se divida en tres partes iguales,
la distancia de los soportes a cada vértice y entre
ellos debe ser de 50m.
12
2
2
2

b
y
a
x
• La ecuación es:
1
20255625
22

yx
Para determinar la altura de los soportes, se hace
x = 25 en la ecuación y se despeja el valor de y:
Puesto que y es una longitud (la altura de los
postes), se toma sólo la raíz positiva.
 
2 2
25
1
5625 2025
y
  1
20255625
625 2

y
1
20259
1 2

y
9
8
2025
2

y
1800
9
162002
y 230y
Objetivo 2. Recordarás y aplicarás la
definición de la hipérbola como un
lugar geométrico y su ecuación en la
forma canónica.
1) Encuentra los elementos de la
hipérbola 1
169
22

xy
92
a
2
16 a = 3; b = 4b  
222
bac  251692
c
5 (la raíz negativa se descarta)c 
Centro C(0, 0)
Eje focal El eje y
Vértices V(0, 3), V’(0, –3)
Focos F(0, 5), F’(0, –5)
Distancia focal 10
Longitud del eje transverso 6
Longitud del eje conjugado 8
Longitud de cada lado recto
Excentricidad
Asíntotas
a
b2
2
3
32
a
c
e 
5
3

xy
4
3
 xy
4
3

2)Encuentra la ecuación de la hipérbola horizontal
que tiene su centro en (0, 0), su lado recto mide 6
unidades y su excentricidad es 7
2
2
2
6
b
LR
a
   ab 32

2 2
7
2
c a b
e
a a

   
4
7
2
22


a
ba   22
734 aaa 
01247 22
 aaa 0123 a 4
3
12
a 162
a
12)4(32
b
1
1216
22

yx
12
2
2
2

b
y
a
x
3) Determina la ecuación de la hipérbola con
C(0, 0), eje focal sobre el eje y, y que pasa
por los puntos (4, 6) y (1, –3)
Hipérbola vertical:
Se sustituyen las coordenadas de los puntos por
los que pasa:
12
2
2
2

b
x
a
y
2 2
2 2
(6) (4)
1
a b
   1
1636
22

ba
2222
1636 baab 
2 2
2 2
( 3) (1)
1
a b

   1
19
22

ba
2222
9 baab 
Se despeja a2 en la segunda ecuación:
y se sustituye en la primera:
2222
9baba 
  222
91 bba 
1
9
2
2
2


b
b
a
2
2
2
2
2
2
1
9
1
9
1636 b
b
b
b
b
b 














 
1
9
1
144139
2
4
2
222




b
b
b
bbb
4224
91443636 bbbb  010827 24
 bb
Se resuelve para b y se sustituye
para calcular a:
La ecuación de la hipérbola es:
10827 2
b
4
27
1082
b
5
36
14
)4(92


a
1
4
5
36
22

xy
4) Los vértices de una hipérbola son los puntos (–3,
2) y (–3, –2) y la longitud de su eje conjugado es 6.
Encuentra la ecuación de la hipérbola, las
coordenadas de sus focos y su excentricidad.
V(–3, 2) y V’(–3, –2) → la hipérbola es
vertical:
Centro de la hipérbola:
h = –3,
    12
2
2
2




b
hx
a
ky
 2 2 4
2 ( 3,0)
2 2
k C
 
    
Semieje transverso:
Eje conjugado 2b = 6 → semieje conjugado: b = 3
Ecuación de la hipérbola:
Focos:
Excentricidad:
a = 0 2 2 
    1
9
3
4
0
22



 xy
2 2
c a b   1394 
 13,3  13,3 
2
13
e
Objetivo 3. Recordarás y aplicarás la forma
general de la ecuación de una elipse o de
una hipérbola y las características de los
coeficientes de una ecuación de segundo
grado que representa a una elipse o a una
hipérbola.
1) Comprueba que el lugar geométrico de la
ecuación
es una elipse y encuentra las coordenadas del
centro, de los vértices y focos.
A = 2, C = 4, 2 ≠ 4, ambos son positivos.
D = 3, E = –12, F = 6;
la ecuación sí representa una elipse. Por los
valores de A y de C, tiene su eje focal paralelo
al eje x.
0612342 22
 yxyx
2 2
4CD AE ACF          642412234
22

= 36 + 288 - 192 = 132 > 0
Por lo tanto:
a2 = 4; a = 2; b2 = 2; b =
2
bA  2
aC  hbD 2
2 kaE 2
2 222222
bakahbF 
2
2 2 2
c a b   2242
c
2
2b
D
h 
3
4
 2
2a
E
k 
12 3
8 2

   






2
3
,
4
3
C
3 3
2,
4 2
V
 
   
 






2
3
,
4
5 11 3
' ,
4 2
V
 
 
 
3 3
2,
4 2
F
 
  
 
3 3
' 2,
2 2
F
 
  
 
2) Encuentra el lugar geométrico de los puntos P(x, y) tales que el
producto de las pendientes de las rectas que los unen con los
puntos fijos (–2, 1) y (4, 5) es igual a 3
Pendiente de las rectas que pasan por los puntos (x, y) y (–2, 1):
Pendiente de las rectas que pasan por los puntos (x, y) y (4, 5):
El lugar geométrico es una hipérbola.
 1
1
m =
2
y
x

 
2
5
m =
4
y
x


1 2
1 5
m m = 3
2 4
y y
x x
   
  
   
3
842
55
2
2



xxx
yyy
 82356 22
 xxyy 029663 22
 yxyx
3) Encuentra el lugar geométrico de los puntos P(x, y) tal que el
producto de las pendientes de las rectas que unen el punto P con los
puntos fijos (3, –2) y (–2, 1) es igual a .
Pendiente de la recta que une a P con (3, –2):
Pendiente de la recta que une a P con (–2, 1):
Es una elipse.
1m 
3
2


x
y
2m 
2
1


x
y
1 2m m  6
2
1
3
2
















x
y
x
y
6
6
2
2
2



xx
yy  662 22
 xxyy
03866 22
 yxyx
4) Encuentra todos los elemento de la elipse
• A = 2, C = 9, D = 0, E = 0, F = -18; 2 ≠ 9,
ambos son positivos y C > A. La ecuación no
tiene términos en x ni en y por lo que el centro
está en el origen.
C(0, 0), V(3, 0), V’(-3, 0);
01892 22
 yx
01892 22
 yx
1892 22
 yx
1
29
22

yx 7292
c
( 7,0)F '( 7,0)F 
3
4
LR
3
7
e 2a = 6 2b = 2 2

Más contenido relacionado

La actualidad más candente

ECUACIONES DE LA ELIPSE
ECUACIONES DE LA ELIPSEECUACIONES DE LA ELIPSE
ECUACIONES DE LA ELIPSE
jesus ciro
 
Concepto de elipse y sus elementos
Concepto de elipse y sus elementosConcepto de elipse y sus elementos
Concepto de elipse y sus elementos
Electivomatematica
 
Secciones cónicas
Secciones cónicasSecciones cónicas
Secciones cónicas
maquisbelen
 
Presentacion dela parabola
Presentacion dela parabolaPresentacion dela parabola
Presentacion dela parabola
Mary Candy
 

La actualidad más candente (20)

ECUACIONES DE LA ELIPSE
ECUACIONES DE LA ELIPSEECUACIONES DE LA ELIPSE
ECUACIONES DE LA ELIPSE
 
Curvas cónicas
Curvas cónicasCurvas cónicas
Curvas cónicas
 
la elipse diapositiva
la elipse diapositivala elipse diapositiva
la elipse diapositiva
 
Presentación cónicas
Presentación cónicasPresentación cónicas
Presentación cónicas
 
Trabajo cónicas
Trabajo cónicasTrabajo cónicas
Trabajo cónicas
 
Concepto de elipse y sus elementos
Concepto de elipse y sus elementosConcepto de elipse y sus elementos
Concepto de elipse y sus elementos
 
La elipse
La elipseLa elipse
La elipse
 
HOMOLOGÍA Y AFINIDAD. DIBUJO TÉCNICO 2º BACHILLERATO
HOMOLOGÍA Y AFINIDAD. DIBUJO TÉCNICO 2º BACHILLERATOHOMOLOGÍA Y AFINIDAD. DIBUJO TÉCNICO 2º BACHILLERATO
HOMOLOGÍA Y AFINIDAD. DIBUJO TÉCNICO 2º BACHILLERATO
 
Elipse presentacion
Elipse presentacionElipse presentacion
Elipse presentacion
 
Elipse hiperbola resueltos
Elipse hiperbola resueltosElipse hiperbola resueltos
Elipse hiperbola resueltos
 
Taller de la Circunferencia
Taller de la CircunferenciaTaller de la Circunferencia
Taller de la Circunferencia
 
Matematica parabolas
Matematica parabolas Matematica parabolas
Matematica parabolas
 
La parabola
La parabola La parabola
La parabola
 
Secciones cónicas
Secciones cónicasSecciones cónicas
Secciones cónicas
 
Afinidad
AfinidadAfinidad
Afinidad
 
Trabajo cónicas
Trabajo cónicasTrabajo cónicas
Trabajo cónicas
 
LA PARÁBOLA
LA PARÁBOLA LA PARÁBOLA
LA PARÁBOLA
 
LA HIPERBOLA
LA HIPERBOLALA HIPERBOLA
LA HIPERBOLA
 
Presentacion dela parabola
Presentacion dela parabolaPresentacion dela parabola
Presentacion dela parabola
 
la hiperbola
la hiperbolala hiperbola
la hiperbola
 

Similar a Elipse- hiperbola

Secciones_Conicas.ppt
Secciones_Conicas.pptSecciones_Conicas.ppt
Secciones_Conicas.ppt
cochachi
 
Clase 1, Lugar geométrico, Circunferencia..pptx
Clase 1, Lugar geométrico, Circunferencia..pptxClase 1, Lugar geométrico, Circunferencia..pptx
Clase 1, Lugar geométrico, Circunferencia..pptx
MarlonCaada
 

Similar a Elipse- hiperbola (20)

Ecuaciones de la_elipse_hiperbola
Ecuaciones de la_elipse_hiperbolaEcuaciones de la_elipse_hiperbola
Ecuaciones de la_elipse_hiperbola
 
material_2016I3_SRB083_12_64135.ppt
material_2016I3_SRB083_12_64135.pptmaterial_2016I3_SRB083_12_64135.ppt
material_2016I3_SRB083_12_64135.ppt
 
Secciones cónicas
Secciones cónicasSecciones cónicas
Secciones cónicas
 
plano numérico.PPTX
plano numérico.PPTXplano numérico.PPTX
plano numérico.PPTX
 
Secciones_Conicas.ppt
Secciones_Conicas.pptSecciones_Conicas.ppt
Secciones_Conicas.ppt
 
Plano Numérico.docx
Plano Numérico.docxPlano Numérico.docx
Plano Numérico.docx
 
Bloque
BloqueBloque
Bloque
 
Crónicas, ecuaciones paramétricas y Coordenadas polares
Crónicas, ecuaciones paramétricas y Coordenadas polaresCrónicas, ecuaciones paramétricas y Coordenadas polares
Crónicas, ecuaciones paramétricas y Coordenadas polares
 
Conicas
ConicasConicas
Conicas
 
7.2-Elipses.pdf
7.2-Elipses.pdf7.2-Elipses.pdf
7.2-Elipses.pdf
 
La Elipse
La ElipseLa Elipse
La Elipse
 
ejercicios de lugares geometricos.pdf
ejercicios de lugares geometricos.pdfejercicios de lugares geometricos.pdf
ejercicios de lugares geometricos.pdf
 
PRE CALCULO N°13 ESAN
PRE CALCULO N°13 ESANPRE CALCULO N°13 ESAN
PRE CALCULO N°13 ESAN
 
CONICAS.pptx
CONICAS.pptxCONICAS.pptx
CONICAS.pptx
 
Ejercicios
EjerciciosEjercicios
Ejercicios
 
Plano Numerico Jose Colombo..pptx
Plano Numerico Jose Colombo..pptxPlano Numerico Jose Colombo..pptx
Plano Numerico Jose Colombo..pptx
 
Ejercicios resueltos
Ejercicios resueltosEjercicios resueltos
Ejercicios resueltos
 
Circunferencia parabola resueltos
Circunferencia parabola resueltosCircunferencia parabola resueltos
Circunferencia parabola resueltos
 
Conicas.doc
Conicas.docConicas.doc
Conicas.doc
 
Clase 1, Lugar geométrico, Circunferencia..pptx
Clase 1, Lugar geométrico, Circunferencia..pptxClase 1, Lugar geométrico, Circunferencia..pptx
Clase 1, Lugar geométrico, Circunferencia..pptx
 

Último

Concepto y definición de tipos de Datos Abstractos en c++.pptx
Concepto y definición de tipos de Datos Abstractos en c++.pptxConcepto y definición de tipos de Datos Abstractos en c++.pptx
Concepto y definición de tipos de Datos Abstractos en c++.pptx
Fernando Solis
 
🦄💫4° SEM32 WORD PLANEACIÓN PROYECTOS DARUKEL 23-24.docx
🦄💫4° SEM32 WORD PLANEACIÓN PROYECTOS DARUKEL 23-24.docx🦄💫4° SEM32 WORD PLANEACIÓN PROYECTOS DARUKEL 23-24.docx
🦄💫4° SEM32 WORD PLANEACIÓN PROYECTOS DARUKEL 23-24.docx
EliaHernndez7
 

Último (20)

Interpretación de cortes geológicos 2024
Interpretación de cortes geológicos 2024Interpretación de cortes geológicos 2024
Interpretación de cortes geológicos 2024
 
FICHA PROYECTO COIL- GLOBAL CLASSROOM.docx.pdf
FICHA PROYECTO COIL- GLOBAL CLASSROOM.docx.pdfFICHA PROYECTO COIL- GLOBAL CLASSROOM.docx.pdf
FICHA PROYECTO COIL- GLOBAL CLASSROOM.docx.pdf
 
Sesión de clase APC: Los dos testigos.pdf
Sesión de clase APC: Los dos testigos.pdfSesión de clase APC: Los dos testigos.pdf
Sesión de clase APC: Los dos testigos.pdf
 
Factores que intervienen en la Administración por Valores.pdf
Factores que intervienen en la Administración por Valores.pdfFactores que intervienen en la Administración por Valores.pdf
Factores que intervienen en la Administración por Valores.pdf
 
Tema 17. Biología de los microorganismos 2024
Tema 17. Biología de los microorganismos 2024Tema 17. Biología de los microorganismos 2024
Tema 17. Biología de los microorganismos 2024
 
Concepto y definición de tipos de Datos Abstractos en c++.pptx
Concepto y definición de tipos de Datos Abstractos en c++.pptxConcepto y definición de tipos de Datos Abstractos en c++.pptx
Concepto y definición de tipos de Datos Abstractos en c++.pptx
 
Power Point E. S.: Los dos testigos.pptx
Power Point E. S.: Los dos testigos.pptxPower Point E. S.: Los dos testigos.pptx
Power Point E. S.: Los dos testigos.pptx
 
Plan-de-la-Patria-2019-2025- TERCER PLAN SOCIALISTA DE LA NACIÓN.pdf
Plan-de-la-Patria-2019-2025- TERCER PLAN SOCIALISTA DE LA NACIÓN.pdfPlan-de-la-Patria-2019-2025- TERCER PLAN SOCIALISTA DE LA NACIÓN.pdf
Plan-de-la-Patria-2019-2025- TERCER PLAN SOCIALISTA DE LA NACIÓN.pdf
 
Desarrollo y Aplicación de la Administración por Valores
Desarrollo y Aplicación de la Administración por ValoresDesarrollo y Aplicación de la Administración por Valores
Desarrollo y Aplicación de la Administración por Valores
 
Feliz Día de la Madre - 5 de Mayo, 2024.pdf
Feliz Día de la Madre - 5 de Mayo, 2024.pdfFeliz Día de la Madre - 5 de Mayo, 2024.pdf
Feliz Día de la Madre - 5 de Mayo, 2024.pdf
 
PLAN DE REFUERZO ESCOLAR MERC 2024-2.docx
PLAN DE REFUERZO ESCOLAR MERC 2024-2.docxPLAN DE REFUERZO ESCOLAR MERC 2024-2.docx
PLAN DE REFUERZO ESCOLAR MERC 2024-2.docx
 
Posición astronómica y geográfica de Europa.pptx
Posición astronómica y geográfica de Europa.pptxPosición astronómica y geográfica de Europa.pptx
Posición astronómica y geográfica de Europa.pptx
 
PLAN LECTOR 2024 integrado nivel inicial-miercoles 10.pptx
PLAN LECTOR 2024  integrado nivel inicial-miercoles 10.pptxPLAN LECTOR 2024  integrado nivel inicial-miercoles 10.pptx
PLAN LECTOR 2024 integrado nivel inicial-miercoles 10.pptx
 
Prueba libre de Geografía para obtención título Bachillerato - 2024
Prueba libre de Geografía para obtención título Bachillerato - 2024Prueba libre de Geografía para obtención título Bachillerato - 2024
Prueba libre de Geografía para obtención título Bachillerato - 2024
 
La Sostenibilidad Corporativa. Administración Ambiental
La Sostenibilidad Corporativa. Administración AmbientalLa Sostenibilidad Corporativa. Administración Ambiental
La Sostenibilidad Corporativa. Administración Ambiental
 
Lecciones 06 Esc. Sabática. Los dos testigos
Lecciones 06 Esc. Sabática. Los dos testigosLecciones 06 Esc. Sabática. Los dos testigos
Lecciones 06 Esc. Sabática. Los dos testigos
 
Biografía de Charles Coulomb física .pdf
Biografía de Charles Coulomb física .pdfBiografía de Charles Coulomb física .pdf
Biografía de Charles Coulomb física .pdf
 
🦄💫4° SEM32 WORD PLANEACIÓN PROYECTOS DARUKEL 23-24.docx
🦄💫4° SEM32 WORD PLANEACIÓN PROYECTOS DARUKEL 23-24.docx🦄💫4° SEM32 WORD PLANEACIÓN PROYECTOS DARUKEL 23-24.docx
🦄💫4° SEM32 WORD PLANEACIÓN PROYECTOS DARUKEL 23-24.docx
 
Los avatares para el juego dramático en entornos virtuales
Los avatares para el juego dramático en entornos virtualesLos avatares para el juego dramático en entornos virtuales
Los avatares para el juego dramático en entornos virtuales
 
Código Civil de la República Bolivariana de Venezuela
Código Civil de la República Bolivariana de VenezuelaCódigo Civil de la República Bolivariana de Venezuela
Código Civil de la República Bolivariana de Venezuela
 

Elipse- hiperbola

  • 3. Objetivo 1. Recordarás y aplicarás la definición de la elipse como un lugar geométrico y su ecuación en la forma canónica y en la forma general.
  • 4. 1) Encuentra la ecuación de la elipse con focos F(0, 3) y F’(0, –3), y cada uno de sus lados rectos igual a 9. Como los focos tienen la misma abscisa, el eje focal es el eje y. El centro se encuentra en el punto medio entre ellos: C(0, 0). • La distancia c es: • El lado recto es: 330 c 2 2 2 b a c  922  ab , 9 2 2  a b LR
  • 5. • Sustituyendo: • El valor negativo de a no se considera puesto que a es una longitud. Por tanto a = 6.   9 92 2   a a 01892 2  aa         22 182499 2  a 4 159 4 144819    a 6 4 24 1 a 2 3 4 6 2 a
  • 6. • La ecuación de la elipse es: 922  ab 279362 b 1 3627 22  yx
  • 7. 2) Los focos de una elipse son los puntos F(3, 8) y F’(3, 2) y la longitud de su eje menor es 8. Encuentra la ecuación de la elipse, las coordenadas de sus vértices y su excentricidad. • El eje focal es paralelo al eje y. • El centro tiene la misma abscisa que los focos: h = 3. La distancia entre los focos es: k = 2 + c = 2 + 3 = 5 → C(3, 5) 2b = 8 b = 4 8 2 3 2 c    222 cba  259162 a
  • 8. • Ecuación de la elipse: • Vértices: V(h, k + a) = (3, 5 + 5) = (3, 10); V’(h, k – a) = (3, 5 – 5) = (3, 0) • Excentricidad:     1 25 5 16 3 22     yx c e a   5 3
  • 9. 3) Encuentra la ecuación del lugar geométrico de los puntos cuya distancia al punto (4, 0) es igual a la mitad de su distancia a la recta x – 16 = 0 e interpreta el resultado. • Distancia de un punto (x, y) al punto (4, 0): • Distancia del mismo punto (x, y) a la recta x – 16 = 0: 1d     22 04  yx 2d  2 1 16  x
  • 10. El lugar geométrico descrito es una elipse horizontal con centro en el origen, eje mayor igual a 2(8) = 16 y eje menor igual a 1 2 1 2 d d   2 2 4x y     1 16 2 x      2 22 1 4 16 4 x y x     25632 4 1 168 222  xxyxx 21 8 64 4 x x   2 23 48 4 x y    2 2 3 1 4 48 48 x y   1 4864 22  yx 482
  • 11. 4) Un arco con forma de semi-elipse tiene una altura máxima de 45m y un claro de 150m. Encuentra la longitud de dos soportes verticales situados de manera que dividan en claro en tres espacios iguales. Si el eje x es la base del arco (el eje focal de la elipse) y el origen es su punto medio, la ecuación es del tipo , con el semieje mayor, a = 75 y el semieje menor, b = 45. Para que el claro se divida en tres partes iguales, la distancia de los soportes a cada vértice y entre ellos debe ser de 50m. 12 2 2 2  b y a x
  • 12. • La ecuación es: 1 20255625 22  yx
  • 13. Para determinar la altura de los soportes, se hace x = 25 en la ecuación y se despeja el valor de y: Puesto que y es una longitud (la altura de los postes), se toma sólo la raíz positiva.   2 2 25 1 5625 2025 y   1 20255625 625 2  y 1 20259 1 2  y 9 8 2025 2  y 1800 9 162002 y 230y
  • 14. Objetivo 2. Recordarás y aplicarás la definición de la hipérbola como un lugar geométrico y su ecuación en la forma canónica.
  • 15. 1) Encuentra los elementos de la hipérbola 1 169 22  xy 92 a 2 16 a = 3; b = 4b   222 bac  251692 c 5 (la raíz negativa se descarta)c  Centro C(0, 0) Eje focal El eje y Vértices V(0, 3), V’(0, –3) Focos F(0, 5), F’(0, –5) Distancia focal 10 Longitud del eje transverso 6 Longitud del eje conjugado 8 Longitud de cada lado recto Excentricidad Asíntotas a b2 2 3 32 a c e  5 3  xy 4 3  xy 4 3 
  • 16. 2)Encuentra la ecuación de la hipérbola horizontal que tiene su centro en (0, 0), su lado recto mide 6 unidades y su excentricidad es 7 2 2 2 6 b LR a    ab 32  2 2 7 2 c a b e a a      4 7 2 22   a ba   22 734 aaa  01247 22  aaa 0123 a 4 3 12 a 162 a 12)4(32 b 1 1216 22  yx 12 2 2 2  b y a x
  • 17.
  • 18. 3) Determina la ecuación de la hipérbola con C(0, 0), eje focal sobre el eje y, y que pasa por los puntos (4, 6) y (1, –3) Hipérbola vertical: Se sustituyen las coordenadas de los puntos por los que pasa: 12 2 2 2  b x a y 2 2 2 2 (6) (4) 1 a b    1 1636 22  ba 2222 1636 baab  2 2 2 2 ( 3) (1) 1 a b     1 19 22  ba 2222 9 baab 
  • 19. Se despeja a2 en la segunda ecuación: y se sustituye en la primera: 2222 9baba    222 91 bba  1 9 2 2 2   b b a 2 2 2 2 2 2 1 9 1 9 1636 b b b b b b                  1 9 1 144139 2 4 2 222     b b b bbb 4224 91443636 bbbb  010827 24  bb
  • 20. Se resuelve para b y se sustituye para calcular a: La ecuación de la hipérbola es: 10827 2 b 4 27 1082 b 5 36 14 )4(92   a 1 4 5 36 22  xy
  • 21. 4) Los vértices de una hipérbola son los puntos (–3, 2) y (–3, –2) y la longitud de su eje conjugado es 6. Encuentra la ecuación de la hipérbola, las coordenadas de sus focos y su excentricidad. V(–3, 2) y V’(–3, –2) → la hipérbola es vertical: Centro de la hipérbola: h = –3,     12 2 2 2     b hx a ky  2 2 4 2 ( 3,0) 2 2 k C       
  • 22. Semieje transverso: Eje conjugado 2b = 6 → semieje conjugado: b = 3 Ecuación de la hipérbola: Focos: Excentricidad: a = 0 2 2      1 9 3 4 0 22     xy 2 2 c a b   1394   13,3  13,3  2 13 e
  • 23. Objetivo 3. Recordarás y aplicarás la forma general de la ecuación de una elipse o de una hipérbola y las características de los coeficientes de una ecuación de segundo grado que representa a una elipse o a una hipérbola.
  • 24. 1) Comprueba que el lugar geométrico de la ecuación es una elipse y encuentra las coordenadas del centro, de los vértices y focos. A = 2, C = 4, 2 ≠ 4, ambos son positivos. D = 3, E = –12, F = 6; la ecuación sí representa una elipse. Por los valores de A y de C, tiene su eje focal paralelo al eje x. 0612342 22  yxyx 2 2 4CD AE ACF          642412234 22  = 36 + 288 - 192 = 132 > 0
  • 25. Por lo tanto: a2 = 4; a = 2; b2 = 2; b = 2 bA  2 aC  hbD 2 2 kaE 2 2 222222 bakahbF  2 2 2 2 c a b   2242 c 2 2b D h  3 4  2 2a E k  12 3 8 2            2 3 , 4 3 C 3 3 2, 4 2 V               2 3 , 4 5 11 3 ' , 4 2 V       3 3 2, 4 2 F        3 3 ' 2, 2 2 F       
  • 26. 2) Encuentra el lugar geométrico de los puntos P(x, y) tales que el producto de las pendientes de las rectas que los unen con los puntos fijos (–2, 1) y (4, 5) es igual a 3 Pendiente de las rectas que pasan por los puntos (x, y) y (–2, 1): Pendiente de las rectas que pasan por los puntos (x, y) y (4, 5): El lugar geométrico es una hipérbola.  1 1 m = 2 y x    2 5 m = 4 y x   1 2 1 5 m m = 3 2 4 y y x x            3 842 55 2 2    xxx yyy  82356 22  xxyy 029663 22  yxyx
  • 27. 3) Encuentra el lugar geométrico de los puntos P(x, y) tal que el producto de las pendientes de las rectas que unen el punto P con los puntos fijos (3, –2) y (–2, 1) es igual a . Pendiente de la recta que une a P con (3, –2): Pendiente de la recta que une a P con (–2, 1): Es una elipse. 1m  3 2   x y 2m  2 1   x y 1 2m m  6 2 1 3 2                 x y x y 6 6 2 2 2    xx yy  662 22  xxyy 03866 22  yxyx
  • 28. 4) Encuentra todos los elemento de la elipse • A = 2, C = 9, D = 0, E = 0, F = -18; 2 ≠ 9, ambos son positivos y C > A. La ecuación no tiene términos en x ni en y por lo que el centro está en el origen. C(0, 0), V(3, 0), V’(-3, 0); 01892 22  yx 01892 22  yx 1892 22  yx 1 29 22  yx 7292 c ( 7,0)F '( 7,0)F  3 4 LR 3 7 e 2a = 6 2b = 2 2