SHI2018: 製造現場での人と知能機械の協奏に向けて

Deputy Director, HARC, AIST em AIST
1 de Oct de 2018
SHI2018: 製造現場での人と知能機械の協奏に向けて
SHI2018: 製造現場での人と知能機械の協奏に向けて
SHI2018: 製造現場での人と知能機械の協奏に向けて
SHI2018: 製造現場での人と知能機械の協奏に向けて
SHI2018: 製造現場での人と知能機械の協奏に向けて
SHI2018: 製造現場での人と知能機械の協奏に向けて
SHI2018: 製造現場での人と知能機械の協奏に向けて
1 de 7

Mais conteúdo relacionado

Mais procurados

Efficient_Communication_in_Multi-Agent_Reinforcement_Learning_via_Variance_Ba...Efficient_Communication_in_Multi-Agent_Reinforcement_Learning_via_Variance_Ba...
Efficient_Communication_in_Multi-Agent_Reinforcement_Learning_via_Variance_Ba...harmonylab
Can increasing input dimensionality improve deep reinforcement learning?Can increasing input dimensionality improve deep reinforcement learning?
Can increasing input dimensionality improve deep reinforcement learning?harmonylab
You Only Learn One Representation: Unified Network for Multiple TasksYou Only Learn One Representation: Unified Network for Multiple Tasks
You Only Learn One Representation: Unified Network for Multiple Tasksharmonylab
歩行支援機能を有する前腕支持型四輪歩行器の開発に関する研究歩行支援機能を有する前腕支持型四輪歩行器の開発に関する研究
歩行支援機能を有する前腕支持型四輪歩行器の開発に関する研究harmonylab
DeepVIO: Self-supervised Deep Learning of Monocular Visual Inertial Odometry ...DeepVIO: Self-supervised Deep Learning of Monocular Visual Inertial Odometry ...
DeepVIO: Self-supervised Deep Learning of Monocular Visual Inertial Odometry ...harmonylab
2019 08 20_dl2019 08 20_dl
2019 08 20_dlharmonylab

Mais procurados(20)

Similar a SHI2018: 製造現場での人と知能機械の協奏に向けて

エッジヘビーコンピューティングと機械学習エッジヘビーコンピューティングと機械学習
エッジヘビーコンピューティングと機械学習Preferred Networks
IoTあるじゃん北海道#1 by poggimoIoTあるじゃん北海道#1 by poggimo
IoTあるじゃん北海道#1 by poggimoNorikatsu Oishi
ISID  IIoT Forum_180628ISID  IIoT Forum_180628
ISID IIoT Forum_180628知礼 八子
Data × AI でどんな業務が改善できる? ​製造業様向け Data × AI 活用ユースケース & 製造MVPソリューションのご紹介Data × AI でどんな業務が改善できる? ​製造業様向け Data × AI 活用ユースケース & 製造MVPソリューションのご紹介
Data × AI でどんな業務が改善できる? ​製造業様向け Data × AI 活用ユースケース & 製造MVPソリューションのご紹介IoTビジネス共創ラボ
企業と勉強会 @nifty エンジニアサポート企業と勉強会 @nifty エンジニアサポート
企業と勉強会 @nifty エンジニアサポートDaichi Morifuji
IoTとAIが牽引するエンタープライズシステムの新展開IoTとAIが牽引するエンタープライズシステムの新展開
IoTとAIが牽引するエンタープライズシステムの新展開Miki Yutani

Similar a SHI2018: 製造現場での人と知能機械の協奏に向けて(20)

Mais de Kurata Takeshi

Work Pattern Analysis with and without Site-specific Information in a Manufac...Work Pattern Analysis with and without Site-specific Information in a Manufac...
Work Pattern Analysis with and without Site-specific Information in a Manufac...Kurata Takeshi
SC 24でのメタバース関連標準化概要:ヘルスケア応用事例を交えて(ISO/IEC JTC 1/SC 24)SC 24でのメタバース関連標準化概要:ヘルスケア応用事例を交えて(ISO/IEC JTC 1/SC 24)
SC 24でのメタバース関連標準化概要:ヘルスケア応用事例を交えて(ISO/IEC JTC 1/SC 24)Kurata Takeshi
Standards and projects of SC 24/WG 9 on Metaverse and InterverseStandards and projects of SC 24/WG 9 on Metaverse and Interverse
Standards and projects of SC 24/WG 9 on Metaverse and InterverseKurata Takeshi
屋内測位技術の応用事例とPDRベンチマーク標準化委員会の活動概要屋内測位技術の応用事例とPDRベンチマーク標準化委員会の活動概要
屋内測位技術の応用事例とPDRベンチマーク標準化委員会の活動概要Kurata Takeshi
作業エリア遷移モデル生成とそのクラスター分析に基づく製造ラインの作業分析作業エリア遷移モデル生成とそのクラスター分析に基づく製造ラインの作業分析
作業エリア遷移モデル生成とそのクラスター分析に基づく製造ラインの作業分析Kurata Takeshi
「遠隔リハビリのための多感覚XR-AI技術基盤構築と保健指導との互恵ケア連携」で目指すところ「遠隔リハビリのための多感覚XR-AI技術基盤構築と保健指導との互恵ケア連携」で目指すところ
「遠隔リハビリのための多感覚XR-AI技術基盤構築と保健指導との互恵ケア連携」で目指すところKurata Takeshi

Mais de Kurata Takeshi(20)

SHI2018: 製造現場での人と知能機械の協奏に向けて