Lecture 08 (3 2-2021) rares

Kristen DeAngelis
Kristen DeAngelisAssistant Professor at University of Massachusetts Amherst em University of Massachusetts Amherst
Be a Microbio
Peer Advisor!
• Work with a great team.
• Practice leadership skills.
• Use your unique skills to build community.
• Help us all stay connected.
• Show your enthusiasm for microbiology.
Applications due March 8th!
http://bit.ly/micropa_app
Or contact Heather Reed at
hreed@umass.edu
COVID Conversations:
A Q&A on the Microbiology
of COVID-19
Tuesday, March 16th
@ 5 pm
Hosted by Dr. Mandy Muller and
Dr. Wilmore Webley of the Microbiology Department
Register using barcode below or
at www.micro.umass.edu !
Lecture 08 (3 2-2021) rares
The SARS-CoV-2 genome is highly reduced…
and has no 16S ribosomal RNA genes
ul Qamar et al., 2020
RARE AND UNCULTURED MICROBES
Unit 08, 3.2.2021
Reading for today: Brown Ch. 13 & 14
Reading for next class: Brown Ch. 16, Walter & Ley (moodle)
Dr. Kristen DeAngelis
Office Hours by appointment
deangelis@microbio.umass.edu
Poll Q
Unit 8: Rare and Uncultured Microbes
LECTURE LEARNING GOALS
1. Describe the phyla containing rare bacteria:
Deinococcus/Thermus, Chlamydia &
Planctomycetes.
2. Describe the sequencing methods used to
understand uncultured microbes. Explain the
Eocyte hypothesis and how this model differs
from the three domain tree of life.
3. For the cultured microbes, describe major
characteristics for the 13 bacterial phyla, and
explain why some microbe remain
uncultivated.
6
Unit 8: Rare and Uncultured Microbes
LECTURE LEARNING GOALS
1. Describe the phyla containing rare bacteria:
Deinococcus/Thermus, Chlamydia &
Planctomycetes.
2. Describe the sequencing methods used to
understand uncultured microbes. Explain the
Eocyte hypothesis and how this model differs
from the three domain tree of life.
3. For the cultured microbes, describe major
characteristics for the 13 bacterial phyla, and
explain why some microbe remain
uncultivated.
7
Deinococcus/Thermus, Chlamydia &
Planctomycetes
Deinococci, Chlamydia &
Planctomycetes
• There are 13 main phyla, and we are
talking about three with few cultured
representatives
• The Chlamydia & Planctomycetes are
closely related
• Deinococcus-thermus is one of the
more deeply branching phyla.
Phylum Deinococcus-Thermus
Phylum Deinococcus-Thermus
• There are two well-known genera in this
phylum, Deinococcus and Thermus
– These two genera are phenotypically and
phylogenetically quite different
• Examples
– Deinococcus radiodurans
– Thermus aquaticus
Deinococcus radiodurans
Phylum Deinococcus-Thermus
Cell division by septal curtain
Deinococcus radiodurans
• D. radiodurans survives high exposure to
gamma-irradiation
– E. coli can withstand up to 500 Gy (Grays,
Joules per kilogram)
– For comparison, 10 Gy is lethal to humans
– maintains several copies of the each of its two
chromosomes, as the mechanism of DNA
stress resistance
• cells divide by forming a septal curtain
– It closes in like the shutter of a camera
– There are two perpendicular curtains formedin
cell division, producing tetrads
Thermus aquaticus
Phylum Deinococcus-Thermus
• Isolated from many
alkaline hot springs in
Yellowstone NP
• Pink colonies, especially
when grown in light due to
pigments
• Its DNA polymerase is
highly heat resistant and
error-correcting
– Taq polymerase is
commonly used in PCR
Phylum
Planctomycetes
Fig. 13.12 P. bekefii
Fig. 13.13 P. bekefii
Phylum Planctomycetes
• Diversity is unclear, because they are so few
cultivated
• Metabolism of almost all are aerobic,
heterotrophic, mesophilic oligotrophs
• Habitats are mostly aquatic and especially
eutrophic environments, though sequences
are detected in a wide range of
environments including wastewater and soils
Blastopirellula marina
Phylum Planctomycetes
• Common freshwater species
• Reproduce by budding
• Internal membrane-defined
compartmentalization
– Central pirellulosome contains
the riboplasm and nucleoid
(genome)
– Riboplasm contains ribosomes
and DNA
– Paryphoplasm contains RNA but
not ribosomes
Phylum Chlamydiae
Phylum Chlamydiae
• Low phylogenetic and phenotypic diversity
– Few cultured representatives
– Uncultured diversity seems to be much greater
• Metabolism
– Greatly reduced genomes
– Remain capable of
• information processing (transcription, translation,
replication)
• cell envelope
• central metabolism
• Habitat: Obligate intracellular parasites
transmitted via small, metabolically inert
particles
Chlamydia trachomatis
Phylum Chlamydiae
• Human pathogen that
causes the most common
sexually transmitted disease
(STD) in the U.S.
• Most infections are
asymptomatic, but
untreated infections can
cause sterility
• Repeated ocular infection
in children can cause
blindness
C. trachomatis elementary bodies attached to human sperm.
From Courtney S. Hossenzadeh in Microbiology Today.
Developmental cycle of Chlamydia
Developmental cycle of Chlamydia
• Biphasic life cycle
– Elemental bodies are infectious and metabolically inert
– Replication bodies are much larger, noninfectious and
osmotically fragile
• RBs live inside the cell, metabolize, grow and and
divide within the endocytic vessicles
• When resources in the cell become limited, most
RBs differentiate into EBs and are released from the
cell
• Not all infectious cycles end in host cell lysis; some
species are released by exocytosis
Reductive evolution
• Over evolutionary time,
parasites rely more on
the host for the things it
needs and may simplify
its genome
• This reduction allows the
organism to devote
more resources to
reproduction
Activity for Review of
Unit 08.1 Rare phyla
Ernst Haeckl’s Tree of Life
was wrong because it’s based
on morphology. Today,
scientists are using Machine
Learning to identify microbes
by morphology. What are
some distinct morphologies,
and which organisms are they
linked to?
24
Unit 8: Rare and Uncultured Microbes
LECTURE LEARNING GOALS
1. Describe the phyla containing rare bacteria:
Deinococcus/Thermus, Chlamydia &
Planctomycetes.
2. Describe the sequencing methods used to
understand uncultured microbes. Explain the
Eocyte hypothesis and how this model differs
from the three domain tree of life.
3. For the cultured microbes, describe major
characteristics for the 13 bacterial phyla, and
explain why some microbe remain
uncultivated.
25
Poll Q
Bacterial phyla
with
few to no
cultivated
representatives
Bacterial phyla with few to no
cultivated representatives
• The 13 “main” phyla were described by Carl Woese
in his classic 1987 paper
• Since then, sequencing revealed that microbial
diversity is much greater than this!
• Most cultivated, characterized bacteria fall into one
of five phyla
– Proteoabcteria, Firmicutes, Actinobacteria, Bacteroidetes
and Cyanobacteria
– Animal diversity is similar: most animal species belong to a
few animal phyla e.g. nematodes (round worms) and
arthropods (insects)
Molecular approaches aka ‘Omics
• Amplicon-based sequencing
– limited capacity for discovery
– Better for phylogenetics because traits can be aligned
• Shotgun sequencing
– Lots of room for discovery
– Half of sequences have no known homology
Assembling whole genomes from
metagenomic data using binning
• Short sequences are
“binned” based on
shared characteristics
– GC content
– taxonomy
– Coverage (sequence
depth)
– K-mer frequency
http://dx.doi.org/10.3389/fmicb.2015.01451
Detecting unculturable bacteria
• Genomics – sequencing whole genomes, DNA
• Transcriptomics – sequencing RNA from genomes
• Proteomics – sequencing proteins
• Metabolomics – identification of all metabolites,
usually by analytical chemistry
• Meta-
– Add the prefix “meta-” to any of the above, and it refers to
sequencing mixed communities instead of single species
– For example, Metagenomics – sequencing mixed
communities
– For example, Metatranscriptomics – sequencing RNA from
mixed communities
New Tree of Life
Slides thanks to Jonathan Eisen! @phylogenomics
A “new” tree of life
• Shotgun sequencing from a diversity of
environments, including filtration to include
very small organisms
• Based largely on metagenome-assembled
genomes (MAGs)
• Tree constructed based on aligned and
concatenated a set of 16 ribosomal protein
sequences from each organism
• Two surprising attributes
– Topology: Recovery of a two-domain tree of life
– Uncultured diversity is the majority (e.g. the CPR)
3 Domain ToLs
• Woesian tree (top)
– Based on structural RNA
sequences
• Alternative 3-domain ToL
(middle)
– Based on protein structures
• NOT a ToL (bottom)
– No tree places the root in
the Eukarya
– “Prokaryote” is NOT a
monophyletic group
– LUCA was not a eukaryote
34
34
Bacteria Archaea Eukaryotes
root
Bacteria
Archaea Eukaryotes
root
Bacteria
Archaea
root
Eocyte hypothesis
35
Eocyte hypothesis
• some analyses of the protein translation elongation
factors, paralogs used to root the 3-domains tree,
do not actually recover the 3 domains
• These show a tree where the eukaryotic proteins
branch as phylum of Archaea called the
Crenarchaeota (aka the eocytes)
• shapes of ribosomes in the Crenarchaeota and
eukaryotes are more similar to each other than to
either bacteria or the second major kingdom of
archaea, the Euryarchaeota.
The two-domain Eocyte ToL
vs the three-domain ToL
37
Eukarya Eukarya
Bacteria Bacteria
Archaea Archaea
• These are competing hypotheses for the origin of
the domain Eukarya.
– (A) The rooted 3-domains tree posits that the Archaea,
consisting of 2 kingdoms Euryarchaeota and
Crenarchaeota (eocytes), are monophyletic and more
closely related to the eukaryotes than to Bacteria.
– (B) An alternative hypothesis, the eocyte tree, posits that
the Archaea are paraphyletic, with the eocytes
(Crenarchaeota) most closely related to the eukaryotes.
– Paraphyletic = monophyletic except for one group
Cox, C. J., Foster, P. G., Hirt, R. P., Harris, S. R., Embley, T. M. (2008). "The archaebacterial
origin of eukaryotes". Proc Natl Acad Sci U S A 105 (51): 20356-61.
The two-domain Eocyte ToL
vs the three-domain ToL
5 Eukaryotic
supergroups:
• Excavates
• Chromalveolates
• Plantae
• Rhizaria
• Unikonts
Bacteria
Eukaryotes
Euryarchaea
Crenarchaea
The Eocytes
• Domain Eukarya still has 5 supergroups: Excavates,
Chromalveolates, Plantae, Rhizaria, & Unikonts
– 92 bacterial phyla – we cover 13 in this class !
– 25 Archaeal phyla
• Crenarchaeota (aka the Eocytes)
• In this tree, Archaea are a polyphyletic group
– Euryarchaeota
– Other phyla including Thaumarchaeota, Nanoarchaeum,
Koryarchaeum
40
Activity for Review of
Unit 08.2 Eocyte hypothesis
• Based on what you know about how to make a
tree, and how to make and root a tree of life,
why do you think that there are so many
models (trees) of the phylogeny of life?
41
Unit 8: Rare and Uncultured Microbes
LECTURE LEARNING GOALS
1. Describe the phyla containing rare bacteria:
Deinococcus/Thermus, Chlamydia &
Planctomycetes.
2. Describe the sequencing methods used to
understand uncultured microbes. Explain the
Eocyte hypothesis and how this model differs
from the three domain tree of life.
3. For the cultured microbes, describe major
characteristics for the 13 bacterial phyla, and
explain why some microbe remain
uncultivated.
42
Poll Q
0.4
Candidate
Phyla Radiation
Microgenomates
Parcubacteria
Bacteria
RBX1
WOR1
Cyanobacteria
Melainabacteria
PVC
superphylum
Major lineage lacking isolated representative:
Major lineages with isolated representative: italics
Dojkabacteria WS6
Peregrinibacteria
Gracilibacteria BD1-5, GN02
Absconditabacteria SR1
Katanobacteria
WWE3
Berkelbacteria
SM2F11
CPR1
CPR3
Nomurabacteria Kaiserbacteria
Adlerbacteria
Campbellbacteria
Wirthbacteria
Chloroflexi
Armatimonadetes
Giovannonibacteria
Wolfebacteria
Jorgensenbacteria
Azambacteria
Yanofskybacteria
Moranbacteria
Magasanikbacteria
Uhrbacteria
Falkowbacteria
Saccharibacteria
Woesebacteria
Amesbacteria
Shapirobacteria
Collierbacteria
Pacebacteria
Beckwithbacteria
Roizmanbacteria
Gottesmanbacteria
Levybacteria
Daviesbacteria
Curtissbacteria
Spirochaetes
Firmicutes
(Tenericutes
)
Bacteroidetes
Chlorobi
Gammaproteobacteria
Alphaproteobacteria
Betaproteobacteria
Actinobacteria
Planctomycetes
Chlamydiae,
Lentisphaerae,
Verrucomicrobia
Omnitrophica
Aminicentantes Rokubacteria NC10
Elusimicrobia
Poribacteria
Ignavibacteria
Dadabacteria
TM6
Atribacteria
Gemmatimonadetes
Cloacimonetes
Fibrobacteres
Nitrospirae
Latescibacteria
TA06
Caldithrix
Marinimicrobia
WOR-3
Zixibacteria
Synergistetes
Fusobacteria
Aquificae
Calescamantes
Deinococcus-Therm.
Caldiserica
Dictyoglomi
Deltaprotebacteria
(Thermodesulfobacteria)
Epsilonproteobacteria
Deferribacteres
Chrysiogenetes
Tectomicrobia, Modulibacteria
Nitrospinae
Acidobacteria
Zetaproteo.
Thermotogae
Acidithiobacillia
Hydrogenedentes NKB19
BRC1
Hug et al. 2016. Nature Microbiology.
New View of
the Domain Bacteria
Hug et al. 2016. Nature Microbiology.
New View of the Domain Bacteria
• And a new phylum: the Candidate Phyla Radiation
– “CPR”
– all members have small genomes and most have restricted
metabolic capacities.
– Most are likely symbionts, with greatly reduced genomes.
• A striking feature of this tree is the large number of
major lineages without isolated representatives (🔴).
– Uncultivated organisms clearly comprise the majority of
life’s current diversity
• Domain Bacteria includes more major lineages of
organisms than the other Domains.
– Domain bacteria is the most diverse domain
0.4
Candidate
Phyla Radiation
Microgenomates
Parcubacteria
Bacteria
RBX1
WOR1
Cyanobacteria
Melainabacteria
PVC
superphylum
Major lineage lacking isolated representative:
Major lineages with isolated representative: italics
Dojkabacteria WS6
Peregrinibacteria
Gracilibacteria BD1-5, GN02
Absconditabacteria SR1
Katanobacteria
WWE3
Berkelbacteria
SM2F11
CPR1
CPR3
Nomurabacteria Kaiserbacteria
Adlerbacteria
Campbellbacteria
Wirthbacteria
Chloroflexi
Armatimonadetes
Giovannonibacteria
Wolfebacteria
Jorgensenbacteria
Azambacteria
Yanofskybacteria
Moranbacteria
Magasanikbacteria
Uhrbacteria
Falkowbacteria
Saccharibacteria
Woesebacteria
Amesbacteria
Shapirobacteria
Collierbacteria
Pacebacteria
Beckwithbacteria
Roizmanbacteria
Gottesmanbacteria
Levybacteria
Daviesbacteria
Curtissbacteria
Spirochaetes
Firmicutes
(Tenericutes
)
Bacteroidetes
Chlorobi
Gammaproteobacteria
Alphaproteobacteria
Betaproteobacteria
Actinobacteria
Planctomycetes
Chlamydiae,
Lentisphaerae,
Verrucomicrobia
Omnitrophica
Aminicentantes Rokubacteria NC10
Elusimicrobia
Poribacteria
Ignavibacteria
Dadabacteria
TM6
Atribacteria
Gemmatimonadetes
Cloacimonetes
Fibrobacteres
Nitrospirae
Latescibacteria
TA06
Caldithrix
Marinimicrobia
WOR-3
Zixibacteria
Synergistetes
Fusobacteria
Aquificae
Calescamantes
Deinococcus-Therm.
Caldiserica
Dictyoglomi
Deltaprotebacteria
(Thermodesulfobacteria)
Epsilonproteobacteria
Deferribacteres
Chrysiogenetes
Tectomicrobia, Modulibacteria
Nitrospinae
Acidobacteria
Zetaproteo.
Thermotogae
Acidithiobacillia
Hydrogenedentes NKB19
BRC1
Phyla never grown in the lab
Hug et al. 2016. Nature Microbiology.
Why can’t we cultivate these
organisms?
• Cryptic nutrient requirements
• Auxotrophy
• Very slow growth rates
• Require specific metabolic partners
• Require host to assist in reproduction
46
0.4
Candidate
Phyla Radiation
Microgenomates
Parcubacteria
Bacteria
RBX1
WOR1
Cyanobacteria
Melainabacteria
PVC
superphylum
Major lineage lacking isolated representative:
Major lineages with isolated representative: italics
Dojkabacteria WS6
Peregrinibacteria
Gracilibacteria BD1-5, GN02
Absconditabacteria SR1
Katanobacteria
WWE3
Berkelbacteria
SM2F11
CPR1
CPR3
Nomurabacteria Kaiserbacteria
Adlerbacteria
Campbellbacteria
Wirthbacteria
Chloroflexi
Armatimonadetes
Giovannonibacteria
Wolfebacteria
Jorgensenbacteria
Azambacteria
Yanofskybacteria
Moranbacteria
Magasanikbacteria
Uhrbacteria
Falkowbacteria
Saccharibacteria
Woesebacteria
Amesbacteria
Shapirobacteria
Collierbacteria
Pacebacteria
Beckwithbacteria
Roizmanbacteria
Gottesmanbacteria
Levybacteria
Daviesbacteria
Curtissbacteria
Spirochaetes
Firmicutes
(Tenericutes
)
Bacteroidetes
Chlorobi
Gammaproteobacteria
Alphaproteobacteria
Betaproteobacteria
Actinobacteria
Planctomycetes
Chlamydiae,
Lentisphaerae,
Verrucomicrobia
Omnitrophica
Aminicentantes Rokubacteria NC10
Elusimicrobia
Poribacteria
Ignavibacteria
Dadabacteria
TM6
Atribacteria
Gemmatimonadetes
Cloacimonetes
Fibrobacteres
Nitrospirae
Latescibacteria
TA06
Caldithrix
Marinimicrobia
WOR-3
Zixibacteria
Synergistetes
Fusobacteria
Aquificae
Calescamantes
Deinococcus-Therm.
Caldiserica
Dictyoglomi
Deltaprotebacteria
(Thermodesulfobacteria)
Epsilonproteobacteria
Deferribacteres
Chrysiogenetes
Tectomicrobia, Modulibacteria
Nitrospinae
Acidobacteria
Zetaproteo.
Thermotogae
Acidithiobacillia
Hydrogenedentes NKB19
BRC1
Bacteroids & Spirochetes
Hug et al. 2016. Nature Microbiology.
Bacteroidetes and Spirochaetes
• Bacteroidetes
– Very diverse phylum
– mostly anaerobic fermenters
– Common in guts of animals
• Spirochaetes
– Found in sediments and some are pathogens
– Mostly heterotrophs with internal polar
flagella
– May be progenitors for eukaryotic flagella
0.4
Candidate
Phyla Radiation
Microgenomates
Parcubacteria
Bacteria
RBX1
WOR1
Cyanobacteria
Melainabacteria
PVC
superphylum
Major lineage lacking isolated representative:
Major lineages with isolated representative: italics
Dojkabacteria WS6
Peregrinibacteria
Gracilibacteria BD1-5, GN02
Absconditabacteria SR1
Katanobacteria
WWE3
Berkelbacteria
SM2F11
CPR1
CPR3
Nomurabacteria Kaiserbacteria
Adlerbacteria
Campbellbacteria
Wirthbacteria
Chloroflexi
Armatimonadetes
Giovannonibacteria
Wolfebacteria
Jorgensenbacteria
Azambacteria
Yanofskybacteria
Moranbacteria
Magasanikbacteria
Uhrbacteria
Falkowbacteria
Saccharibacteria
Woesebacteria
Amesbacteria
Shapirobacteria
Collierbacteria
Pacebacteria
Beckwithbacteria
Roizmanbacteria
Gottesmanbacteria
Levybacteria
Daviesbacteria
Curtissbacteria
Spirochaetes
Firmicutes
(Tenericutes
)
Bacteroidetes
Chlorobi
Gammaproteobacteria
Alphaproteobacteria
Betaproteobacteria
Actinobacteria
Planctomycetes
Chlamydiae,
Lentisphaerae,
Verrucomicrobia
Omnitrophica
Aminicentantes Rokubacteria NC10
Elusimicrobia
Poribacteria
Ignavibacteria
Dadabacteria
TM6
Atribacteria
Gemmatimonadetes
Cloacimonetes
Fibrobacteres
Nitrospirae
Latescibacteria
TA06
Caldithrix
Marinimicrobia
WOR-3
Zixibacteria
Synergistetes
Fusobacteria
Aquificae
Calescamantes
Deinococcus-Therm.
Caldiserica
Dictyoglomi
Deltaprotebacteria
(Thermodesulfobacteria)
Epsilonproteobacteria
Deferribacteres
Chrysiogenetes
Tectomicrobia, Modulibacteria
Nitrospinae
Acidobacteria
Zetaproteo.
Thermotogae
Acidithiobacillia
Hydrogenedentes NKB19
BRC1
Green phototrophic bacteria
Hug et al. 2016. Nature Microbiology.
Green phototrophic bacteria
• Chloroflexi (green non-sulfurs)
– thermophilic phototrophs and heterotrophs
– Single type of photosystem, Cyclic photophosphorylation to get
energy (ATP) from light
– Most fix C via the hydroxypropionate pathway
• Chlorobi (green sulfurs)
– Fix C using H2 or sulfur as electron donors for reverse TCA cycle,
strict photolithoautotrophs
– Energy is generated via cyclic photophosphorylation
– Most can fix N
• Cyanobacteria
– All carry out oxygenic photosynthesis with two photosystems to
get energy and reducing power
– fix CO2 via the Calvin cycle
– Most can fix N
0.4
Candidate
Phyla Radiation
Microgenomates
Parcubacteria
Bacteria
RBX1
WOR1
Cyanobacteria
Melainabacteria
PVC
superphylum
Major lineage lacking isolated representative:
Major lineages with isolated representative: italics
Dojkabacteria WS6
Peregrinibacteria
Gracilibacteria BD1-5, GN02
Absconditabacteria SR1
Katanobacteria
WWE3
Berkelbacteria
SM2F11
CPR1
CPR3
Nomurabacteria Kaiserbacteria
Adlerbacteria
Campbellbacteria
Wirthbacteria
Chloroflexi
Armatimonadetes
Giovannonibacteria
Wolfebacteria
Jorgensenbacteria
Azambacteria
Yanofskybacteria
Moranbacteria
Magasanikbacteria
Uhrbacteria
Falkowbacteria
Saccharibacteria
Woesebacteria
Amesbacteria
Shapirobacteria
Collierbacteria
Pacebacteria
Beckwithbacteria
Roizmanbacteria
Gottesmanbacteria
Levybacteria
Daviesbacteria
Curtissbacteria
Spirochaetes
Firmicutes
(Tenericutes
)
Bacteroidetes
Chlorobi
Gammaproteobacteria
Alphaproteobacteria
Betaproteobacteria
Actinobacteria
Planctomycetes
Chlamydiae,
Lentisphaerae,
Verrucomicrobia
Omnitrophica
Aminicentantes Rokubacteria NC10
Elusimicrobia
Poribacteria
Ignavibacteria
Dadabacteria
TM6
Atribacteria
Gemmatimonadetes
Cloacimonetes
Fibrobacteres
Nitrospirae
Latescibacteria
TA06
Caldithrix
Marinimicrobia
WOR-3
Zixibacteria
Synergistetes
Fusobacteria
Aquificae
Calescamantes
Deinococcus-Therm.
Caldiserica
Dictyoglomi
Deltaprotebacteria
(Thermodesulfobacteria)
Epsilonproteobacteria
Deferribacteres
Chrysiogenetes
Tectomicrobia, Modulibacteria
Nitrospinae
Acidobacteria
Zetaproteo.
Thermotogae
Acidithiobacillia
Hydrogenedentes NKB19
BRC1
Thermophilic bacteria
Hug et al. 2016. Nature Microbiology.
Thermophilic bacteria
• Aquifex
– thermophilic or extremely thermophilic
• Thermotoga
– thermophilic, anaerobic fermentative
organisms
0.4
Candidate
Phyla Radiation
Microgenomates
Parcubacteria
Bacteria
RBX1
WOR1
Cyanobacteria
Melainabacteria
PVC
superphylum
Major lineage lacking isolated representative:
Major lineages with isolated representative: italics
Dojkabacteria WS6
Peregrinibacteria
Gracilibacteria BD1-5, GN02
Absconditabacteria SR1
Katanobacteria
WWE3
Berkelbacteria
SM2F11
CPR1
CPR3
Nomurabacteria Kaiserbacteria
Adlerbacteria
Campbellbacteria
Wirthbacteria
Chloroflexi
Armatimonadetes
Giovannonibacteria
Wolfebacteria
Jorgensenbacteria
Azambacteria
Yanofskybacteria
Moranbacteria
Magasanikbacteria
Uhrbacteria
Falkowbacteria
Saccharibacteria
Woesebacteria
Amesbacteria
Shapirobacteria
Collierbacteria
Pacebacteria
Beckwithbacteria
Roizmanbacteria
Gottesmanbacteria
Levybacteria
Daviesbacteria
Curtissbacteria
Spirochaetes
Firmicutes
(Tenericutes
)
Bacteroidetes
Chlorobi
Gammaproteobacteria
Alphaproteobacteria
Betaproteobacteria
Actinobacteria
Planctomycetes
Chlamydiae,
Lentisphaerae,
Verrucomicrobia
Omnitrophica
Aminicentantes Rokubacteria NC10
Elusimicrobia
Poribacteria
Ignavibacteria
Dadabacteria
TM6
Atribacteria
Gemmatimonadetes
Cloacimonetes
Fibrobacteres
Nitrospirae
Latescibacteria
TA06
Caldithrix
Marinimicrobia
WOR-3
Zixibacteria
Synergistetes
Fusobacteria
Aquificae
Calescamantes
Deinococcus-Therm.
Caldiserica
Dictyoglomi
Deltaprotebacteria
(Thermodesulfobacteria)
Epsilonproteobacteria
Deferribacteres
Chrysiogenetes
Tectomicrobia, Modulibacteria
Nitrospinae
Acidobacteria
Zetaproteo.
Thermotogae
Acidithiobacillia
Hydrogenedentes NKB19
BRC1
Phylum Proteobacteria
Hug et al. 2016. Nature Microbiology.
Proteobacteria
• Phylum so diverse that they are mostly are discussed
by classes
– Alphaproteobacteria
– Betaproteobacteria
– Gammaproteobacteria
– Deltaproteobacteria
– Epsilonproteobacteria
• In the new ToL, the phylum proteobacteria is not
monophyletic!
– Because of this the classes are identified individually.
– For example, the Deltaproteobacteria branch away from
the other Proteos.
0.4
Candidate
Phyla Radiation
Microgenomates
Parcubacteria
Bacteria
RBX1
WOR1
Cyanobacteria
Melainabacteria
PVC
superphylum
Major lineage lacking isolated representative:
Major lineages with isolated representative: italics
Dojkabacteria WS6
Peregrinibacteria
Gracilibacteria BD1-5, GN02
Absconditabacteria SR1
Katanobacteria
WWE3
Berkelbacteria
SM2F11
CPR1
CPR3
Nomurabacteria Kaiserbacteria
Adlerbacteria
Campbellbacteria
Wirthbacteria
Chloroflexi
Armatimonadetes
Giovannonibacteria
Wolfebacteria
Jorgensenbacteria
Azambacteria
Yanofskybacteria
Moranbacteria
Magasanikbacteria
Uhrbacteria
Falkowbacteria
Saccharibacteria
Woesebacteria
Amesbacteria
Shapirobacteria
Collierbacteria
Pacebacteria
Beckwithbacteria
Roizmanbacteria
Gottesmanbacteria
Levybacteria
Daviesbacteria
Curtissbacteria
Spirochaetes
Firmicutes
(Tenericutes
)
Bacteroidetes
Chlorobi
Gammaproteobacteria
Alphaproteobacteria
Betaproteobacteria
Actinobacteria
Planctomycetes
Chlamydiae,
Lentisphaerae,
Verrucomicrobia
Omnitrophica
Aminicentantes Rokubacteria NC10
Elusimicrobia
Poribacteria
Ignavibacteria
Dadabacteria
TM6
Atribacteria
Gemmatimonadetes
Cloacimonetes
Fibrobacteres
Nitrospirae
Latescibacteria
TA06
Caldithrix
Marinimicrobia
WOR-3
Zixibacteria
Synergistetes
Fusobacteria
Aquificae
Calescamantes
Deinococcus-Therm.
Caldiserica
Dictyoglomi
Deltaprotebacteria
(Thermodesulfobacteria)
Epsilonproteobacteria
Deferribacteres
Chrysiogenetes
Tectomicrobia, Modulibacteria
Nitrospinae
Acidobacteria
Zetaproteo.
Thermotogae
Acidithiobacillia
Hydrogenedentes NKB19
BRC1
Gram-positive bacteria
Hug et al. 2016. Nature Microbiology.
Gram-positive bacteria
• Firmicutes
– aka low G+C Gram positive bacteria
– Almost all Heterotrophs, Anaerobes use
substrate-level phosphorylation rather
than anaerobic respiration
• Actinobacteria
– Aka high G+C Gram positive bacteria
– Filamentous, aerobic respirers
– Known antibiotic producers
0.4
Candidate
Phyla Radiation
Microgenomates
Parcubacteria
Bacteria
RBX1
WOR1
Cyanobacteria
Melainabacteria
PVC
superphylum
Major lineage lacking isolated representative:
Major lineages with isolated representative: italics
Dojkabacteria WS6
Peregrinibacteria
Gracilibacteria BD1-5, GN02
Absconditabacteria SR1
Katanobacteria
WWE3
Berkelbacteria
SM2F11
CPR1
CPR3
Nomurabacteria Kaiserbacteria
Adlerbacteria
Campbellbacteria
Wirthbacteria
Chloroflexi
Armatimonadetes
Giovannonibacteria
Wolfebacteria
Jorgensenbacteria
Azambacteria
Yanofskybacteria
Moranbacteria
Magasanikbacteria
Uhrbacteria
Falkowbacteria
Saccharibacteria
Woesebacteria
Amesbacteria
Shapirobacteria
Collierbacteria
Pacebacteria
Beckwithbacteria
Roizmanbacteria
Gottesmanbacteria
Levybacteria
Daviesbacteria
Curtissbacteria
Spirochaetes
Firmicutes
(Tenericutes
)
Bacteroidetes
Chlorobi
Gammaproteobacteria
Alphaproteobacteria
Betaproteobacteria
Actinobacteria
Planctomycetes
Chlamydiae,
Lentisphaerae,
Verrucomicrobia
Omnitrophica
Aminicentantes Rokubacteria NC10
Elusimicrobia
Poribacteria
Ignavibacteria
Dadabacteria
TM6
Atribacteria
Gemmatimonadetes
Cloacimonetes
Fibrobacteres
Nitrospirae
Latescibacteria
TA06
Caldithrix
Marinimicrobia
WOR-3
Zixibacteria
Synergistetes
Fusobacteria
Aquificae
Calescamantes
Deinococcus-Therm.
Caldiserica
Dictyoglomi
Deltaprotebacteria
(Thermodesulfobacteria)
Epsilonproteobacteria
Deferribacteres
Chrysiogenetes
Tectomicrobia, Modulibacteria
Nitrospinae
Acidobacteria
Zetaproteo.
Thermotogae
Acidithiobacillia
Hydrogenedentes NKB19
BRC1
Deinococci, Chlamydiae & Planctomycetes
Hug et al. 2016. Nature Microbiology.
Deinococci, Chlamydiae &
Planctomycetes
• Deinococcus/Thermus
– Deinococcus, extremely DNA-damage stress
resistant mesophiles
– Thermus, thermophilic oligotrophs
• Chlamydiae
– Obligate intracellular pathogens or parasites
– Reduced genomes
• Planctomycetes
– Heterotrophic oligotrophs
– Compartmentalization via complex inner
membranes
Activity for Review of
Unit 08.3 Rare bacteria
The Candidate Phyla Radiation (CPR) contain
the most deeply-rooted organisms in the
bacteria. What kind of traits do you predict
that they will have?
59
Unit 8: Rare and Uncultured Microbes
LECTURE LEARNING GOALS
1. Describe the phyla containing rare bacteria:
Deinococcus/Thermus, Chlamydia &
Planctomycetes.
2. Describe the sequencing methods used to
understand uncultured microbes. Explain the
Eocyte hypothesis and how this model differs from
the three domain tree of life.
3. For the cultured microbes, describe major
characteristics for the 13 bacterial phyla, and
explain why some microbe remain uncultivated.
Next class is Unit 9: Diversity of the Human Microbiome
Reading for next class: Brown Ch. 16, Walter & Ley (moodle) 60
1 de 60

Recomendados

Lecture 05 (2 16-2021) baas becking por
Lecture 05 (2 16-2021) baas beckingLecture 05 (2 16-2021) baas becking
Lecture 05 (2 16-2021) baas beckingKristen DeAngelis
142 visualizações41 slides
Lecture 01 (2 02-2021) slides por
Lecture 01 (2 02-2021) slidesLecture 01 (2 02-2021) slides
Lecture 01 (2 02-2021) slidesKristen DeAngelis
34 visualizações52 slides
Lecture 10 (3 9-2021) archaea por
Lecture 10 (3 9-2021) archaeaLecture 10 (3 9-2021) archaea
Lecture 10 (3 9-2021) archaeaKristen DeAngelis
57 visualizações44 slides
Lecture 07 (2 25-21) soils por
Lecture 07 (2 25-21) soilsLecture 07 (2 25-21) soils
Lecture 07 (2 25-21) soilsKristen DeAngelis
41 visualizações41 slides
Activity keys sp 2018 por
Activity keys sp 2018Activity keys sp 2018
Activity keys sp 2018Kristen DeAngelis
207 visualizações34 slides
Lecture 03 (2 09-2021) early earth por
Lecture 03 (2 09-2021) early earthLecture 03 (2 09-2021) early earth
Lecture 03 (2 09-2021) early earthKristen DeAngelis
51 visualizações46 slides

Mais conteúdo relacionado

Mais procurados

Lecture 02 (2 04-2021) phylogeny por
Lecture 02 (2 04-2021) phylogenyLecture 02 (2 04-2021) phylogeny
Lecture 02 (2 04-2021) phylogenyKristen DeAngelis
139 visualizações52 slides
Lecture 06 (2 23-2021) microbial mats por
Lecture 06 (2 23-2021) microbial matsLecture 06 (2 23-2021) microbial mats
Lecture 06 (2 23-2021) microbial matsKristen DeAngelis
367 visualizações51 slides
Microbial Evolution por
Microbial EvolutionMicrobial Evolution
Microbial EvolutionAmjad Afridi
225 visualizações3 slides
Lecture 11 (3 11-2021) acellular life por
Lecture 11 (3 11-2021) acellular lifeLecture 11 (3 11-2021) acellular life
Lecture 11 (3 11-2021) acellular lifeKristen DeAngelis
237 visualizações66 slides
Evolutionary history of archaea and bacteria por
Evolutionary history of archaea and bacteriaEvolutionary history of archaea and bacteria
Evolutionary history of archaea and bacteriameghan06
3.9K visualizações5 slides
Evolutionary tendencies in Monera by sohail por
Evolutionary tendencies in Monera by sohailEvolutionary tendencies in Monera by sohail
Evolutionary tendencies in Monera by sohailUniversity Of Lahore
3.4K visualizações26 slides

Mais procurados(20)

Lecture 02 (2 04-2021) phylogeny por Kristen DeAngelis
Lecture 02 (2 04-2021) phylogenyLecture 02 (2 04-2021) phylogeny
Lecture 02 (2 04-2021) phylogeny
Kristen DeAngelis139 visualizações
Lecture 06 (2 23-2021) microbial mats por Kristen DeAngelis
Lecture 06 (2 23-2021) microbial matsLecture 06 (2 23-2021) microbial mats
Lecture 06 (2 23-2021) microbial mats
Kristen DeAngelis367 visualizações
Microbial Evolution por Amjad Afridi
Microbial EvolutionMicrobial Evolution
Microbial Evolution
Amjad Afridi225 visualizações
Lecture 11 (3 11-2021) acellular life por Kristen DeAngelis
Lecture 11 (3 11-2021) acellular lifeLecture 11 (3 11-2021) acellular life
Lecture 11 (3 11-2021) acellular life
Kristen DeAngelis237 visualizações
Evolutionary history of archaea and bacteria por meghan06
Evolutionary history of archaea and bacteriaEvolutionary history of archaea and bacteria
Evolutionary history of archaea and bacteria
meghan063.9K visualizações
Evolutionary tendencies in Monera by sohail por University Of Lahore
Evolutionary tendencies in Monera by sohailEvolutionary tendencies in Monera by sohail
Evolutionary tendencies in Monera by sohail
University Of Lahore3.4K visualizações
Microbial phylogeny por aquib59
Microbial phylogenyMicrobial phylogeny
Microbial phylogeny
aquib597K visualizações
Bacterial Cell Differentiation por N Poorin
Bacterial Cell DifferentiationBacterial Cell Differentiation
Bacterial Cell Differentiation
N Poorin12.5K visualizações
1407 protists presentation por C Ebeling
1407 protists presentation 1407 protists presentation
1407 protists presentation
C Ebeling209 visualizações
Micro Ch 10 por jasonwalkeratl
Micro Ch 10Micro Ch 10
Micro Ch 10
jasonwalkeratl4K visualizações
Classification and bacteria por mikeu74
Classification and bacteriaClassification and bacteria
Classification and bacteria
mikeu742K visualizações
B.Sc. microbiology II Bacteriology Unit I Classification of Microorganisms por Rai University
B.Sc. microbiology II Bacteriology Unit I Classification of MicroorganismsB.Sc. microbiology II Bacteriology Unit I Classification of Microorganisms
B.Sc. microbiology II Bacteriology Unit I Classification of Microorganisms
Rai University3.8K visualizações
Classification of microorganisms por ahsankamal21
Classification of microorganismsClassification of microorganisms
Classification of microorganisms
ahsankamal21602 visualizações
Bacterial taxonomy & classification por Dr. Mohammedazim Bagban
Bacterial taxonomy & classificationBacterial taxonomy & classification
Bacterial taxonomy & classification
Dr. Mohammedazim Bagban2.3K visualizações
Bacteria Notes 10/26 por Deb
Bacteria Notes 10/26Bacteria Notes 10/26
Bacteria Notes 10/26
Deb8.5K visualizações
Chapter 27 por guest970cb3
Chapter 27Chapter 27
Chapter 27
guest970cb32.2K visualizações
Bacteria1 por Leslie Smith
Bacteria1Bacteria1
Bacteria1
Leslie Smith861 visualizações
Viruses And Bacteria por Tia Hohler
Viruses And BacteriaViruses And Bacteria
Viruses And Bacteria
Tia Hohler4.4K visualizações
Classification three domain system por Divya Chetnani
Classification  three domain systemClassification  three domain system
Classification three domain system
Divya Chetnani8.7K visualizações
Cells por singhhp10699
CellsCells
Cells
singhhp106992.7K visualizações

Similar a Lecture 08 (3 2-2021) rares

Classification of microrganisms por
Classification of microrganismsClassification of microrganisms
Classification of microrganismsParthasarathy Ravichandran
58.5K visualizações19 slides
Cell structure of bacteria and normal flora por
Cell structure of bacteria and normal floraCell structure of bacteria and normal flora
Cell structure of bacteria and normal floraSamer Bio
2.4K visualizações82 slides
Model organism por
Model organismModel organism
Model organismpavithra M
7.6K visualizações21 slides
viruses algae fungi bacteria.pdf por
viruses algae fungi bacteria.pdfviruses algae fungi bacteria.pdf
viruses algae fungi bacteria.pdfRafiaRayanabtbc
104 visualizações19 slides
Evolution por
Evolution Evolution
Evolution Nawfal Aldujaily
52 visualizações23 slides

Similar a Lecture 08 (3 2-2021) rares(20)

Cell structure of bacteria and normal flora por Samer Bio
Cell structure of bacteria and normal floraCell structure of bacteria and normal flora
Cell structure of bacteria and normal flora
Samer Bio2.4K visualizações
Model organism por pavithra M
Model organismModel organism
Model organism
pavithra M7.6K visualizações
viruses algae fungi bacteria.pdf por RafiaRayanabtbc
viruses algae fungi bacteria.pdfviruses algae fungi bacteria.pdf
viruses algae fungi bacteria.pdf
RafiaRayanabtbc104 visualizações
Evolution por Nawfal Aldujaily
Evolution Evolution
Evolution
Nawfal Aldujaily52 visualizações
threedomainsoflife-bp211525-220328171534.pptx por Sanjay236837
threedomainsoflife-bp211525-220328171534.pptxthreedomainsoflife-bp211525-220328171534.pptx
threedomainsoflife-bp211525-220328171534.pptx
Sanjay23683758 visualizações
Biol102 chp27-pp-spr10-100402104900-phpapp02 por Cleophas Rwema
Biol102 chp27-pp-spr10-100402104900-phpapp02Biol102 chp27-pp-spr10-100402104900-phpapp02
Biol102 chp27-pp-spr10-100402104900-phpapp02
Cleophas Rwema89 visualizações
Biol102 chp27-pp-spr10-100402104900-phpapp02 por Cleophas Rwemera
Biol102 chp27-pp-spr10-100402104900-phpapp02Biol102 chp27-pp-spr10-100402104900-phpapp02
Biol102 chp27-pp-spr10-100402104900-phpapp02
Cleophas Rwemera63 visualizações
Biol102 chp27-pp-spr10-100402104900-phpapp02 por Cleophas Rwemera
Biol102 chp27-pp-spr10-100402104900-phpapp02Biol102 chp27-pp-spr10-100402104900-phpapp02
Biol102 chp27-pp-spr10-100402104900-phpapp02
Cleophas Rwemera96 visualizações
Introduction to microbiology 081210 fv por Muhammedibrahim48
Introduction to microbiology 081210 fvIntroduction to microbiology 081210 fv
Introduction to microbiology 081210 fv
Muhammedibrahim4885 visualizações
Introduction to Microbiology 081210 FV.ppt por harpreet363708
Introduction to Microbiology 081210 FV.pptIntroduction to Microbiology 081210 FV.ppt
Introduction to Microbiology 081210 FV.ppt
harpreet3637089 visualizações
Introduction to Microbiology lecture 1.ppt por HassamMughal4
Introduction to Microbiology lecture 1.pptIntroduction to Microbiology lecture 1.ppt
Introduction to Microbiology lecture 1.ppt
HassamMughal432 visualizações
Introduction to Microbiology 081210 FV.pptx por NishitaChauhan14
Introduction to Microbiology 081210 FV.pptxIntroduction to Microbiology 081210 FV.pptx
Introduction to Microbiology 081210 FV.pptx
NishitaChauhan149 visualizações
Introduction to Microorganism por NishitaChauhan14
Introduction to MicroorganismIntroduction to Microorganism
Introduction to Microorganism
NishitaChauhan1428 visualizações
Introduction_to_Microbiology_081210_FV[1].ppt por KingslyNdanga1
Introduction_to_Microbiology_081210_FV[1].pptIntroduction_to_Microbiology_081210_FV[1].ppt
Introduction_to_Microbiology_081210_FV[1].ppt
KingslyNdanga19 visualizações
Introduction to Microbiology 081210 FV.ppt por Ayesha126266
Introduction to Microbiology 081210 FV.pptIntroduction to Microbiology 081210 FV.ppt
Introduction to Microbiology 081210 FV.ppt
Ayesha1262663 visualizações
Microbiology Unit 2-3: Bacteria por vsdvoet
Microbiology Unit 2-3: BacteriaMicrobiology Unit 2-3: Bacteria
Microbiology Unit 2-3: Bacteria
vsdvoet15.9K visualizações
Bacteria Introduction por Rinaldo John
Bacteria IntroductionBacteria Introduction
Bacteria Introduction
Rinaldo John86 visualizações
1 - Microbial World and Prokaryotic Cell Anatomy por Rachel Belton
1 - Microbial World and Prokaryotic Cell Anatomy1 - Microbial World and Prokaryotic Cell Anatomy
1 - Microbial World and Prokaryotic Cell Anatomy
Rachel Belton7.9K visualizações

Mais de Kristen DeAngelis

10_Hypothesis_2022.pdf por
10_Hypothesis_2022.pdf10_Hypothesis_2022.pdf
10_Hypothesis_2022.pdfKristen DeAngelis
2 visualizações22 slides
09_MeetTheIsolates_2022.pdf por
09_MeetTheIsolates_2022.pdf09_MeetTheIsolates_2022.pdf
09_MeetTheIsolates_2022.pdfKristen DeAngelis
6 visualizações51 slides
08_Annotation_2022.pdf por
08_Annotation_2022.pdf08_Annotation_2022.pdf
08_Annotation_2022.pdfKristen DeAngelis
6 visualizações55 slides
07_Phylogeny_2022.pdf por
07_Phylogeny_2022.pdf07_Phylogeny_2022.pdf
07_Phylogeny_2022.pdfKristen DeAngelis
18 visualizações58 slides
06_Alignment_2022.pdf por
06_Alignment_2022.pdf06_Alignment_2022.pdf
06_Alignment_2022.pdfKristen DeAngelis
8 visualizações95 slides
05_Microbio590B_QC_2022.pdf por
05_Microbio590B_QC_2022.pdf05_Microbio590B_QC_2022.pdf
05_Microbio590B_QC_2022.pdfKristen DeAngelis
7 visualizações58 slides

Mais de Kristen DeAngelis(16)

10_Hypothesis_2022.pdf por Kristen DeAngelis
10_Hypothesis_2022.pdf10_Hypothesis_2022.pdf
10_Hypothesis_2022.pdf
Kristen DeAngelis2 visualizações
09_MeetTheIsolates_2022.pdf por Kristen DeAngelis
09_MeetTheIsolates_2022.pdf09_MeetTheIsolates_2022.pdf
09_MeetTheIsolates_2022.pdf
Kristen DeAngelis6 visualizações
08_Annotation_2022.pdf por Kristen DeAngelis
08_Annotation_2022.pdf08_Annotation_2022.pdf
08_Annotation_2022.pdf
Kristen DeAngelis6 visualizações
07_Phylogeny_2022.pdf por Kristen DeAngelis
07_Phylogeny_2022.pdf07_Phylogeny_2022.pdf
07_Phylogeny_2022.pdf
Kristen DeAngelis18 visualizações
06_Alignment_2022.pdf por Kristen DeAngelis
06_Alignment_2022.pdf06_Alignment_2022.pdf
06_Alignment_2022.pdf
Kristen DeAngelis8 visualizações
05_Microbio590B_QC_2022.pdf por Kristen DeAngelis
05_Microbio590B_QC_2022.pdf05_Microbio590B_QC_2022.pdf
05_Microbio590B_QC_2022.pdf
Kristen DeAngelis7 visualizações
04_Assembly_2022.pdf por Kristen DeAngelis
04_Assembly_2022.pdf04_Assembly_2022.pdf
04_Assembly_2022.pdf
Kristen DeAngelis5 visualizações
03_Microbio590B_sequencing_2022.pdf por Kristen DeAngelis
03_Microbio590B_sequencing_2022.pdf03_Microbio590B_sequencing_2022.pdf
03_Microbio590B_sequencing_2022.pdf
Kristen DeAngelis8 visualizações
02_Microbio590B_genomics_2022.pdf por Kristen DeAngelis
02_Microbio590B_genomics_2022.pdf02_Microbio590B_genomics_2022.pdf
02_Microbio590B_genomics_2022.pdf
Kristen DeAngelis4 visualizações
01_Microbio590B_intro_2022.pdf por Kristen DeAngelis
01_Microbio590B_intro_2022.pdf01_Microbio590B_intro_2022.pdf
01_Microbio590B_intro_2022.pdf
Kristen DeAngelis7 visualizações
MorrillMicrobeMadness_HowtoPlay_Bracket.pdf por Kristen DeAngelis
MorrillMicrobeMadness_HowtoPlay_Bracket.pdfMorrillMicrobeMadness_HowtoPlay_Bracket.pdf
MorrillMicrobeMadness_HowtoPlay_Bracket.pdf
Kristen DeAngelis18 visualizações
MorrillMicrobeMadness_2022.pdf por Kristen DeAngelis
MorrillMicrobeMadness_2022.pdfMorrillMicrobeMadness_2022.pdf
MorrillMicrobeMadness_2022.pdf
Kristen DeAngelis103 visualizações
Microbial mittens por Kristen DeAngelis
Microbial mittensMicrobial mittens
Microbial mittens
Kristen DeAngelis173 visualizações
Evidence based stem teaching_13feb2020 por Kristen DeAngelis
Evidence based stem teaching_13feb2020Evidence based stem teaching_13feb2020
Evidence based stem teaching_13feb2020
Kristen DeAngelis129 visualizações
Evidence-based STEM teaching lecture por Kristen DeAngelis
Evidence-based STEM teaching lectureEvidence-based STEM teaching lecture
Evidence-based STEM teaching lecture
Kristen DeAngelis358 visualizações
Evidence-based STEM Undergraduate Teaching por Kristen DeAngelis
Evidence-based STEM Undergraduate TeachingEvidence-based STEM Undergraduate Teaching
Evidence-based STEM Undergraduate Teaching
Kristen DeAngelis404 visualizações

Último

application of genetic engineering 2.pptx por
application of genetic engineering 2.pptxapplication of genetic engineering 2.pptx
application of genetic engineering 2.pptxSankSurezz
10 visualizações12 slides
CSF -SHEEBA.D presentation.pptx por
CSF -SHEEBA.D presentation.pptxCSF -SHEEBA.D presentation.pptx
CSF -SHEEBA.D presentation.pptxSheebaD7
14 visualizações13 slides
plasmids por
plasmidsplasmids
plasmidsscribddarkened352
9 visualizações2 slides
Small ruminant keepers’ knowledge, attitudes and practices towards peste des ... por
Small ruminant keepers’ knowledge, attitudes and practices towards peste des ...Small ruminant keepers’ knowledge, attitudes and practices towards peste des ...
Small ruminant keepers’ knowledge, attitudes and practices towards peste des ...ILRI
5 visualizações1 slide
MODULE-9-Biotechnology, Genetically Modified Organisms, and Gene Therapy.pdf por
MODULE-9-Biotechnology, Genetically Modified Organisms, and Gene Therapy.pdfMODULE-9-Biotechnology, Genetically Modified Organisms, and Gene Therapy.pdf
MODULE-9-Biotechnology, Genetically Modified Organisms, and Gene Therapy.pdfKerryNuez1
25 visualizações5 slides
Disinfectants & Antiseptic por
Disinfectants & AntisepticDisinfectants & Antiseptic
Disinfectants & AntisepticSanket P Shinde
48 visualizações36 slides

Último(20)

application of genetic engineering 2.pptx por SankSurezz
application of genetic engineering 2.pptxapplication of genetic engineering 2.pptx
application of genetic engineering 2.pptx
SankSurezz10 visualizações
CSF -SHEEBA.D presentation.pptx por SheebaD7
CSF -SHEEBA.D presentation.pptxCSF -SHEEBA.D presentation.pptx
CSF -SHEEBA.D presentation.pptx
SheebaD714 visualizações
Small ruminant keepers’ knowledge, attitudes and practices towards peste des ... por ILRI
Small ruminant keepers’ knowledge, attitudes and practices towards peste des ...Small ruminant keepers’ knowledge, attitudes and practices towards peste des ...
Small ruminant keepers’ knowledge, attitudes and practices towards peste des ...
ILRI5 visualizações
MODULE-9-Biotechnology, Genetically Modified Organisms, and Gene Therapy.pdf por KerryNuez1
MODULE-9-Biotechnology, Genetically Modified Organisms, and Gene Therapy.pdfMODULE-9-Biotechnology, Genetically Modified Organisms, and Gene Therapy.pdf
MODULE-9-Biotechnology, Genetically Modified Organisms, and Gene Therapy.pdf
KerryNuez125 visualizações
Disinfectants & Antiseptic por Sanket P Shinde
Disinfectants & AntisepticDisinfectants & Antiseptic
Disinfectants & Antiseptic
Sanket P Shinde48 visualizações
ELECTRON TRANSPORT CHAIN por DEEKSHA RANI
ELECTRON TRANSPORT CHAINELECTRON TRANSPORT CHAIN
ELECTRON TRANSPORT CHAIN
DEEKSHA RANI7 visualizações
RemeOs science and clinical evidence por PetrusViitanen1
RemeOs science and clinical evidenceRemeOs science and clinical evidence
RemeOs science and clinical evidence
PetrusViitanen137 visualizações
별헤는 사람들 2023년 12월호 전명원 교수 자료 por sciencepeople
별헤는 사람들 2023년 12월호 전명원 교수 자료별헤는 사람들 2023년 12월호 전명원 교수 자료
별헤는 사람들 2023년 12월호 전명원 교수 자료
sciencepeople41 visualizações
Experimental animal Guinea pigs.pptx por Mansee Arya
Experimental animal Guinea pigs.pptxExperimental animal Guinea pigs.pptx
Experimental animal Guinea pigs.pptx
Mansee Arya17 visualizações
Pollination By Nagapradheesh.M.pptx por MNAGAPRADHEESH
Pollination By Nagapradheesh.M.pptxPollination By Nagapradheesh.M.pptx
Pollination By Nagapradheesh.M.pptx
MNAGAPRADHEESH16 visualizações
Ecology por Abhijith Raj.R
Ecology Ecology
Ecology
Abhijith Raj.R7 visualizações
Distinct distributions of elliptical and disk galaxies across the Local Super... por Sérgio Sacani
Distinct distributions of elliptical and disk galaxies across the Local Super...Distinct distributions of elliptical and disk galaxies across the Local Super...
Distinct distributions of elliptical and disk galaxies across the Local Super...
Sérgio Sacani31 visualizações
himalay baruah acid fast staining.pptx por HimalayBaruah
himalay baruah acid fast staining.pptxhimalay baruah acid fast staining.pptx
himalay baruah acid fast staining.pptx
HimalayBaruah7 visualizações
Metatheoretical Panda-Samaneh Borji.pdf por samanehborji
Metatheoretical Panda-Samaneh Borji.pdfMetatheoretical Panda-Samaneh Borji.pdf
Metatheoretical Panda-Samaneh Borji.pdf
samanehborji16 visualizações
TF-FAIR.pdf por Dirk Roorda
TF-FAIR.pdfTF-FAIR.pdf
TF-FAIR.pdf
Dirk Roorda6 visualizações
SANJAY HPLC.pptx por sanjayudps2016
SANJAY HPLC.pptxSANJAY HPLC.pptx
SANJAY HPLC.pptx
sanjayudps2016185 visualizações
PRINCIPLES-OF ASSESSMENT por rbalmagro
PRINCIPLES-OF ASSESSMENTPRINCIPLES-OF ASSESSMENT
PRINCIPLES-OF ASSESSMENT
rbalmagro12 visualizações
Small ruminant keepers’ knowledge, attitudes and practices towards peste des ... por ILRI
Small ruminant keepers’ knowledge, attitudes and practices towards peste des ...Small ruminant keepers’ knowledge, attitudes and practices towards peste des ...
Small ruminant keepers’ knowledge, attitudes and practices towards peste des ...
ILRI5 visualizações

Lecture 08 (3 2-2021) rares

  • 1. Be a Microbio Peer Advisor! • Work with a great team. • Practice leadership skills. • Use your unique skills to build community. • Help us all stay connected. • Show your enthusiasm for microbiology. Applications due March 8th! http://bit.ly/micropa_app Or contact Heather Reed at hreed@umass.edu
  • 2. COVID Conversations: A Q&A on the Microbiology of COVID-19 Tuesday, March 16th @ 5 pm Hosted by Dr. Mandy Muller and Dr. Wilmore Webley of the Microbiology Department Register using barcode below or at www.micro.umass.edu !
  • 4. The SARS-CoV-2 genome is highly reduced… and has no 16S ribosomal RNA genes ul Qamar et al., 2020
  • 5. RARE AND UNCULTURED MICROBES Unit 08, 3.2.2021 Reading for today: Brown Ch. 13 & 14 Reading for next class: Brown Ch. 16, Walter & Ley (moodle) Dr. Kristen DeAngelis Office Hours by appointment deangelis@microbio.umass.edu Poll Q
  • 6. Unit 8: Rare and Uncultured Microbes LECTURE LEARNING GOALS 1. Describe the phyla containing rare bacteria: Deinococcus/Thermus, Chlamydia & Planctomycetes. 2. Describe the sequencing methods used to understand uncultured microbes. Explain the Eocyte hypothesis and how this model differs from the three domain tree of life. 3. For the cultured microbes, describe major characteristics for the 13 bacterial phyla, and explain why some microbe remain uncultivated. 6
  • 7. Unit 8: Rare and Uncultured Microbes LECTURE LEARNING GOALS 1. Describe the phyla containing rare bacteria: Deinococcus/Thermus, Chlamydia & Planctomycetes. 2. Describe the sequencing methods used to understand uncultured microbes. Explain the Eocyte hypothesis and how this model differs from the three domain tree of life. 3. For the cultured microbes, describe major characteristics for the 13 bacterial phyla, and explain why some microbe remain uncultivated. 7
  • 9. Deinococci, Chlamydia & Planctomycetes • There are 13 main phyla, and we are talking about three with few cultured representatives • The Chlamydia & Planctomycetes are closely related • Deinococcus-thermus is one of the more deeply branching phyla.
  • 11. Phylum Deinococcus-Thermus • There are two well-known genera in this phylum, Deinococcus and Thermus – These two genera are phenotypically and phylogenetically quite different • Examples – Deinococcus radiodurans – Thermus aquaticus
  • 13. Deinococcus radiodurans • D. radiodurans survives high exposure to gamma-irradiation – E. coli can withstand up to 500 Gy (Grays, Joules per kilogram) – For comparison, 10 Gy is lethal to humans – maintains several copies of the each of its two chromosomes, as the mechanism of DNA stress resistance • cells divide by forming a septal curtain – It closes in like the shutter of a camera – There are two perpendicular curtains formedin cell division, producing tetrads
  • 14. Thermus aquaticus Phylum Deinococcus-Thermus • Isolated from many alkaline hot springs in Yellowstone NP • Pink colonies, especially when grown in light due to pigments • Its DNA polymerase is highly heat resistant and error-correcting – Taq polymerase is commonly used in PCR
  • 15. Phylum Planctomycetes Fig. 13.12 P. bekefii Fig. 13.13 P. bekefii
  • 16. Phylum Planctomycetes • Diversity is unclear, because they are so few cultivated • Metabolism of almost all are aerobic, heterotrophic, mesophilic oligotrophs • Habitats are mostly aquatic and especially eutrophic environments, though sequences are detected in a wide range of environments including wastewater and soils
  • 17. Blastopirellula marina Phylum Planctomycetes • Common freshwater species • Reproduce by budding • Internal membrane-defined compartmentalization – Central pirellulosome contains the riboplasm and nucleoid (genome) – Riboplasm contains ribosomes and DNA – Paryphoplasm contains RNA but not ribosomes
  • 19. Phylum Chlamydiae • Low phylogenetic and phenotypic diversity – Few cultured representatives – Uncultured diversity seems to be much greater • Metabolism – Greatly reduced genomes – Remain capable of • information processing (transcription, translation, replication) • cell envelope • central metabolism • Habitat: Obligate intracellular parasites transmitted via small, metabolically inert particles
  • 20. Chlamydia trachomatis Phylum Chlamydiae • Human pathogen that causes the most common sexually transmitted disease (STD) in the U.S. • Most infections are asymptomatic, but untreated infections can cause sterility • Repeated ocular infection in children can cause blindness C. trachomatis elementary bodies attached to human sperm. From Courtney S. Hossenzadeh in Microbiology Today.
  • 22. Developmental cycle of Chlamydia • Biphasic life cycle – Elemental bodies are infectious and metabolically inert – Replication bodies are much larger, noninfectious and osmotically fragile • RBs live inside the cell, metabolize, grow and and divide within the endocytic vessicles • When resources in the cell become limited, most RBs differentiate into EBs and are released from the cell • Not all infectious cycles end in host cell lysis; some species are released by exocytosis
  • 23. Reductive evolution • Over evolutionary time, parasites rely more on the host for the things it needs and may simplify its genome • This reduction allows the organism to devote more resources to reproduction
  • 24. Activity for Review of Unit 08.1 Rare phyla Ernst Haeckl’s Tree of Life was wrong because it’s based on morphology. Today, scientists are using Machine Learning to identify microbes by morphology. What are some distinct morphologies, and which organisms are they linked to? 24
  • 25. Unit 8: Rare and Uncultured Microbes LECTURE LEARNING GOALS 1. Describe the phyla containing rare bacteria: Deinococcus/Thermus, Chlamydia & Planctomycetes. 2. Describe the sequencing methods used to understand uncultured microbes. Explain the Eocyte hypothesis and how this model differs from the three domain tree of life. 3. For the cultured microbes, describe major characteristics for the 13 bacterial phyla, and explain why some microbe remain uncultivated. 25 Poll Q
  • 26. Bacterial phyla with few to no cultivated representatives
  • 27. Bacterial phyla with few to no cultivated representatives • The 13 “main” phyla were described by Carl Woese in his classic 1987 paper • Since then, sequencing revealed that microbial diversity is much greater than this! • Most cultivated, characterized bacteria fall into one of five phyla – Proteoabcteria, Firmicutes, Actinobacteria, Bacteroidetes and Cyanobacteria – Animal diversity is similar: most animal species belong to a few animal phyla e.g. nematodes (round worms) and arthropods (insects)
  • 28. Molecular approaches aka ‘Omics • Amplicon-based sequencing – limited capacity for discovery – Better for phylogenetics because traits can be aligned • Shotgun sequencing – Lots of room for discovery – Half of sequences have no known homology
  • 29. Assembling whole genomes from metagenomic data using binning • Short sequences are “binned” based on shared characteristics – GC content – taxonomy – Coverage (sequence depth) – K-mer frequency http://dx.doi.org/10.3389/fmicb.2015.01451
  • 30. Detecting unculturable bacteria • Genomics – sequencing whole genomes, DNA • Transcriptomics – sequencing RNA from genomes • Proteomics – sequencing proteins • Metabolomics – identification of all metabolites, usually by analytical chemistry • Meta- – Add the prefix “meta-” to any of the above, and it refers to sequencing mixed communities instead of single species – For example, Metagenomics – sequencing mixed communities – For example, Metatranscriptomics – sequencing RNA from mixed communities
  • 31. New Tree of Life
  • 32. Slides thanks to Jonathan Eisen! @phylogenomics
  • 33. A “new” tree of life • Shotgun sequencing from a diversity of environments, including filtration to include very small organisms • Based largely on metagenome-assembled genomes (MAGs) • Tree constructed based on aligned and concatenated a set of 16 ribosomal protein sequences from each organism • Two surprising attributes – Topology: Recovery of a two-domain tree of life – Uncultured diversity is the majority (e.g. the CPR)
  • 34. 3 Domain ToLs • Woesian tree (top) – Based on structural RNA sequences • Alternative 3-domain ToL (middle) – Based on protein structures • NOT a ToL (bottom) – No tree places the root in the Eukarya – “Prokaryote” is NOT a monophyletic group – LUCA was not a eukaryote 34 34 Bacteria Archaea Eukaryotes root Bacteria Archaea Eukaryotes root Bacteria Archaea root
  • 36. Eocyte hypothesis • some analyses of the protein translation elongation factors, paralogs used to root the 3-domains tree, do not actually recover the 3 domains • These show a tree where the eukaryotic proteins branch as phylum of Archaea called the Crenarchaeota (aka the eocytes) • shapes of ribosomes in the Crenarchaeota and eukaryotes are more similar to each other than to either bacteria or the second major kingdom of archaea, the Euryarchaeota.
  • 37. The two-domain Eocyte ToL vs the three-domain ToL 37 Eukarya Eukarya Bacteria Bacteria Archaea Archaea
  • 38. • These are competing hypotheses for the origin of the domain Eukarya. – (A) The rooted 3-domains tree posits that the Archaea, consisting of 2 kingdoms Euryarchaeota and Crenarchaeota (eocytes), are monophyletic and more closely related to the eukaryotes than to Bacteria. – (B) An alternative hypothesis, the eocyte tree, posits that the Archaea are paraphyletic, with the eocytes (Crenarchaeota) most closely related to the eukaryotes. – Paraphyletic = monophyletic except for one group Cox, C. J., Foster, P. G., Hirt, R. P., Harris, S. R., Embley, T. M. (2008). "The archaebacterial origin of eukaryotes". Proc Natl Acad Sci U S A 105 (51): 20356-61. The two-domain Eocyte ToL vs the three-domain ToL
  • 39. 5 Eukaryotic supergroups: • Excavates • Chromalveolates • Plantae • Rhizaria • Unikonts Bacteria Eukaryotes Euryarchaea Crenarchaea
  • 40. The Eocytes • Domain Eukarya still has 5 supergroups: Excavates, Chromalveolates, Plantae, Rhizaria, & Unikonts – 92 bacterial phyla – we cover 13 in this class ! – 25 Archaeal phyla • Crenarchaeota (aka the Eocytes) • In this tree, Archaea are a polyphyletic group – Euryarchaeota – Other phyla including Thaumarchaeota, Nanoarchaeum, Koryarchaeum 40
  • 41. Activity for Review of Unit 08.2 Eocyte hypothesis • Based on what you know about how to make a tree, and how to make and root a tree of life, why do you think that there are so many models (trees) of the phylogeny of life? 41
  • 42. Unit 8: Rare and Uncultured Microbes LECTURE LEARNING GOALS 1. Describe the phyla containing rare bacteria: Deinococcus/Thermus, Chlamydia & Planctomycetes. 2. Describe the sequencing methods used to understand uncultured microbes. Explain the Eocyte hypothesis and how this model differs from the three domain tree of life. 3. For the cultured microbes, describe major characteristics for the 13 bacterial phyla, and explain why some microbe remain uncultivated. 42 Poll Q
  • 43. 0.4 Candidate Phyla Radiation Microgenomates Parcubacteria Bacteria RBX1 WOR1 Cyanobacteria Melainabacteria PVC superphylum Major lineage lacking isolated representative: Major lineages with isolated representative: italics Dojkabacteria WS6 Peregrinibacteria Gracilibacteria BD1-5, GN02 Absconditabacteria SR1 Katanobacteria WWE3 Berkelbacteria SM2F11 CPR1 CPR3 Nomurabacteria Kaiserbacteria Adlerbacteria Campbellbacteria Wirthbacteria Chloroflexi Armatimonadetes Giovannonibacteria Wolfebacteria Jorgensenbacteria Azambacteria Yanofskybacteria Moranbacteria Magasanikbacteria Uhrbacteria Falkowbacteria Saccharibacteria Woesebacteria Amesbacteria Shapirobacteria Collierbacteria Pacebacteria Beckwithbacteria Roizmanbacteria Gottesmanbacteria Levybacteria Daviesbacteria Curtissbacteria Spirochaetes Firmicutes (Tenericutes ) Bacteroidetes Chlorobi Gammaproteobacteria Alphaproteobacteria Betaproteobacteria Actinobacteria Planctomycetes Chlamydiae, Lentisphaerae, Verrucomicrobia Omnitrophica Aminicentantes Rokubacteria NC10 Elusimicrobia Poribacteria Ignavibacteria Dadabacteria TM6 Atribacteria Gemmatimonadetes Cloacimonetes Fibrobacteres Nitrospirae Latescibacteria TA06 Caldithrix Marinimicrobia WOR-3 Zixibacteria Synergistetes Fusobacteria Aquificae Calescamantes Deinococcus-Therm. Caldiserica Dictyoglomi Deltaprotebacteria (Thermodesulfobacteria) Epsilonproteobacteria Deferribacteres Chrysiogenetes Tectomicrobia, Modulibacteria Nitrospinae Acidobacteria Zetaproteo. Thermotogae Acidithiobacillia Hydrogenedentes NKB19 BRC1 Hug et al. 2016. Nature Microbiology. New View of the Domain Bacteria
  • 44. Hug et al. 2016. Nature Microbiology. New View of the Domain Bacteria • And a new phylum: the Candidate Phyla Radiation – “CPR” – all members have small genomes and most have restricted metabolic capacities. – Most are likely symbionts, with greatly reduced genomes. • A striking feature of this tree is the large number of major lineages without isolated representatives (🔴). – Uncultivated organisms clearly comprise the majority of life’s current diversity • Domain Bacteria includes more major lineages of organisms than the other Domains. – Domain bacteria is the most diverse domain
  • 45. 0.4 Candidate Phyla Radiation Microgenomates Parcubacteria Bacteria RBX1 WOR1 Cyanobacteria Melainabacteria PVC superphylum Major lineage lacking isolated representative: Major lineages with isolated representative: italics Dojkabacteria WS6 Peregrinibacteria Gracilibacteria BD1-5, GN02 Absconditabacteria SR1 Katanobacteria WWE3 Berkelbacteria SM2F11 CPR1 CPR3 Nomurabacteria Kaiserbacteria Adlerbacteria Campbellbacteria Wirthbacteria Chloroflexi Armatimonadetes Giovannonibacteria Wolfebacteria Jorgensenbacteria Azambacteria Yanofskybacteria Moranbacteria Magasanikbacteria Uhrbacteria Falkowbacteria Saccharibacteria Woesebacteria Amesbacteria Shapirobacteria Collierbacteria Pacebacteria Beckwithbacteria Roizmanbacteria Gottesmanbacteria Levybacteria Daviesbacteria Curtissbacteria Spirochaetes Firmicutes (Tenericutes ) Bacteroidetes Chlorobi Gammaproteobacteria Alphaproteobacteria Betaproteobacteria Actinobacteria Planctomycetes Chlamydiae, Lentisphaerae, Verrucomicrobia Omnitrophica Aminicentantes Rokubacteria NC10 Elusimicrobia Poribacteria Ignavibacteria Dadabacteria TM6 Atribacteria Gemmatimonadetes Cloacimonetes Fibrobacteres Nitrospirae Latescibacteria TA06 Caldithrix Marinimicrobia WOR-3 Zixibacteria Synergistetes Fusobacteria Aquificae Calescamantes Deinococcus-Therm. Caldiserica Dictyoglomi Deltaprotebacteria (Thermodesulfobacteria) Epsilonproteobacteria Deferribacteres Chrysiogenetes Tectomicrobia, Modulibacteria Nitrospinae Acidobacteria Zetaproteo. Thermotogae Acidithiobacillia Hydrogenedentes NKB19 BRC1 Phyla never grown in the lab Hug et al. 2016. Nature Microbiology.
  • 46. Why can’t we cultivate these organisms? • Cryptic nutrient requirements • Auxotrophy • Very slow growth rates • Require specific metabolic partners • Require host to assist in reproduction 46
  • 47. 0.4 Candidate Phyla Radiation Microgenomates Parcubacteria Bacteria RBX1 WOR1 Cyanobacteria Melainabacteria PVC superphylum Major lineage lacking isolated representative: Major lineages with isolated representative: italics Dojkabacteria WS6 Peregrinibacteria Gracilibacteria BD1-5, GN02 Absconditabacteria SR1 Katanobacteria WWE3 Berkelbacteria SM2F11 CPR1 CPR3 Nomurabacteria Kaiserbacteria Adlerbacteria Campbellbacteria Wirthbacteria Chloroflexi Armatimonadetes Giovannonibacteria Wolfebacteria Jorgensenbacteria Azambacteria Yanofskybacteria Moranbacteria Magasanikbacteria Uhrbacteria Falkowbacteria Saccharibacteria Woesebacteria Amesbacteria Shapirobacteria Collierbacteria Pacebacteria Beckwithbacteria Roizmanbacteria Gottesmanbacteria Levybacteria Daviesbacteria Curtissbacteria Spirochaetes Firmicutes (Tenericutes ) Bacteroidetes Chlorobi Gammaproteobacteria Alphaproteobacteria Betaproteobacteria Actinobacteria Planctomycetes Chlamydiae, Lentisphaerae, Verrucomicrobia Omnitrophica Aminicentantes Rokubacteria NC10 Elusimicrobia Poribacteria Ignavibacteria Dadabacteria TM6 Atribacteria Gemmatimonadetes Cloacimonetes Fibrobacteres Nitrospirae Latescibacteria TA06 Caldithrix Marinimicrobia WOR-3 Zixibacteria Synergistetes Fusobacteria Aquificae Calescamantes Deinococcus-Therm. Caldiserica Dictyoglomi Deltaprotebacteria (Thermodesulfobacteria) Epsilonproteobacteria Deferribacteres Chrysiogenetes Tectomicrobia, Modulibacteria Nitrospinae Acidobacteria Zetaproteo. Thermotogae Acidithiobacillia Hydrogenedentes NKB19 BRC1 Bacteroids & Spirochetes Hug et al. 2016. Nature Microbiology.
  • 48. Bacteroidetes and Spirochaetes • Bacteroidetes – Very diverse phylum – mostly anaerobic fermenters – Common in guts of animals • Spirochaetes – Found in sediments and some are pathogens – Mostly heterotrophs with internal polar flagella – May be progenitors for eukaryotic flagella
  • 49. 0.4 Candidate Phyla Radiation Microgenomates Parcubacteria Bacteria RBX1 WOR1 Cyanobacteria Melainabacteria PVC superphylum Major lineage lacking isolated representative: Major lineages with isolated representative: italics Dojkabacteria WS6 Peregrinibacteria Gracilibacteria BD1-5, GN02 Absconditabacteria SR1 Katanobacteria WWE3 Berkelbacteria SM2F11 CPR1 CPR3 Nomurabacteria Kaiserbacteria Adlerbacteria Campbellbacteria Wirthbacteria Chloroflexi Armatimonadetes Giovannonibacteria Wolfebacteria Jorgensenbacteria Azambacteria Yanofskybacteria Moranbacteria Magasanikbacteria Uhrbacteria Falkowbacteria Saccharibacteria Woesebacteria Amesbacteria Shapirobacteria Collierbacteria Pacebacteria Beckwithbacteria Roizmanbacteria Gottesmanbacteria Levybacteria Daviesbacteria Curtissbacteria Spirochaetes Firmicutes (Tenericutes ) Bacteroidetes Chlorobi Gammaproteobacteria Alphaproteobacteria Betaproteobacteria Actinobacteria Planctomycetes Chlamydiae, Lentisphaerae, Verrucomicrobia Omnitrophica Aminicentantes Rokubacteria NC10 Elusimicrobia Poribacteria Ignavibacteria Dadabacteria TM6 Atribacteria Gemmatimonadetes Cloacimonetes Fibrobacteres Nitrospirae Latescibacteria TA06 Caldithrix Marinimicrobia WOR-3 Zixibacteria Synergistetes Fusobacteria Aquificae Calescamantes Deinococcus-Therm. Caldiserica Dictyoglomi Deltaprotebacteria (Thermodesulfobacteria) Epsilonproteobacteria Deferribacteres Chrysiogenetes Tectomicrobia, Modulibacteria Nitrospinae Acidobacteria Zetaproteo. Thermotogae Acidithiobacillia Hydrogenedentes NKB19 BRC1 Green phototrophic bacteria Hug et al. 2016. Nature Microbiology.
  • 50. Green phototrophic bacteria • Chloroflexi (green non-sulfurs) – thermophilic phototrophs and heterotrophs – Single type of photosystem, Cyclic photophosphorylation to get energy (ATP) from light – Most fix C via the hydroxypropionate pathway • Chlorobi (green sulfurs) – Fix C using H2 or sulfur as electron donors for reverse TCA cycle, strict photolithoautotrophs – Energy is generated via cyclic photophosphorylation – Most can fix N • Cyanobacteria – All carry out oxygenic photosynthesis with two photosystems to get energy and reducing power – fix CO2 via the Calvin cycle – Most can fix N
  • 51. 0.4 Candidate Phyla Radiation Microgenomates Parcubacteria Bacteria RBX1 WOR1 Cyanobacteria Melainabacteria PVC superphylum Major lineage lacking isolated representative: Major lineages with isolated representative: italics Dojkabacteria WS6 Peregrinibacteria Gracilibacteria BD1-5, GN02 Absconditabacteria SR1 Katanobacteria WWE3 Berkelbacteria SM2F11 CPR1 CPR3 Nomurabacteria Kaiserbacteria Adlerbacteria Campbellbacteria Wirthbacteria Chloroflexi Armatimonadetes Giovannonibacteria Wolfebacteria Jorgensenbacteria Azambacteria Yanofskybacteria Moranbacteria Magasanikbacteria Uhrbacteria Falkowbacteria Saccharibacteria Woesebacteria Amesbacteria Shapirobacteria Collierbacteria Pacebacteria Beckwithbacteria Roizmanbacteria Gottesmanbacteria Levybacteria Daviesbacteria Curtissbacteria Spirochaetes Firmicutes (Tenericutes ) Bacteroidetes Chlorobi Gammaproteobacteria Alphaproteobacteria Betaproteobacteria Actinobacteria Planctomycetes Chlamydiae, Lentisphaerae, Verrucomicrobia Omnitrophica Aminicentantes Rokubacteria NC10 Elusimicrobia Poribacteria Ignavibacteria Dadabacteria TM6 Atribacteria Gemmatimonadetes Cloacimonetes Fibrobacteres Nitrospirae Latescibacteria TA06 Caldithrix Marinimicrobia WOR-3 Zixibacteria Synergistetes Fusobacteria Aquificae Calescamantes Deinococcus-Therm. Caldiserica Dictyoglomi Deltaprotebacteria (Thermodesulfobacteria) Epsilonproteobacteria Deferribacteres Chrysiogenetes Tectomicrobia, Modulibacteria Nitrospinae Acidobacteria Zetaproteo. Thermotogae Acidithiobacillia Hydrogenedentes NKB19 BRC1 Thermophilic bacteria Hug et al. 2016. Nature Microbiology.
  • 52. Thermophilic bacteria • Aquifex – thermophilic or extremely thermophilic • Thermotoga – thermophilic, anaerobic fermentative organisms
  • 53. 0.4 Candidate Phyla Radiation Microgenomates Parcubacteria Bacteria RBX1 WOR1 Cyanobacteria Melainabacteria PVC superphylum Major lineage lacking isolated representative: Major lineages with isolated representative: italics Dojkabacteria WS6 Peregrinibacteria Gracilibacteria BD1-5, GN02 Absconditabacteria SR1 Katanobacteria WWE3 Berkelbacteria SM2F11 CPR1 CPR3 Nomurabacteria Kaiserbacteria Adlerbacteria Campbellbacteria Wirthbacteria Chloroflexi Armatimonadetes Giovannonibacteria Wolfebacteria Jorgensenbacteria Azambacteria Yanofskybacteria Moranbacteria Magasanikbacteria Uhrbacteria Falkowbacteria Saccharibacteria Woesebacteria Amesbacteria Shapirobacteria Collierbacteria Pacebacteria Beckwithbacteria Roizmanbacteria Gottesmanbacteria Levybacteria Daviesbacteria Curtissbacteria Spirochaetes Firmicutes (Tenericutes ) Bacteroidetes Chlorobi Gammaproteobacteria Alphaproteobacteria Betaproteobacteria Actinobacteria Planctomycetes Chlamydiae, Lentisphaerae, Verrucomicrobia Omnitrophica Aminicentantes Rokubacteria NC10 Elusimicrobia Poribacteria Ignavibacteria Dadabacteria TM6 Atribacteria Gemmatimonadetes Cloacimonetes Fibrobacteres Nitrospirae Latescibacteria TA06 Caldithrix Marinimicrobia WOR-3 Zixibacteria Synergistetes Fusobacteria Aquificae Calescamantes Deinococcus-Therm. Caldiserica Dictyoglomi Deltaprotebacteria (Thermodesulfobacteria) Epsilonproteobacteria Deferribacteres Chrysiogenetes Tectomicrobia, Modulibacteria Nitrospinae Acidobacteria Zetaproteo. Thermotogae Acidithiobacillia Hydrogenedentes NKB19 BRC1 Phylum Proteobacteria Hug et al. 2016. Nature Microbiology.
  • 54. Proteobacteria • Phylum so diverse that they are mostly are discussed by classes – Alphaproteobacteria – Betaproteobacteria – Gammaproteobacteria – Deltaproteobacteria – Epsilonproteobacteria • In the new ToL, the phylum proteobacteria is not monophyletic! – Because of this the classes are identified individually. – For example, the Deltaproteobacteria branch away from the other Proteos.
  • 55. 0.4 Candidate Phyla Radiation Microgenomates Parcubacteria Bacteria RBX1 WOR1 Cyanobacteria Melainabacteria PVC superphylum Major lineage lacking isolated representative: Major lineages with isolated representative: italics Dojkabacteria WS6 Peregrinibacteria Gracilibacteria BD1-5, GN02 Absconditabacteria SR1 Katanobacteria WWE3 Berkelbacteria SM2F11 CPR1 CPR3 Nomurabacteria Kaiserbacteria Adlerbacteria Campbellbacteria Wirthbacteria Chloroflexi Armatimonadetes Giovannonibacteria Wolfebacteria Jorgensenbacteria Azambacteria Yanofskybacteria Moranbacteria Magasanikbacteria Uhrbacteria Falkowbacteria Saccharibacteria Woesebacteria Amesbacteria Shapirobacteria Collierbacteria Pacebacteria Beckwithbacteria Roizmanbacteria Gottesmanbacteria Levybacteria Daviesbacteria Curtissbacteria Spirochaetes Firmicutes (Tenericutes ) Bacteroidetes Chlorobi Gammaproteobacteria Alphaproteobacteria Betaproteobacteria Actinobacteria Planctomycetes Chlamydiae, Lentisphaerae, Verrucomicrobia Omnitrophica Aminicentantes Rokubacteria NC10 Elusimicrobia Poribacteria Ignavibacteria Dadabacteria TM6 Atribacteria Gemmatimonadetes Cloacimonetes Fibrobacteres Nitrospirae Latescibacteria TA06 Caldithrix Marinimicrobia WOR-3 Zixibacteria Synergistetes Fusobacteria Aquificae Calescamantes Deinococcus-Therm. Caldiserica Dictyoglomi Deltaprotebacteria (Thermodesulfobacteria) Epsilonproteobacteria Deferribacteres Chrysiogenetes Tectomicrobia, Modulibacteria Nitrospinae Acidobacteria Zetaproteo. Thermotogae Acidithiobacillia Hydrogenedentes NKB19 BRC1 Gram-positive bacteria Hug et al. 2016. Nature Microbiology.
  • 56. Gram-positive bacteria • Firmicutes – aka low G+C Gram positive bacteria – Almost all Heterotrophs, Anaerobes use substrate-level phosphorylation rather than anaerobic respiration • Actinobacteria – Aka high G+C Gram positive bacteria – Filamentous, aerobic respirers – Known antibiotic producers
  • 57. 0.4 Candidate Phyla Radiation Microgenomates Parcubacteria Bacteria RBX1 WOR1 Cyanobacteria Melainabacteria PVC superphylum Major lineage lacking isolated representative: Major lineages with isolated representative: italics Dojkabacteria WS6 Peregrinibacteria Gracilibacteria BD1-5, GN02 Absconditabacteria SR1 Katanobacteria WWE3 Berkelbacteria SM2F11 CPR1 CPR3 Nomurabacteria Kaiserbacteria Adlerbacteria Campbellbacteria Wirthbacteria Chloroflexi Armatimonadetes Giovannonibacteria Wolfebacteria Jorgensenbacteria Azambacteria Yanofskybacteria Moranbacteria Magasanikbacteria Uhrbacteria Falkowbacteria Saccharibacteria Woesebacteria Amesbacteria Shapirobacteria Collierbacteria Pacebacteria Beckwithbacteria Roizmanbacteria Gottesmanbacteria Levybacteria Daviesbacteria Curtissbacteria Spirochaetes Firmicutes (Tenericutes ) Bacteroidetes Chlorobi Gammaproteobacteria Alphaproteobacteria Betaproteobacteria Actinobacteria Planctomycetes Chlamydiae, Lentisphaerae, Verrucomicrobia Omnitrophica Aminicentantes Rokubacteria NC10 Elusimicrobia Poribacteria Ignavibacteria Dadabacteria TM6 Atribacteria Gemmatimonadetes Cloacimonetes Fibrobacteres Nitrospirae Latescibacteria TA06 Caldithrix Marinimicrobia WOR-3 Zixibacteria Synergistetes Fusobacteria Aquificae Calescamantes Deinococcus-Therm. Caldiserica Dictyoglomi Deltaprotebacteria (Thermodesulfobacteria) Epsilonproteobacteria Deferribacteres Chrysiogenetes Tectomicrobia, Modulibacteria Nitrospinae Acidobacteria Zetaproteo. Thermotogae Acidithiobacillia Hydrogenedentes NKB19 BRC1 Deinococci, Chlamydiae & Planctomycetes Hug et al. 2016. Nature Microbiology.
  • 58. Deinococci, Chlamydiae & Planctomycetes • Deinococcus/Thermus – Deinococcus, extremely DNA-damage stress resistant mesophiles – Thermus, thermophilic oligotrophs • Chlamydiae – Obligate intracellular pathogens or parasites – Reduced genomes • Planctomycetes – Heterotrophic oligotrophs – Compartmentalization via complex inner membranes
  • 59. Activity for Review of Unit 08.3 Rare bacteria The Candidate Phyla Radiation (CPR) contain the most deeply-rooted organisms in the bacteria. What kind of traits do you predict that they will have? 59
  • 60. Unit 8: Rare and Uncultured Microbes LECTURE LEARNING GOALS 1. Describe the phyla containing rare bacteria: Deinococcus/Thermus, Chlamydia & Planctomycetes. 2. Describe the sequencing methods used to understand uncultured microbes. Explain the Eocyte hypothesis and how this model differs from the three domain tree of life. 3. For the cultured microbes, describe major characteristics for the 13 bacterial phyla, and explain why some microbe remain uncultivated. Next class is Unit 9: Diversity of the Human Microbiome Reading for next class: Brown Ch. 16, Walter & Ley (moodle) 60