SlideShare uma empresa Scribd logo
1 de 2
KEY


                            GENERAL CHEMISTRY-I (1411)
                                     S.I. # 23

1. Calculate the enthalpy change for the reaction
              P4O6 (s) + 2 O2 (g)  P4O10 (s)
Given the following enthalpies of reaction:
              P4 (s) + 3 O2 (g)  P4O6 (s)        ∆H = - 1640.1 kJ
              P4 (s) + 5 O2 (g)  P4O10 (s) ∆H = -2940.1 kJ

                P4O6 (s)  P4 (s) + 3 O2 (g)            ∆H = 1640.1 kJ
                P4 (s) + 5 O2 (g)  P4O10 (s)           ∆H = -2940.1 kJ
                P4O6 (s) + 2 O2 (g)  P4O10 (s)         ∆H = - 1300.0 kJ

2. Calculate the value of ∆H° for each of the following reactions. Use Appendix C of
your chemistry book.
               a) N2O4 (g) + 4 H2 (g)  N2 (g) + 4 H2O (g)
∆H°rxn = 4 ∆H°f H2O (g) + ∆H°f N2 (g) - ∆H°f N2O4 (g) - 4∆H°f H2 (g)
               = 4(-241.82) + 0 – (9.66) – 4(0) = -976.94 kJ
               b) 2 KOH (s) + CO2 (g)  K2CO3 (s) + H2O (g)
∆H°rxn = ∆H°f K2CO3 (s) + ∆H°f H2O (g) - 2∆H°f KOH (s) -∆H°f CO2 (g)
               = -1150.18 kJ – 241.82 kJ – 2(-424.7)kJ – (-393.5 kJ) = - 149.1 kJ
               c) SO2 (g) + 2 H2S (g)  3/8 S8 (s) + 2 H2O (g)
∆H°rxn = 3/8 ∆H°f S8 (s) + 2∆H°f H2O (g) - ∆H°f SO2 (g) - 2∆H°f H2S (g)
               = 3/8 (0) + 2(-241.82) – (-296.9) – 2 (-20.17) = -146.4 kJ
               d) Fe2O3 (s) + 6 HCl (g)  2 FeCl3 (s) + 3 H2O (g)
∆H°rxn = 2∆H°f FeCl3 (s) + 3∆H°f H2O (g) - ∆H°f Fe2O (g) - 6∆H°f HCl (g)
               = 2(-400 kJ) + 3(-241.82 kJ) – (-822.16 kJ) – 6(-92.30 kJ) = -150 kJ

3. a) Calculate the standard enthalpy of formation of gaseous diborane (B2H6) using
the following thermochemical information:
               4B (s) + 3 O2 (g)  2B2O3 (s)       ∆H° = -2509.1 kJ
               2H2 (g) + O2 (g)  2 H2O (l)        ∆H° = -571.7 kJ
               B2H6 (g) + 3 O2 (g)  B2O3 (s) + 3 H2O (l)       ∆H° = -2147.5 kJ

                2B (s) + 3/2 O2 (g)  B2O (s)       ∆H° = ½ (-2509.1 kJ)
                3H2 (g) + 3/2 O2 (g)  3 H2O (l)    ∆H° = 3/2 (-571.7 kJ)
                B2O3 (s) + 3 H2O (l)  B2H6 (g) + 3 O2 (g) ∆H° = -(-2147.5 kJ)
                2 B (s) + 3 H2 (g)  B2H6 (g)       ∆H° f = +35.4 kJ

4. a) what is meant by the term fuel value? b) Which is a greater source of energy as
food, 5 g of fat or 9 g of carbohydrates?
a) Fuel value is the amount of heat produced when 1 gram of a substance (fuel) is combusted.
b) The fuel value of fats is 9 kcal/g and of carbohydrates is 4 kcal/g. Therefore, 5 g of fat
produce 45 kcal, while 9 g of carbohydrates produces 36 kcal; 5 g of fat are a greater energy
source.
5. The heat of combustion of ethanol, C2H5OH (l) is -1367 kJ/mol. A batch of wine
KEY


contains 10.6% ethanol by mass. Assuming the density of the wine to be 1.0g/mL,
what caloric content does the alcohol (ethanol) in a 6-oz glass of wine (177 mL)
have?
(177 mL ) (1.0g wine / 1 mL) (0.106 g ethanol / 1 g wine) (1mol ethanol/46.1g ethanol)
(1367 kJ / 1 mol ethanol) (1 Cal / 4.184 kJ) = 133 = 1.3x102 Cal

                A typical 6 oz. glass of wine has 150-250 Cal, so this is a reasonable
result. Note that alcohol is responsible for most of the food value of wine.

6. a) Why are fats well suited for energy storage in the human body? b) A
particular chip snack food is composed of 12% protein, 14% fat, and the rest
carbohydrate. What percentage of the calorie content of this food is fat? c) How
many grams of protein provide the same fuel value as 25g of fat?
 a) Fats are appropriate for fuel storage because they are insoluble in water (and body
fluids) and have high fuel value.
b) assume 100 g of chips for convenience.
                (12g Protein) (17kJ/ 1g protein) (1 Cal / 4.184 kJ) = 48.76 = 49 Cal
                (14g Fat) (38kJ / 1g Fat) (1 Cal / 4.184 kJ) = 127.15 = 130 Cal
                (74 g Carbs) (17 kJ / 1g Carbs) (1 Cal / 4.184 kJ) = 300.67 = 301 Cal
                total Cal = 48.76 + 130 + 300.67 = 476.58 = 480 Cal
                % Cal from fat = (127.15 Cal Fat / 476.58 total Cal) x 100 = 26.68 = 27%
c) (25 g fat) (38 kJ / 1g fat) = (X g protein) (17 kJ / g protein) ; X = 56 g protein

7. Write balanced equations that describe the formation of the following
compounds from their elements in their standard states, and use Appendix C to
obtain the values of their standard enthalpies of formation: a) HBr (g), b) AgNO3
(s), c) Hg2Cl2 (s), d) C2H5OH (l).

                a) ½ H2 (g) + ½ Br2 (l)  HBr (g)                 ∆H°f = -36.23 kJ

                b) Ag(s) + ½ N2 (g) + 3/2 O2 (g)  AgNO3 (s)              ∆H°f = -124.4 kJ

                c) 2 Hg (l) + Cl2 (g)  Hg2Cl2 (s)                ∆H°f = -264.9 kJ

                d) 2 C (s,gr) + ½ O2 (g) + 3H2 (g)  C2H5OH (l)           ∆H°f = -277.7 kJ

8. Suppose that the gas-phase reaction 2NO (g) + O2 (g)  2 NO2 (g), were carried
out in a constant –volume container at constant temperature. Would the measured
heat change represent ∆H or ∆E? If there is a difference, which quantity is larger
for this reaction? Explain.
At constant volume (∆V = 0), ∆E = qv. According to the definition of enthalpy, H = E + PV, so
∆H = ∆E + ∆(PV). For an ideal gas at constant temperature and volume, ∆PV = V∆P = RT∆n.
For this reaction, there are 2 mol of gaseous product and 3 mol of gaseous reactants, so ∆n = -1.
Thus V∆P or ∆(PV) is negative. Since ∆H = ∆E + ∆(PV), the negative ∆(PV) term means that
∆H will be smaller or more negative than ∆E. ∆H<∆E

Mais conteúdo relacionado

Mais procurados (20)

Tang 03 enthalpy of formation and combustion
Tang 03   enthalpy of formation and combustionTang 03   enthalpy of formation and combustion
Tang 03 enthalpy of formation and combustion
 
Nomenclatuur van de anorganische verbindingen
Nomenclatuur van de anorganische verbindingenNomenclatuur van de anorganische verbindingen
Nomenclatuur van de anorganische verbindingen
 
Group theory notes
Group theory notesGroup theory notes
Group theory notes
 
#10 Key
#10 Key#10 Key
#10 Key
 
P h calculations
P h calculationsP h calculations
P h calculations
 
#11 Key
#11 Key#11 Key
#11 Key
 
08-IMK-Polls.pptx
08-IMK-Polls.pptx08-IMK-Polls.pptx
08-IMK-Polls.pptx
 
Topic 1 kft 131
Topic 1 kft 131Topic 1 kft 131
Topic 1 kft 131
 
Topic 10 kft 131
Topic 10 kft 131Topic 10 kft 131
Topic 10 kft 131
 
#13 Key
#13 Key#13 Key
#13 Key
 
05-Polls.pptx
05-Polls.pptx05-Polls.pptx
05-Polls.pptx
 
Topic 2 kft 131
Topic 2 kft 131Topic 2 kft 131
Topic 2 kft 131
 
eerste hoofdwet
eerste hoofdweteerste hoofdwet
eerste hoofdwet
 
11_2e-3eHW_2223-Polls.pptx
11_2e-3eHW_2223-Polls.pptx11_2e-3eHW_2223-Polls.pptx
11_2e-3eHW_2223-Polls.pptx
 
Estequiometria solucion
Estequiometria solucionEstequiometria solucion
Estequiometria solucion
 
Topic 8 kft 131
Topic 8 kft 131Topic 8 kft 131
Topic 8 kft 131
 
Exercices en turbo pascal sur la récursivité
Exercices en turbo pascal sur la récursivitéExercices en turbo pascal sur la récursivité
Exercices en turbo pascal sur la récursivité
 
Segunda serie
Segunda serieSegunda serie
Segunda serie
 
17-KINETICA-Polls.pptx
17-KINETICA-Polls.pptx17-KINETICA-Polls.pptx
17-KINETICA-Polls.pptx
 
Alkane
AlkaneAlkane
Alkane
 

Destaque (16)

#20 Key
#20 Key#20 Key
#20 Key
 
#23
#23#23
#23
 
#26 Key
#26 Key#26 Key
#26 Key
 
#32
#32#32
#32
 
#20
#20#20
#20
 
#31
#31#31
#31
 
#31 Key
#31 Key#31 Key
#31 Key
 
Practice test 1 Key
Practice test 1 KeyPractice test 1 Key
Practice test 1 Key
 
#32 Key
#32 Key#32 Key
#32 Key
 
Discount driver
Discount driverDiscount driver
Discount driver
 
Tiny homes4thehomeless (1)
Tiny homes4thehomeless (1)Tiny homes4thehomeless (1)
Tiny homes4thehomeless (1)
 
Coder keyspres
Coder keyspresCoder keyspres
Coder keyspres
 
Health for all
Health for allHealth for all
Health for all
 
The great traffic stop de escalator
The great traffic stop de escalatorThe great traffic stop de escalator
The great traffic stop de escalator
 
Gov gush chasemoore_rivertonhs-ut_v1.2
Gov gush chasemoore_rivertonhs-ut_v1.2Gov gush chasemoore_rivertonhs-ut_v1.2
Gov gush chasemoore_rivertonhs-ut_v1.2
 
Apti tekk
Apti tekkApti tekk
Apti tekk
 

Semelhante a #23 Key

Semelhante a #23 Key (20)

Lesson 3 hess' law
Lesson 3 hess' lawLesson 3 hess' law
Lesson 3 hess' law
 
Pembahasan Soal2 termokimia
Pembahasan Soal2 termokimiaPembahasan Soal2 termokimia
Pembahasan Soal2 termokimia
 
Hess's law
Hess's lawHess's law
Hess's law
 
Chem Unit6
Chem Unit6Chem Unit6
Chem Unit6
 
Hessslaw 140506102234-phpapp02
Hessslaw 140506102234-phpapp02Hessslaw 140506102234-phpapp02
Hessslaw 140506102234-phpapp02
 
Hess's law
Hess's lawHess's law
Hess's law
 
For enthalp yrequired
For enthalp yrequiredFor enthalp yrequired
For enthalp yrequired
 
Chem 16 2 le answer key j4 feb 4 2011
Chem 16 2 le answer key j4 feb 4 2011Chem 16 2 le answer key j4 feb 4 2011
Chem 16 2 le answer key j4 feb 4 2011
 
Chem 16 2 le exam j4 feb 4 2011
Chem 16 2 le exam j4 feb 4 2011Chem 16 2 le exam j4 feb 4 2011
Chem 16 2 le exam j4 feb 4 2011
 
Thermodynamics numericl 2016
Thermodynamics numericl 2016Thermodynamics numericl 2016
Thermodynamics numericl 2016
 
Ch17 thermo review_answers
Ch17 thermo review_answersCh17 thermo review_answers
Ch17 thermo review_answers
 
Thermo kin ws complete
Thermo kin ws completeThermo kin ws complete
Thermo kin ws complete
 
Lect w10 abbrev_ thermochemistry_alg
Lect w10 abbrev_ thermochemistry_algLect w10 abbrev_ thermochemistry_alg
Lect w10 abbrev_ thermochemistry_alg
 
Tang 02 enthalpy and hess' law
Tang 02   enthalpy and hess' lawTang 02   enthalpy and hess' law
Tang 02 enthalpy and hess' law
 
Chemical thermodynamics
Chemical thermodynamicsChemical thermodynamics
Chemical thermodynamics
 
Tang 02 enthalpy and hess' law
Tang 02   enthalpy and hess' lawTang 02   enthalpy and hess' law
Tang 02 enthalpy and hess' law
 
Energetics1
Energetics1Energetics1
Energetics1
 
Kimia lecture
Kimia lectureKimia lecture
Kimia lecture
 
Tang 03 enthalpy of formation and combustion
Tang 03   enthalpy of formation and combustionTang 03   enthalpy of formation and combustion
Tang 03 enthalpy of formation and combustion
 
#17
#17#17
#17
 

Mais de Lamar1411_SI (18)

#33
#33#33
#33
 
#30 Key
#30 Key#30 Key
#30 Key
 
#30
#30#30
#30
 
#29 Key
#29 Key#29 Key
#29 Key
 
#29
#29#29
#29
 
#27 Key
#27 Key#27 Key
#27 Key
 
#27
#27#27
#27
 
#26 Key
#26 Key#26 Key
#26 Key
 
#26
#26#26
#26
 
#22
#22#22
#22
 
#21
#21#21
#21
 
#19
#19#19
#19
 
#18 Key
#18 Key#18 Key
#18 Key
 
#18
#18#18
#18
 
#17 Key
#17 Key#17 Key
#17 Key
 
#17
#17#17
#17
 
#13
#13#13
#13
 
Si #12
Si #12Si #12
Si #12
 

#23 Key

  • 1. KEY GENERAL CHEMISTRY-I (1411) S.I. # 23 1. Calculate the enthalpy change for the reaction P4O6 (s) + 2 O2 (g)  P4O10 (s) Given the following enthalpies of reaction: P4 (s) + 3 O2 (g)  P4O6 (s) ∆H = - 1640.1 kJ P4 (s) + 5 O2 (g)  P4O10 (s) ∆H = -2940.1 kJ P4O6 (s)  P4 (s) + 3 O2 (g) ∆H = 1640.1 kJ P4 (s) + 5 O2 (g)  P4O10 (s) ∆H = -2940.1 kJ P4O6 (s) + 2 O2 (g)  P4O10 (s) ∆H = - 1300.0 kJ 2. Calculate the value of ∆H° for each of the following reactions. Use Appendix C of your chemistry book. a) N2O4 (g) + 4 H2 (g)  N2 (g) + 4 H2O (g) ∆H°rxn = 4 ∆H°f H2O (g) + ∆H°f N2 (g) - ∆H°f N2O4 (g) - 4∆H°f H2 (g) = 4(-241.82) + 0 – (9.66) – 4(0) = -976.94 kJ b) 2 KOH (s) + CO2 (g)  K2CO3 (s) + H2O (g) ∆H°rxn = ∆H°f K2CO3 (s) + ∆H°f H2O (g) - 2∆H°f KOH (s) -∆H°f CO2 (g) = -1150.18 kJ – 241.82 kJ – 2(-424.7)kJ – (-393.5 kJ) = - 149.1 kJ c) SO2 (g) + 2 H2S (g)  3/8 S8 (s) + 2 H2O (g) ∆H°rxn = 3/8 ∆H°f S8 (s) + 2∆H°f H2O (g) - ∆H°f SO2 (g) - 2∆H°f H2S (g) = 3/8 (0) + 2(-241.82) – (-296.9) – 2 (-20.17) = -146.4 kJ d) Fe2O3 (s) + 6 HCl (g)  2 FeCl3 (s) + 3 H2O (g) ∆H°rxn = 2∆H°f FeCl3 (s) + 3∆H°f H2O (g) - ∆H°f Fe2O (g) - 6∆H°f HCl (g) = 2(-400 kJ) + 3(-241.82 kJ) – (-822.16 kJ) – 6(-92.30 kJ) = -150 kJ 3. a) Calculate the standard enthalpy of formation of gaseous diborane (B2H6) using the following thermochemical information: 4B (s) + 3 O2 (g)  2B2O3 (s) ∆H° = -2509.1 kJ 2H2 (g) + O2 (g)  2 H2O (l) ∆H° = -571.7 kJ B2H6 (g) + 3 O2 (g)  B2O3 (s) + 3 H2O (l) ∆H° = -2147.5 kJ 2B (s) + 3/2 O2 (g)  B2O (s) ∆H° = ½ (-2509.1 kJ) 3H2 (g) + 3/2 O2 (g)  3 H2O (l) ∆H° = 3/2 (-571.7 kJ) B2O3 (s) + 3 H2O (l)  B2H6 (g) + 3 O2 (g) ∆H° = -(-2147.5 kJ) 2 B (s) + 3 H2 (g)  B2H6 (g) ∆H° f = +35.4 kJ 4. a) what is meant by the term fuel value? b) Which is a greater source of energy as food, 5 g of fat or 9 g of carbohydrates? a) Fuel value is the amount of heat produced when 1 gram of a substance (fuel) is combusted. b) The fuel value of fats is 9 kcal/g and of carbohydrates is 4 kcal/g. Therefore, 5 g of fat produce 45 kcal, while 9 g of carbohydrates produces 36 kcal; 5 g of fat are a greater energy source. 5. The heat of combustion of ethanol, C2H5OH (l) is -1367 kJ/mol. A batch of wine
  • 2. KEY contains 10.6% ethanol by mass. Assuming the density of the wine to be 1.0g/mL, what caloric content does the alcohol (ethanol) in a 6-oz glass of wine (177 mL) have? (177 mL ) (1.0g wine / 1 mL) (0.106 g ethanol / 1 g wine) (1mol ethanol/46.1g ethanol) (1367 kJ / 1 mol ethanol) (1 Cal / 4.184 kJ) = 133 = 1.3x102 Cal A typical 6 oz. glass of wine has 150-250 Cal, so this is a reasonable result. Note that alcohol is responsible for most of the food value of wine. 6. a) Why are fats well suited for energy storage in the human body? b) A particular chip snack food is composed of 12% protein, 14% fat, and the rest carbohydrate. What percentage of the calorie content of this food is fat? c) How many grams of protein provide the same fuel value as 25g of fat? a) Fats are appropriate for fuel storage because they are insoluble in water (and body fluids) and have high fuel value. b) assume 100 g of chips for convenience. (12g Protein) (17kJ/ 1g protein) (1 Cal / 4.184 kJ) = 48.76 = 49 Cal (14g Fat) (38kJ / 1g Fat) (1 Cal / 4.184 kJ) = 127.15 = 130 Cal (74 g Carbs) (17 kJ / 1g Carbs) (1 Cal / 4.184 kJ) = 300.67 = 301 Cal total Cal = 48.76 + 130 + 300.67 = 476.58 = 480 Cal % Cal from fat = (127.15 Cal Fat / 476.58 total Cal) x 100 = 26.68 = 27% c) (25 g fat) (38 kJ / 1g fat) = (X g protein) (17 kJ / g protein) ; X = 56 g protein 7. Write balanced equations that describe the formation of the following compounds from their elements in their standard states, and use Appendix C to obtain the values of their standard enthalpies of formation: a) HBr (g), b) AgNO3 (s), c) Hg2Cl2 (s), d) C2H5OH (l). a) ½ H2 (g) + ½ Br2 (l)  HBr (g) ∆H°f = -36.23 kJ b) Ag(s) + ½ N2 (g) + 3/2 O2 (g)  AgNO3 (s) ∆H°f = -124.4 kJ c) 2 Hg (l) + Cl2 (g)  Hg2Cl2 (s) ∆H°f = -264.9 kJ d) 2 C (s,gr) + ½ O2 (g) + 3H2 (g)  C2H5OH (l) ∆H°f = -277.7 kJ 8. Suppose that the gas-phase reaction 2NO (g) + O2 (g)  2 NO2 (g), were carried out in a constant –volume container at constant temperature. Would the measured heat change represent ∆H or ∆E? If there is a difference, which quantity is larger for this reaction? Explain. At constant volume (∆V = 0), ∆E = qv. According to the definition of enthalpy, H = E + PV, so ∆H = ∆E + ∆(PV). For an ideal gas at constant temperature and volume, ∆PV = V∆P = RT∆n. For this reaction, there are 2 mol of gaseous product and 3 mol of gaseous reactants, so ∆n = -1. Thus V∆P or ∆(PV) is negative. Since ∆H = ∆E + ∆(PV), the negative ∆(PV) term means that ∆H will be smaller or more negative than ∆E. ∆H<∆E