T3b - MASTER - Pump flow system - operating point 2023.pptx

Keith Vaugh
Keith VaughSTEM Education & Design em MAGVA Design + Letterpress
KV
WORKED EXAMPLES
{for energy conversion}
Keith Vaugh BEng (AERO) MEng
The flow system used to test a centrifugal
pump at a nominal speed of 1750 rpm is
shown in the figure. The liquid water enters
the pump through a 90° bend at 20 °C after
being drawn from the sump through a hinged
disk foot valve along 7 m long pipe. This fluid
is then transferred along a 250 m long pipe
and passes through a second standard 90°
elbows as shown. The suction and discharge
pipes diameters are 120 mm. Develop an
expression to represent the Pressure at the
Pump and an expression to represent the
required Head at the Pump
PUMP SYSTEM EXAMPLE 2
Pd
Ps
Zd
Zs
Elev. Surface of Water in
Sump 6 m
Elev. Eye of
Impeller 8.5 m
Height
Foot Valve with
Hinge Disk
Sudden
Enlargeme
nt
Standard
90° Elbows
Elev. Surface of
Water in Tank 60 m
GIVEN: Pump and piping system
FIND
Conduct an engineering assessment must
develop expressions for the Pressure at the
Pump and an expression to represent the Head
at the Pump, calculate pressure at Pump (eye of
the impeller) the required head at the pump for
the system, the NPSHA, select pumps, examine
the impact ageing of pipe have on the system
flow and plot the System Curves vs. Pump
Curve
ASSUMPTIONS
• Steady and incompressible flow
•Uniform flow at each section
• U1 = U2 = 0, Upipe found from Volumetric flow
• P1 = P2 = Patm
Pd
Ps
Zd
Zs
Elev. Surface of
Water in Tank
Elev. Surface of Water in
Sump
Elev. Eye of Impeller
Height
Foot Valve with
Hinge Disk
Sudden
Enlargement
Standard
90° Elbows
GOVERNING EQUATIONS
The energy equation for steady incompressible pipe flow can be written as;
The governing equations given that in represents the inlet and out the outlet of the system
𝑃
𝜌𝑔
+
𝑈2
2𝑔
+ 𝑧
𝑠𝑢𝑐𝑡𝑖𝑜𝑛
=
𝑃
𝜌𝑔
+
𝑈2
2𝑔
+ 𝑧
𝑑𝑖𝑠𝑐ℎ𝑎𝑟𝑔𝑒
+ ℎ𝐿 − 𝐻
Total head loss is the summation of the major and minor losses in the system
ℎ𝐿 = 𝑓
𝐿
𝐷
𝑈𝑝𝑖𝑝𝑒
2
2𝑔
+ ∑𝑓
𝐿𝑒
𝐷
𝑈𝑝𝑖𝑝𝑒
2
2𝑔
+ ∑𝐾
𝑈𝑝𝑖𝑝𝑒
2
2𝑔
𝐻 =
ℎ𝑝
𝑔
and
𝑃
𝜌𝑔
+
𝑈2
2𝑔
+ 𝑧
𝑠𝑢𝑐𝑡𝑖𝑜𝑛
=
𝑃
𝜌𝑔
+
𝑈2
2𝑔
+ 𝑧
𝑑𝑖𝑠𝑐ℎ𝑎𝑟𝑔𝑒
+ 𝑓
𝐿
𝐷
𝑈𝑝𝑖𝑝𝑒
2
2𝑔
+ ∑𝑓
𝐿𝑒
𝐷
𝑈𝑝𝑖𝑝𝑒
2
2𝑔
+ ∑𝐾
𝑈𝑝𝑖𝑝𝑒
2
2𝑔
− 𝐻
𝑓 = −1.8𝑙𝑜𝑔10
𝜖
𝐷
3.7
1.11
+
6.9
𝑅𝑒
−2
Friction factor
Develop an expression to represented the total Pressure at the Pump
𝑃𝑖𝑛
𝜌𝑔
+
𝑈𝑖𝑛
2
2𝑔
+ 𝑧𝑖𝑛 =
𝑃𝑝𝑢𝑚𝑝
𝜌𝑔
+
𝑈𝑝𝑢𝑚𝑝
2
2𝑔
+ 𝑧𝑝𝑢𝑚𝑝 + 𝑓
𝐿
𝐷
+
𝐿𝑒
𝐷
𝑈𝑝𝑖𝑝𝑒
2
2𝑔
+ 𝐾
𝑈𝑝𝑖𝑝𝑒
2
2𝑔
Pin = Patm, Uin = 0, Upump = 0 i.e. the fluid is entering the eye of the impeller
𝑧𝑖𝑛 −
𝑃𝑝𝑢𝑚𝑝
𝜌𝑔
+ 𝑧𝑝𝑢𝑚𝑝 = 𝑓
𝐿
𝐷
+
𝐿𝑒
𝐷
𝑈𝑝𝑖𝑝𝑒
2
2𝑔
+ 𝐾
𝑈𝑝𝑖𝑝𝑒
2
2𝑔
𝑧𝑖𝑛 −
𝑃𝑝𝑢𝑚𝑝
𝜌𝑔
− 𝑧𝑝𝑢𝑚𝑝 = 𝑓
𝐿
𝐷
+
𝐿𝑒
𝐷
𝑈𝑝𝑖𝑝𝑒
2
2𝑔
+ 𝐾
𝑈𝑝𝑖𝑝𝑒
2
2𝑔
−
𝑃𝑝𝑢𝑚𝑝
𝜌𝑔
= 𝑧𝑝𝑢𝑚𝑝 − 𝑧𝑖𝑛 + 𝑓
𝐿
𝐷
+
𝐿𝑒
𝐷
𝑈𝑝𝑖𝑝𝑒
2
2𝑔
+ 𝐾
𝑈𝑝𝑖𝑝𝑒
2
2𝑔
𝑃𝑝𝑢𝑚𝑝 = −𝜌𝑔 𝑧𝑝𝑢𝑚𝑝 − 𝑧𝑖𝑛 + 𝑓
𝐿
𝐷
+
𝐿𝑒
𝐷
𝑈𝑝𝑖𝑝𝑒
2
2𝑔
+ 𝐾
𝑈𝑝𝑖𝑝𝑒
2
2𝑔
.
.
.
.
.
.
.
steps omitted
.
.
steps omitted
Develop an expression to represented the required head at the pump
𝑃
𝜌𝑔
+
𝑈2
2𝑔
+ 𝑧
𝑠𝑢𝑐𝑡𝑖𝑜𝑛
=
𝑃
𝜌𝑔
+
𝑈2
2𝑔
+ 𝑧
𝑑𝑖𝑠𝑐ℎ𝑎𝑟𝑔𝑒
+ 𝑓
𝐿
𝐷
𝑈𝑝𝑖𝑝𝑒
2
2𝑔
+ ∑𝑓
𝐿𝑒
𝐷
𝑈𝑝𝑖𝑝𝑒
2
2𝑔
+ ∑𝐾
𝑈𝑝𝑖𝑝𝑒
2
2𝑔
− 𝐻
Pin = Pout = Patm, Uin = Uout = 0
𝑧𝑖𝑛 − 𝑧𝑜𝑢𝑡 = 𝑓
𝐿
𝐷
𝑈𝑝𝑖𝑝𝑒
2
2𝑔
+ ∑𝑓
𝐿𝑒
𝐷
𝑈𝑝𝑖𝑝𝑒
2
2𝑔
+ ∑𝐾
𝑈𝑝𝑖𝑝𝑒
2
2𝑔
− 𝐻
𝑧𝑖𝑛 − 𝑧𝑜𝑢𝑡 = 𝑓
𝐿
𝐷
𝑈𝑝𝑖𝑝𝑒
2
2𝑔
+ 𝑓
𝐿𝑒
𝐷
𝑈𝑝𝑖𝑝𝑒
2
2𝑔
+ 𝐾
𝑈𝑝𝑖𝑝𝑒
2
2𝑔
− 𝐻
𝐻 = 𝑧𝑜𝑢𝑡 − 𝑧𝑖𝑛 + 𝑓
𝐿
𝐷
𝑈𝑝𝑖𝑝𝑒
2
2𝑔
+ 𝑓
𝐿𝑒
𝐷
𝑈𝑝𝑖𝑝𝑒
2
2𝑔
+ 𝐾
𝑈𝑝𝑖𝑝𝑒
2
2𝑔
𝐻 = 𝑧𝑜𝑢𝑡 − 𝑧𝑖𝑛 + 𝑓
𝐿
𝐷
+
𝐿𝑒
𝐷
+ 𝐾
𝑈𝑝𝑖𝑝𝑒
2
2𝑔
.
.
.
.
.
.
.
steps omitted
.
.
steps omitted
Determine the total pressure at the eye of the impeller and the required head at the pump
Given Data:
𝐷 = 12𝑐𝑚
𝑃𝑎𝑡𝑚 = 101.3𝑘𝑃𝑎
𝑉
·
= 600𝐿/𝑚𝑖𝑛 and 𝜖 = 0.046𝑚𝑚 taken from table
From relevant tables water at 20 °C
𝜌 = 998𝑘𝑔/𝑚3
𝑃𝑣𝑎𝑝𝑜𝑢𝑟 = 2.34𝑘𝑃𝑎
𝜈 = 1.01 × 10−6
𝑚2
/𝑠
At the specified flow rate, the speed of the fluid is:
𝑉
·
= 𝐴𝑈𝑝𝑖𝑝𝑒 ⟶ 𝑈𝑝𝑖𝑝𝑒 =
𝑉
·
𝐴
=
4𝑉
·
𝜋𝐷2
= 0.884𝑚/𝑠
𝑅𝑒 =
𝑈𝑝𝑖𝑝𝑒𝐷
𝜈
=
0.844𝑚/𝑠 × 0.12𝑚
1.01 × 10−6𝑚2/𝑠
= 1.05 × 105
𝜖
𝐷
=
0.046𝑚𝑚
0.12𝑚
= 3.8 × 10−4
𝑓 = −1.8𝑙𝑜𝑔10
3.8 × 10−4
3.7
1.11
+
6.9
1.05 × 105
−2
= 0.0194
1
𝑓
= −1.8𝑙𝑜𝑔10
𝜖
𝐷
3.7
1.11
+
6.9
𝑅𝑒
Therefore using
Note for Clarification - kinematic Viscosity, 𝜈 =
𝜇
𝜌
KV
• Saturation temperature Tsat: The temperature at which a pure
substance changes phase at a given pressure.
• Saturation pressure Psat: The pressure at which a pure substance
changes phase at a given temperature.
• Vapor pressure (Pv): The pressure exerted by its vapour in phase
equilibrium with its liquid at a given temperature. It is identical to the
saturation pressure Psat of the liquid (Pv = Psat).
• Partial pressure: The pressure of a gas or vapor in a mixture with
other gases. For example, atmospheric air is a mixture of dry air
and water vapour, and atmospheric pressure is the sum of the
partial pressure of dry air and the partial pressure of water vapour.
VAPOUR
PRESSURE AND
CAVITATION
KV
• There is a possibility of the liquid pressure in liquid-flow
systems dropping below the vapour pressure at some
locations, and the resulting unplanned vaporisation.
• The vapour bubbles (called cavitation bubbles since they
form “cavities” in the liquid) collapse as they are swept
away from the low-pressure regions, generating highly
destructive, extremely high-pressure waves.
• This phenomenon, which is a common cause for drop in
performance and even the erosion of impeller blades, is
called cavitation, and it is an important consideration in
the design of hydraulic turbines and pumps.
Cavitation damage on a 16-mm by 23-mm
aluminium sample tested at 60 m/s for 2.5 h.
The sample was located at the cavity collapse
region downstream of a cavity generator
specifically designed to produce high damage
potential.
CONSIDER THE LOSSES (Major & Minor)
Pd
Ps
Zd
Zs
Elev. Surface of
Water in Tank
Elev. Surface of Water in
Sump
Elev. Eye of Impeller
Height
Foot Valve with
Hinge Disk
Sudden
Enlargement
Standard
90° Elbows
Table 1: Representative Dimensionless Equivalent
Lengths for Values and Fittings
Fitting Type Equivalent Length,
Valves (Fully Open)
- Gate Valve 8
- Globe Valve 340
- Angle Valve 150
- Ball Valve 3
- Lift Check Valve: Globe Lift 600
- Lift Check Valve: Angle Lift 55
- Foot Valve with Strainer: Poppet Disk 420
- Foot Valve with Strainer: Hinged Disk 75
Standard Elbow: 90º 30
Standard Elbow: 45º 16
Return bend, close pattern 50
Standard Tee: Flow Through Run 20
Standard Tee: Flow Through Branch 60
CONSIDER THE LOSSES (Major & Minor)
Pd
Ps
Zd
Zs
Elev. Surface of
Water in Tank
Elev. Surface of Water in
Sump
Elev. Eye of Impeller
Height
Foot Valve with
Hinge Disk
Sudden
Enlargement
Standard
90° Elbows
The total pressure at the eye of the impeller
𝑃𝑝𝑢𝑚𝑝 = −𝜌𝑔 𝑧𝑝𝑢𝑚𝑝 − 𝑧𝑖𝑛 + 𝑓
𝐿
𝐷
+
𝐿𝑒
𝐷
𝑈𝑝𝑖𝑝𝑒
2
2𝑔
+ 𝐾
𝑈𝑝𝑖𝑝𝑒
2
2𝑔
From part (c) above
𝑃𝑝𝑢𝑚𝑝 = −𝜌𝑔 8.5𝑚 − 6𝑚 + 0.0194
7𝑚
0.12𝑚
+
105 × 0.12𝑚
0.12𝑚
0.884 2
𝑚/𝑠
2 × 9.81𝑚/𝑠2
+ 0.78 ×
0.884 2
𝑚/𝑠
2 × 9.81𝑚/𝑠2
𝑃𝑝𝑢𝑚𝑝 = −26015𝑃𝑎(𝑔𝑎𝑢𝑔𝑒) = −26𝑘𝑃𝑎(𝑔𝑎𝑢𝑔𝑒)
The Required head at the Pump from equation developed in (d)
𝐻 = 𝑧𝑜𝑢𝑡 − 𝑧𝑖𝑛 + 𝑓
𝐿
𝐷
+
𝐿𝑒
𝐷
+ 𝐾
𝑈𝑝𝑖𝑝𝑒
2
2𝑔
𝐻 = 60𝑚 − 6𝑚 + 0.0194
257𝑚
0.12𝑚
+
135𝑚 × 0.12𝑚
0.12𝑚
+ 1.78
0.884𝑚 2
2 × 9.81𝑚/𝑠2
𝐻 = 55.83𝑚
Hinged Foot Valve plus
One 90º Elbow
Just Re-entrant
Re-entrant plus
Sudden Enlargement
The Net Positive Suction Head Available (NPSHA)
𝑁𝑃𝑆𝐻𝐴 =
𝑃𝑝𝑢𝑚𝑝 + 𝑃𝑎𝑡𝑚 − 𝑃𝑣𝑎𝑝𝑜𝑢𝑟
𝜌𝑔
=
−26𝑘𝑃𝑎 + 101.3𝑘𝑃𝑎 − 2.34𝑘𝑃𝑎
998𝑘𝑔/𝑚3 × 9.81𝑚/𝑠2
A pump would be selected by finding one for which the NPSHR is less than the NPSHA. Based on the
data and the information in the pump selection chart, a 5AE8N or a 3AE14 pump would be capable of
supplying the required head at the given flow rate. The pump should be operated at a speed of between
1750 and 3500 rpm, but the efficiency may not be acceptable. One should consult a complete catalog to
make an informed decision.
𝑁𝑃𝑆𝐻𝐴 = 7.4𝑚
Select a pump suitable for this application and provide a justification
1 foot - 0.3048 meters
1 gpm - 0.0038 m3/min
1 gpm - 3.785 l/min
Select these pumps
for this case
Develop and format appropriately an excel worksheet which
calculates the;
•Pump head for a range of volumetric flow rates
•calculates the impact that the ageing of the pipes have on the
Pump Head at twenty years and forty years of service
Assume a head at 600 L/min for 40 year old pipes is 80% of the
maximum head of the pump, and that the pump curve has the
form 𝐻 = 𝐻𝑜 − 𝐴𝑉
·
2
. Using the calculations from the Excel
worksheet, plot the Pump Curve and the system curves for new
pipes, pipes at 20 years service and pipes at 40 years service.
PUMP SYSTEM EXAMPLE Pt 2
Table 2 - Data given in question or sourced from fluids tables
Given Data Value Units Source
Water at 20 Degrees
Pipe Diameter 12 cm
ε 4.6E-05 mm
Patm 101.3 kPa
Kinematic Viscosity 1.01E-06 m2/s Tables
Pvapour 2.34 kPa Tables
Density 998 kg/m3
z1 6 m
z2 60 m
Lsuction 7 m Side of pump
Ldelivery 250 m Side of pump
LT 257 m
Equivalent Lengths
Hinged Disk Foot Valve 75 Tables
Angle Lift Valve 0 Tables
Gate Valve 0 Tables
Standard 90 deg Elbow 30 2 of these Tables
Le 135 Note 2 Elbows
K
Reentrant 0.78 Tables
Sudden Expansion 1 Tables
KT 1.78
20 Years 5 Tables
40 Years 8.75 Tables
Summarise the Data provide in a table.
Begin by summarising all the relevant data from the
question into a table. Data that is not provided in the
question should be sourced from the relevant tables
and resources available in the essential reading text
book (Fundamentals of Thermal Fluid Sciences from
semester I) or from online sources. Pay particular
caution to units and ensure these are corrected to the
SI unit system.
The data in the summary table should be linked to the
calculations in the data sheets developed from the
governing equations created previously in the question
Table 3: Calculate results
Volumetric Flow
Rate (L/Min)
Vel (m/s) Reynolds
Number, Re
Friction
Factor,
f
New Pipes
(m)
20 Year
Pipe (m)
40 Year
Pipe (m)
Pump Curve
(m)
0 0.000 0.000 0.0000 54.00 54.00 54.00 86.88
200 0.295 35017.589 0.0234 54.24 55.19 56.07 84.95
400 0.589 70035.178 0.0207 54.86 58.20 61.32 79.16
600 0.884 105052.768 0.0194 55.83 62.89 69.50 69.52
800 1.179 140070.357 0.0187 57.15 69.22 80.54 56.03
1000 1.474 175087.946 0.0182 58.80 77.19 94.43 38.68
1200 1.768 210105.535 0.0179 60.78 86.78 111.15 17.47
1400 2.063 245123.125 0.0177 63.11 97.99 130.69 -7.60
1600 2.358 280140.714 0.0175 65.77 110.81 153.04 -36.52
1800 2.653 315158.303 0.0173 68.76 125.24 178.20 -69.29
2000 2.947 350175.892 0.0172 72.09 141.29 206.17 -105.93
𝐻600 = 69.5𝑚 𝐻𝑜 =
69.5𝑚
0.8
= 86.875𝑚
𝐻 = 𝐻𝑜 − 𝐴𝑉2
·
⟶ 69.5𝑚 = 86.875𝑚 − 𝐴 6002 𝐴 =
86.875𝑚 − 69.5𝑚
6002
= 4.82 × 10−5
𝑚/(𝐿/𝑚𝑖𝑛)
Assume that the heat at 600 L/min for 40 year old pipe is 80% of the maximum head for the
pump, and that the pump curve has the form 𝐻 = 𝐻𝑜 − 𝐴𝑉2
·
𝐻 = 𝐻𝑜 − 𝐴𝑉2
·
50.00
54.00
58.00
62.00
66.00
70.00
74.00
78.00
82.00
86.00
90.00
200 300 400 500 600 700 800 900 1000
Pump
Head
(m)
Volumetric Flow Rate in L/min
New Pipes (m) 20 Year Pipe (m)
40 Year Pipe (m)
1 de 18

Recomendados

T2c - Centrifugal Pumps, turbines and Impeller calculations 2023.pptx por
T2c - Centrifugal Pumps, turbines and Impeller calculations 2023.pptxT2c - Centrifugal Pumps, turbines and Impeller calculations 2023.pptx
T2c - Centrifugal Pumps, turbines and Impeller calculations 2023.pptxKeith Vaugh
1.5K visualizações76 slides
CAVITATION IN CENTRIFUGAL PUMP por
CAVITATION IN CENTRIFUGAL PUMPCAVITATION IN CENTRIFUGAL PUMP
CAVITATION IN CENTRIFUGAL PUMPDEBJYOTI MONDAL
5.2K visualizações18 slides
Flowmeters por
FlowmetersFlowmeters
FlowmetersTuba Tanveer
3K visualizações30 slides
Rupture Disks for Process Engineers por
Rupture Disks for Process EngineersRupture Disks for Process Engineers
Rupture Disks for Process EngineersSyed Waqas Haider
5.7K visualizações36 slides
Pressure relief system_design por
Pressure relief system_designPressure relief system_design
Pressure relief system_designRahul Tewari
1.4K visualizações6 slides
Pressure Vacuum Relief Valve.pptx por
Pressure Vacuum Relief Valve.pptxPressure Vacuum Relief Valve.pptx
Pressure Vacuum Relief Valve.pptxSwamiVidya
220 visualizações39 slides

Mais conteúdo relacionado

Mais procurados

Cavitation in pumps por
Cavitation in pumpsCavitation in pumps
Cavitation in pumpsMuhammad Ahmad
1.9K visualizações5 slides
Overpressure protection por
Overpressure protectionOverpressure protection
Overpressure protectionWei Chiao Kuo
1.5K visualizações73 slides
Pressure Relief Valve Sizing for Single Phase Flow por
Pressure Relief Valve Sizing for Single Phase FlowPressure Relief Valve Sizing for Single Phase Flow
Pressure Relief Valve Sizing for Single Phase FlowVikram Sharma
5.2K visualizações25 slides
50-Marco Casirati-Nord Stream Pre-Commissioning por
50-Marco Casirati-Nord Stream Pre-Commissioning50-Marco Casirati-Nord Stream Pre-Commissioning
50-Marco Casirati-Nord Stream Pre-CommissioningJohn Grover
623 visualizações25 slides
Using Aspen HYSYS Upstream for Sizing and Scheduling of Gathering Systems por
Using Aspen HYSYS Upstream for Sizing and Scheduling of Gathering SystemsUsing Aspen HYSYS Upstream for Sizing and Scheduling of Gathering Systems
Using Aspen HYSYS Upstream for Sizing and Scheduling of Gathering SystemsProcess Ecology Inc
21.1K visualizações42 slides
List of API standards for rotating equipment por
List of API standards for rotating equipmentList of API standards for rotating equipment
List of API standards for rotating equipmentravisriniv
2.4K visualizações6 slides

Mais procurados(20)

Cavitation in pumps por Muhammad Ahmad
Cavitation in pumpsCavitation in pumps
Cavitation in pumps
Muhammad Ahmad1.9K visualizações
Overpressure protection por Wei Chiao Kuo
Overpressure protectionOverpressure protection
Overpressure protection
Wei Chiao Kuo1.5K visualizações
Pressure Relief Valve Sizing for Single Phase Flow por Vikram Sharma
Pressure Relief Valve Sizing for Single Phase FlowPressure Relief Valve Sizing for Single Phase Flow
Pressure Relief Valve Sizing for Single Phase Flow
Vikram Sharma5.2K visualizações
50-Marco Casirati-Nord Stream Pre-Commissioning por John Grover
50-Marco Casirati-Nord Stream Pre-Commissioning50-Marco Casirati-Nord Stream Pre-Commissioning
50-Marco Casirati-Nord Stream Pre-Commissioning
John Grover623 visualizações
Using Aspen HYSYS Upstream for Sizing and Scheduling of Gathering Systems por Process Ecology Inc
Using Aspen HYSYS Upstream for Sizing and Scheduling of Gathering SystemsUsing Aspen HYSYS Upstream for Sizing and Scheduling of Gathering Systems
Using Aspen HYSYS Upstream for Sizing and Scheduling of Gathering Systems
Process Ecology Inc21.1K visualizações
List of API standards for rotating equipment por ravisriniv
List of API standards for rotating equipmentList of API standards for rotating equipment
List of API standards for rotating equipment
ravisriniv2.4K visualizações
Cavitation in pumps and ... por siavosh_84
Cavitation in pumps and ...Cavitation in pumps and ...
Cavitation in pumps and ...
siavosh_8413.1K visualizações
Pressure Relief Devices_Presenation por sumit handa
Pressure Relief Devices_PresenationPressure Relief Devices_Presenation
Pressure Relief Devices_Presenation
sumit handa6.5K visualizações
VARIOUS METHODS OF CENTRIFUGAL COMPRESSOR SURGE CONTROL por Vijay Sarathy
VARIOUS METHODS OF CENTRIFUGAL COMPRESSOR SURGE CONTROLVARIOUS METHODS OF CENTRIFUGAL COMPRESSOR SURGE CONTROL
VARIOUS METHODS OF CENTRIFUGAL COMPRESSOR SURGE CONTROL
Vijay Sarathy2.8K visualizações
Pumps and Cavitation por Living Online
Pumps and CavitationPumps and Cavitation
Pumps and Cavitation
Living Online7.3K visualizações
One day gas lift system course por Giuseppe Moricca
One day gas lift system course One day gas lift system course
One day gas lift system course
Giuseppe Moricca6.4K visualizações
PSV Sizing.pdf por KAhmedRehman
PSV Sizing.pdfPSV Sizing.pdf
PSV Sizing.pdf
KAhmedRehman803 visualizações
Nodal Analysis introduction to inflow and outflow performance - next por gusgon
Nodal Analysis   introduction to inflow and outflow performance - nextNodal Analysis   introduction to inflow and outflow performance - next
Nodal Analysis introduction to inflow and outflow performance - next
gusgon15.8K visualizações
Relief and safety valves for thermal power plants por SHIVAJI CHOUDHURY
Relief and safety valves for thermal power plantsRelief and safety valves for thermal power plants
Relief and safety valves for thermal power plants
SHIVAJI CHOUDHURY22.1K visualizações
Understanding npsh and cavitation por Ankit Panwar
Understanding npsh and cavitationUnderstanding npsh and cavitation
Understanding npsh and cavitation
Ankit Panwar548 visualizações
Electric submersible pump(esp) por Win Nyunt Aung
Electric submersible pump(esp)Electric submersible pump(esp)
Electric submersible pump(esp)
Win Nyunt Aung9.7K visualizações
CENTRIFUGAL COMPRESSOR SETTLE OUT CONDITIONS TUTORIAL por Vijay Sarathy
CENTRIFUGAL COMPRESSOR SETTLE OUT CONDITIONS TUTORIALCENTRIFUGAL COMPRESSOR SETTLE OUT CONDITIONS TUTORIAL
CENTRIFUGAL COMPRESSOR SETTLE OUT CONDITIONS TUTORIAL
Vijay Sarathy8.6K visualizações
Production Packer setting and types por Elsayed Amer
Production Packer setting and typesProduction Packer setting and types
Production Packer setting and types
Elsayed Amer2.3K visualizações
pump and compressors por Sandeep Thakur
pump and compressorspump and compressors
pump and compressors
Sandeep Thakur7.7K visualizações

Similar a T3b - MASTER - Pump flow system - operating point 2023.pptx

Pompa.pptx por
Pompa.pptxPompa.pptx
Pompa.pptxgaluh311517
59 visualizações73 slides
Pumps por
PumpsPumps
PumpsMohsin Siddique
10.7K visualizações57 slides
Pump pipeline por
Pump pipelinePump pipeline
Pump pipelineKimia Store
14.4K visualizações39 slides
Performance of a_centrifugal_pump_autosaved por
Performance of a_centrifugal_pump_autosavedPerformance of a_centrifugal_pump_autosaved
Performance of a_centrifugal_pump_autosavedDickens Mimisa
1.8K visualizações11 slides
4 pump 02 centrifugal pump por
4 pump 02 centrifugal pump4 pump 02 centrifugal pump
4 pump 02 centrifugal pumpRefee Lubong
360 visualizações11 slides
Flow measurement basics por
Flow measurement basicsFlow measurement basics
Flow measurement basicsSalman1011
1.9K visualizações7 slides

Similar a T3b - MASTER - Pump flow system - operating point 2023.pptx(20)

Pompa.pptx por galuh311517
Pompa.pptxPompa.pptx
Pompa.pptx
galuh31151759 visualizações
Pumps por Mohsin Siddique
PumpsPumps
Pumps
Mohsin Siddique10.7K visualizações
Pump pipeline por Kimia Store
Pump pipelinePump pipeline
Pump pipeline
Kimia Store14.4K visualizações
Performance of a_centrifugal_pump_autosaved por Dickens Mimisa
Performance of a_centrifugal_pump_autosavedPerformance of a_centrifugal_pump_autosaved
Performance of a_centrifugal_pump_autosaved
Dickens Mimisa1.8K visualizações
4 pump 02 centrifugal pump por Refee Lubong
4 pump 02 centrifugal pump4 pump 02 centrifugal pump
4 pump 02 centrifugal pump
Refee Lubong360 visualizações
Flow measurement basics por Salman1011
Flow measurement basicsFlow measurement basics
Flow measurement basics
Salman10111.9K visualizações
4 pump 03 reciprocating pump por Refee Lubong
4 pump 03 reciprocating pump4 pump 03 reciprocating pump
4 pump 03 reciprocating pump
Refee Lubong8.9K visualizações
Energy losses in Bends, loss coefficient related to velocity head.Pelton Whee... por Salman Jailani
Energy losses in Bends, loss coefficient related to velocity head.Pelton Whee...Energy losses in Bends, loss coefficient related to velocity head.Pelton Whee...
Energy losses in Bends, loss coefficient related to velocity head.Pelton Whee...
Salman Jailani3.1K visualizações
3.10 valves modeling dynamics - engineering libre-texts por Kyriakos Michalaki
3.10  valves   modeling dynamics - engineering libre-texts3.10  valves   modeling dynamics - engineering libre-texts
3.10 valves modeling dynamics - engineering libre-texts
Kyriakos Michalaki116 visualizações
Chapter 4 por Bheemesh Gudelli
Chapter 4Chapter 4
Chapter 4
Bheemesh Gudelli3.7K visualizações
Control valve-sizing por Pieter Vrieling
Control valve-sizingControl valve-sizing
Control valve-sizing
Pieter Vrieling582 visualizações
Boiler feed and pump sizing c-b and grundfos july 2016(1) por lorenzo Monasca
Boiler feed and pump sizing   c-b and grundfos july 2016(1)Boiler feed and pump sizing   c-b and grundfos july 2016(1)
Boiler feed and pump sizing c-b and grundfos july 2016(1)
lorenzo Monasca5.5K visualizações
Optimum overhaul of pumps 2014 por Ray Beebe
Optimum overhaul of pumps 2014Optimum overhaul of pumps 2014
Optimum overhaul of pumps 2014
Ray Beebe1.2K visualizações
T3a - Finding the operating point of a pumping system 2023.pptx por Keith Vaugh
T3a - Finding the operating point of a pumping system 2023.pptxT3a - Finding the operating point of a pumping system 2023.pptx
T3a - Finding the operating point of a pumping system 2023.pptx
Keith Vaugh1.5K visualizações
Unit7 nozzles por Malaysia
Unit7   nozzlesUnit7   nozzles
Unit7 nozzles
Malaysia5.8K visualizações
Pump sizing basics por Ardhendu Samanta
Pump sizing basicsPump sizing basics
Pump sizing basics
Ardhendu Samanta131 visualizações

Mais de Keith Vaugh

T3c - MASTER - Pump test flow system and data shown Problem 2023.pptx por
T3c - MASTER - Pump test flow system and data shown Problem  2023.pptxT3c - MASTER - Pump test flow system and data shown Problem  2023.pptx
T3c - MASTER - Pump test flow system and data shown Problem 2023.pptxKeith Vaugh
1.5K visualizações15 slides
T2b - Momentum of Fluids 2023.pptx por
T2b - Momentum of Fluids 2023.pptxT2b - Momentum of Fluids 2023.pptx
T2b - Momentum of Fluids 2023.pptxKeith Vaugh
1.5K visualizações18 slides
T2a - Fluid Discharge 2023.pptx por
T2a - Fluid Discharge 2023.pptxT2a - Fluid Discharge 2023.pptx
T2a - Fluid Discharge 2023.pptxKeith Vaugh
1.5K visualizações27 slides
T1 - Essential Fluids - 2023.pptx por
T1 - Essential Fluids - 2023.pptxT1 - Essential Fluids - 2023.pptx
T1 - Essential Fluids - 2023.pptxKeith Vaugh
1.5K visualizações44 slides
L7 - SecondLawThermo 2023.pptx por
L7 - SecondLawThermo 2023.pptxL7 - SecondLawThermo 2023.pptx
L7 - SecondLawThermo 2023.pptxKeith Vaugh
1.5K visualizações44 slides
L6 - Mass&EnergyClosedVol 2023.pptx por
L6 - Mass&EnergyClosedVol 2023.pptxL6 - Mass&EnergyClosedVol 2023.pptx
L6 - Mass&EnergyClosedVol 2023.pptxKeith Vaugh
1.5K visualizações35 slides

Mais de Keith Vaugh(20)

T3c - MASTER - Pump test flow system and data shown Problem 2023.pptx por Keith Vaugh
T3c - MASTER - Pump test flow system and data shown Problem  2023.pptxT3c - MASTER - Pump test flow system and data shown Problem  2023.pptx
T3c - MASTER - Pump test flow system and data shown Problem 2023.pptx
Keith Vaugh1.5K visualizações
T2b - Momentum of Fluids 2023.pptx por Keith Vaugh
T2b - Momentum of Fluids 2023.pptxT2b - Momentum of Fluids 2023.pptx
T2b - Momentum of Fluids 2023.pptx
Keith Vaugh1.5K visualizações
T2a - Fluid Discharge 2023.pptx por Keith Vaugh
T2a - Fluid Discharge 2023.pptxT2a - Fluid Discharge 2023.pptx
T2a - Fluid Discharge 2023.pptx
Keith Vaugh1.5K visualizações
T1 - Essential Fluids - 2023.pptx por Keith Vaugh
T1 - Essential Fluids - 2023.pptxT1 - Essential Fluids - 2023.pptx
T1 - Essential Fluids - 2023.pptx
Keith Vaugh1.5K visualizações
L7 - SecondLawThermo 2023.pptx por Keith Vaugh
L7 - SecondLawThermo 2023.pptxL7 - SecondLawThermo 2023.pptx
L7 - SecondLawThermo 2023.pptx
Keith Vaugh1.5K visualizações
L6 - Mass&EnergyClosedVol 2023.pptx por Keith Vaugh
L6 - Mass&EnergyClosedVol 2023.pptxL6 - Mass&EnergyClosedVol 2023.pptx
L6 - Mass&EnergyClosedVol 2023.pptx
Keith Vaugh1.5K visualizações
L5 - EnergyAnalysisClosedSys 2023.pptx por Keith Vaugh
L5 - EnergyAnalysisClosedSys 2023.pptxL5 - EnergyAnalysisClosedSys 2023.pptx
L5 - EnergyAnalysisClosedSys 2023.pptx
Keith Vaugh1.5K visualizações
L4 - PropertiesPureSubstances 2023.pptx por Keith Vaugh
L4 - PropertiesPureSubstances 2023.pptxL4 - PropertiesPureSubstances 2023.pptx
L4 - PropertiesPureSubstances 2023.pptx
Keith Vaugh1.5K visualizações
L2 - Basic Concepts 2023 UD.pptx por Keith Vaugh
L2 - Basic Concepts 2023 UD.pptxL2 - Basic Concepts 2023 UD.pptx
L2 - Basic Concepts 2023 UD.pptx
Keith Vaugh1.5K visualizações
L1 - ES & Thermofluids 2023 Master SS.pptx por Keith Vaugh
L1 - ES & Thermofluids 2023 Master SS.pptxL1 - ES & Thermofluids 2023 Master SS.pptx
L1 - ES & Thermofluids 2023 Master SS.pptx
Keith Vaugh1.5K visualizações
L1 - Energy Systems and Thermofluids 2021-22 por Keith Vaugh
L1 - Energy Systems and Thermofluids 2021-22L1 - Energy Systems and Thermofluids 2021-22
L1 - Energy Systems and Thermofluids 2021-22
Keith Vaugh3.1K visualizações
CAD & Analysis Introduction por Keith Vaugh
CAD & Analysis IntroductionCAD & Analysis Introduction
CAD & Analysis Introduction
Keith Vaugh1.7K visualizações
Wind Energy Lecture slides por Keith Vaugh
Wind Energy Lecture slidesWind Energy Lecture slides
Wind Energy Lecture slides
Keith Vaugh19.3K visualizações
Hydropower por Keith Vaugh
HydropowerHydropower
Hydropower
Keith Vaugh26.3K visualizações
Fluid discharge por Keith Vaugh
Fluid dischargeFluid discharge
Fluid discharge
Keith Vaugh49.7K visualizações
Essential fluids por Keith Vaugh
Essential fluids Essential fluids
Essential fluids
Keith Vaugh29.6K visualizações
Essential fluid mechanics por Keith Vaugh
Essential fluid mechanicsEssential fluid mechanics
Essential fluid mechanics
Keith Vaugh3K visualizações
L6 Wind Energy por Keith Vaugh
L6  Wind EnergyL6  Wind Energy
L6 Wind Energy
Keith Vaugh5.5K visualizações
L4 Bio mass por Keith Vaugh
L4 Bio massL4 Bio mass
L4 Bio mass
Keith Vaugh5.4K visualizações
L3 Solar por Keith Vaugh
L3   SolarL3   Solar
L3 Solar
Keith Vaugh5K visualizações

Último

JRN 362 - Lecture Twenty-Three (Epilogue) por
JRN 362 - Lecture Twenty-Three (Epilogue)JRN 362 - Lecture Twenty-Three (Epilogue)
JRN 362 - Lecture Twenty-Three (Epilogue)Rich Hanley
41 visualizações57 slides
MercerJesse3.0.pdf por
MercerJesse3.0.pdfMercerJesse3.0.pdf
MercerJesse3.0.pdfjessemercerail
152 visualizações6 slides
Education of marginalized and socially disadvantages segments.pptx por
Education of marginalized and socially disadvantages segments.pptxEducation of marginalized and socially disadvantages segments.pptx
Education of marginalized and socially disadvantages segments.pptxGarimaBhati5
43 visualizações36 slides
11.30.23A Poverty and Inequality in America.pptx por
11.30.23A Poverty and Inequality in America.pptx11.30.23A Poverty and Inequality in America.pptx
11.30.23A Poverty and Inequality in America.pptxmary850239
130 visualizações18 slides
JRN 362 - Lecture Twenty-Two por
JRN 362 - Lecture Twenty-TwoJRN 362 - Lecture Twenty-Two
JRN 362 - Lecture Twenty-TwoRich Hanley
39 visualizações157 slides
EILO EXCURSION PROGRAMME 2023 por
EILO EXCURSION PROGRAMME 2023EILO EXCURSION PROGRAMME 2023
EILO EXCURSION PROGRAMME 2023info33492
202 visualizações40 slides

Último(20)

JRN 362 - Lecture Twenty-Three (Epilogue) por Rich Hanley
JRN 362 - Lecture Twenty-Three (Epilogue)JRN 362 - Lecture Twenty-Three (Epilogue)
JRN 362 - Lecture Twenty-Three (Epilogue)
Rich Hanley41 visualizações
MercerJesse3.0.pdf por jessemercerail
MercerJesse3.0.pdfMercerJesse3.0.pdf
MercerJesse3.0.pdf
jessemercerail152 visualizações
Education of marginalized and socially disadvantages segments.pptx por GarimaBhati5
Education of marginalized and socially disadvantages segments.pptxEducation of marginalized and socially disadvantages segments.pptx
Education of marginalized and socially disadvantages segments.pptx
GarimaBhati543 visualizações
11.30.23A Poverty and Inequality in America.pptx por mary850239
11.30.23A Poverty and Inequality in America.pptx11.30.23A Poverty and Inequality in America.pptx
11.30.23A Poverty and Inequality in America.pptx
mary850239130 visualizações
JRN 362 - Lecture Twenty-Two por Rich Hanley
JRN 362 - Lecture Twenty-TwoJRN 362 - Lecture Twenty-Two
JRN 362 - Lecture Twenty-Two
Rich Hanley39 visualizações
EILO EXCURSION PROGRAMME 2023 por info33492
EILO EXCURSION PROGRAMME 2023EILO EXCURSION PROGRAMME 2023
EILO EXCURSION PROGRAMME 2023
info33492202 visualizações
DISTILLATION.pptx por Anupkumar Sharma
DISTILLATION.pptxDISTILLATION.pptx
DISTILLATION.pptx
Anupkumar Sharma65 visualizações
Guess Papers ADC 1, Karachi University por Khalid Aziz
Guess Papers ADC 1, Karachi UniversityGuess Papers ADC 1, Karachi University
Guess Papers ADC 1, Karachi University
Khalid Aziz99 visualizações
Volf work.pdf por MariaKenney3
Volf work.pdfVolf work.pdf
Volf work.pdf
MariaKenney389 visualizações
Six Sigma Concept by Sahil Srivastava.pptx por Sahil Srivastava
Six Sigma Concept by Sahil Srivastava.pptxSix Sigma Concept by Sahil Srivastava.pptx
Six Sigma Concept by Sahil Srivastava.pptx
Sahil Srivastava44 visualizações
BÀI TẬP BỔ TRỢ TIẾNG ANH 11 THEO ĐƠN VỊ BÀI HỌC - CẢ NĂM - CÓ FILE NGHE (FRIE... por Nguyen Thanh Tu Collection
BÀI TẬP BỔ TRỢ TIẾNG ANH 11 THEO ĐƠN VỊ BÀI HỌC - CẢ NĂM - CÓ FILE NGHE (FRIE...BÀI TẬP BỔ TRỢ TIẾNG ANH 11 THEO ĐƠN VỊ BÀI HỌC - CẢ NĂM - CÓ FILE NGHE (FRIE...
BÀI TẬP BỔ TRỢ TIẾNG ANH 11 THEO ĐƠN VỊ BÀI HỌC - CẢ NĂM - CÓ FILE NGHE (FRIE...
Nguyen Thanh Tu Collection89 visualizações
STRATEGIC MANAGEMENT MODULE 1_UNIT1 _UNIT2.pdf por Dr Vijay Vishwakarma
STRATEGIC MANAGEMENT MODULE 1_UNIT1 _UNIT2.pdfSTRATEGIC MANAGEMENT MODULE 1_UNIT1 _UNIT2.pdf
STRATEGIC MANAGEMENT MODULE 1_UNIT1 _UNIT2.pdf
Dr Vijay Vishwakarma130 visualizações
MIXING OF PHARMACEUTICALS.pptx por Anupkumar Sharma
MIXING OF PHARMACEUTICALS.pptxMIXING OF PHARMACEUTICALS.pptx
MIXING OF PHARMACEUTICALS.pptx
Anupkumar Sharma121 visualizações
Creative Restart 2023: Leonard Savage - The Permanent Brief: Unearthing unobv... por Taste
Creative Restart 2023: Leonard Savage - The Permanent Brief: Unearthing unobv...Creative Restart 2023: Leonard Savage - The Permanent Brief: Unearthing unobv...
Creative Restart 2023: Leonard Savage - The Permanent Brief: Unearthing unobv...
Taste55 visualizações
Meet the Bible por Steve Thomason
Meet the BibleMeet the Bible
Meet the Bible
Steve Thomason78 visualizações
Berry country.pdf por MariaKenney3
Berry country.pdfBerry country.pdf
Berry country.pdf
MariaKenney375 visualizações
Interaction of microorganisms with vascular plants.pptx por MicrobiologyMicro
Interaction of microorganisms with vascular plants.pptxInteraction of microorganisms with vascular plants.pptx
Interaction of microorganisms with vascular plants.pptx
MicrobiologyMicro47 visualizações

T3b - MASTER - Pump flow system - operating point 2023.pptx

  • 1. KV WORKED EXAMPLES {for energy conversion} Keith Vaugh BEng (AERO) MEng
  • 2. The flow system used to test a centrifugal pump at a nominal speed of 1750 rpm is shown in the figure. The liquid water enters the pump through a 90° bend at 20 °C after being drawn from the sump through a hinged disk foot valve along 7 m long pipe. This fluid is then transferred along a 250 m long pipe and passes through a second standard 90° elbows as shown. The suction and discharge pipes diameters are 120 mm. Develop an expression to represent the Pressure at the Pump and an expression to represent the required Head at the Pump PUMP SYSTEM EXAMPLE 2 Pd Ps Zd Zs Elev. Surface of Water in Sump 6 m Elev. Eye of Impeller 8.5 m Height Foot Valve with Hinge Disk Sudden Enlargeme nt Standard 90° Elbows Elev. Surface of Water in Tank 60 m
  • 3. GIVEN: Pump and piping system FIND Conduct an engineering assessment must develop expressions for the Pressure at the Pump and an expression to represent the Head at the Pump, calculate pressure at Pump (eye of the impeller) the required head at the pump for the system, the NPSHA, select pumps, examine the impact ageing of pipe have on the system flow and plot the System Curves vs. Pump Curve ASSUMPTIONS • Steady and incompressible flow •Uniform flow at each section • U1 = U2 = 0, Upipe found from Volumetric flow • P1 = P2 = Patm Pd Ps Zd Zs Elev. Surface of Water in Tank Elev. Surface of Water in Sump Elev. Eye of Impeller Height Foot Valve with Hinge Disk Sudden Enlargement Standard 90° Elbows
  • 4. GOVERNING EQUATIONS The energy equation for steady incompressible pipe flow can be written as; The governing equations given that in represents the inlet and out the outlet of the system 𝑃 𝜌𝑔 + 𝑈2 2𝑔 + 𝑧 𝑠𝑢𝑐𝑡𝑖𝑜𝑛 = 𝑃 𝜌𝑔 + 𝑈2 2𝑔 + 𝑧 𝑑𝑖𝑠𝑐ℎ𝑎𝑟𝑔𝑒 + ℎ𝐿 − 𝐻 Total head loss is the summation of the major and minor losses in the system ℎ𝐿 = 𝑓 𝐿 𝐷 𝑈𝑝𝑖𝑝𝑒 2 2𝑔 + ∑𝑓 𝐿𝑒 𝐷 𝑈𝑝𝑖𝑝𝑒 2 2𝑔 + ∑𝐾 𝑈𝑝𝑖𝑝𝑒 2 2𝑔 𝐻 = ℎ𝑝 𝑔 and 𝑃 𝜌𝑔 + 𝑈2 2𝑔 + 𝑧 𝑠𝑢𝑐𝑡𝑖𝑜𝑛 = 𝑃 𝜌𝑔 + 𝑈2 2𝑔 + 𝑧 𝑑𝑖𝑠𝑐ℎ𝑎𝑟𝑔𝑒 + 𝑓 𝐿 𝐷 𝑈𝑝𝑖𝑝𝑒 2 2𝑔 + ∑𝑓 𝐿𝑒 𝐷 𝑈𝑝𝑖𝑝𝑒 2 2𝑔 + ∑𝐾 𝑈𝑝𝑖𝑝𝑒 2 2𝑔 − 𝐻 𝑓 = −1.8𝑙𝑜𝑔10 𝜖 𝐷 3.7 1.11 + 6.9 𝑅𝑒 −2 Friction factor
  • 5. Develop an expression to represented the total Pressure at the Pump 𝑃𝑖𝑛 𝜌𝑔 + 𝑈𝑖𝑛 2 2𝑔 + 𝑧𝑖𝑛 = 𝑃𝑝𝑢𝑚𝑝 𝜌𝑔 + 𝑈𝑝𝑢𝑚𝑝 2 2𝑔 + 𝑧𝑝𝑢𝑚𝑝 + 𝑓 𝐿 𝐷 + 𝐿𝑒 𝐷 𝑈𝑝𝑖𝑝𝑒 2 2𝑔 + 𝐾 𝑈𝑝𝑖𝑝𝑒 2 2𝑔 Pin = Patm, Uin = 0, Upump = 0 i.e. the fluid is entering the eye of the impeller 𝑧𝑖𝑛 − 𝑃𝑝𝑢𝑚𝑝 𝜌𝑔 + 𝑧𝑝𝑢𝑚𝑝 = 𝑓 𝐿 𝐷 + 𝐿𝑒 𝐷 𝑈𝑝𝑖𝑝𝑒 2 2𝑔 + 𝐾 𝑈𝑝𝑖𝑝𝑒 2 2𝑔 𝑧𝑖𝑛 − 𝑃𝑝𝑢𝑚𝑝 𝜌𝑔 − 𝑧𝑝𝑢𝑚𝑝 = 𝑓 𝐿 𝐷 + 𝐿𝑒 𝐷 𝑈𝑝𝑖𝑝𝑒 2 2𝑔 + 𝐾 𝑈𝑝𝑖𝑝𝑒 2 2𝑔 − 𝑃𝑝𝑢𝑚𝑝 𝜌𝑔 = 𝑧𝑝𝑢𝑚𝑝 − 𝑧𝑖𝑛 + 𝑓 𝐿 𝐷 + 𝐿𝑒 𝐷 𝑈𝑝𝑖𝑝𝑒 2 2𝑔 + 𝐾 𝑈𝑝𝑖𝑝𝑒 2 2𝑔 𝑃𝑝𝑢𝑚𝑝 = −𝜌𝑔 𝑧𝑝𝑢𝑚𝑝 − 𝑧𝑖𝑛 + 𝑓 𝐿 𝐷 + 𝐿𝑒 𝐷 𝑈𝑝𝑖𝑝𝑒 2 2𝑔 + 𝐾 𝑈𝑝𝑖𝑝𝑒 2 2𝑔 . . . . . . . steps omitted . . steps omitted
  • 6. Develop an expression to represented the required head at the pump 𝑃 𝜌𝑔 + 𝑈2 2𝑔 + 𝑧 𝑠𝑢𝑐𝑡𝑖𝑜𝑛 = 𝑃 𝜌𝑔 + 𝑈2 2𝑔 + 𝑧 𝑑𝑖𝑠𝑐ℎ𝑎𝑟𝑔𝑒 + 𝑓 𝐿 𝐷 𝑈𝑝𝑖𝑝𝑒 2 2𝑔 + ∑𝑓 𝐿𝑒 𝐷 𝑈𝑝𝑖𝑝𝑒 2 2𝑔 + ∑𝐾 𝑈𝑝𝑖𝑝𝑒 2 2𝑔 − 𝐻 Pin = Pout = Patm, Uin = Uout = 0 𝑧𝑖𝑛 − 𝑧𝑜𝑢𝑡 = 𝑓 𝐿 𝐷 𝑈𝑝𝑖𝑝𝑒 2 2𝑔 + ∑𝑓 𝐿𝑒 𝐷 𝑈𝑝𝑖𝑝𝑒 2 2𝑔 + ∑𝐾 𝑈𝑝𝑖𝑝𝑒 2 2𝑔 − 𝐻 𝑧𝑖𝑛 − 𝑧𝑜𝑢𝑡 = 𝑓 𝐿 𝐷 𝑈𝑝𝑖𝑝𝑒 2 2𝑔 + 𝑓 𝐿𝑒 𝐷 𝑈𝑝𝑖𝑝𝑒 2 2𝑔 + 𝐾 𝑈𝑝𝑖𝑝𝑒 2 2𝑔 − 𝐻 𝐻 = 𝑧𝑜𝑢𝑡 − 𝑧𝑖𝑛 + 𝑓 𝐿 𝐷 𝑈𝑝𝑖𝑝𝑒 2 2𝑔 + 𝑓 𝐿𝑒 𝐷 𝑈𝑝𝑖𝑝𝑒 2 2𝑔 + 𝐾 𝑈𝑝𝑖𝑝𝑒 2 2𝑔 𝐻 = 𝑧𝑜𝑢𝑡 − 𝑧𝑖𝑛 + 𝑓 𝐿 𝐷 + 𝐿𝑒 𝐷 + 𝐾 𝑈𝑝𝑖𝑝𝑒 2 2𝑔 . . . . . . . steps omitted . . steps omitted
  • 7. Determine the total pressure at the eye of the impeller and the required head at the pump Given Data: 𝐷 = 12𝑐𝑚 𝑃𝑎𝑡𝑚 = 101.3𝑘𝑃𝑎 𝑉 · = 600𝐿/𝑚𝑖𝑛 and 𝜖 = 0.046𝑚𝑚 taken from table From relevant tables water at 20 °C 𝜌 = 998𝑘𝑔/𝑚3 𝑃𝑣𝑎𝑝𝑜𝑢𝑟 = 2.34𝑘𝑃𝑎 𝜈 = 1.01 × 10−6 𝑚2 /𝑠 At the specified flow rate, the speed of the fluid is: 𝑉 · = 𝐴𝑈𝑝𝑖𝑝𝑒 ⟶ 𝑈𝑝𝑖𝑝𝑒 = 𝑉 · 𝐴 = 4𝑉 · 𝜋𝐷2 = 0.884𝑚/𝑠 𝑅𝑒 = 𝑈𝑝𝑖𝑝𝑒𝐷 𝜈 = 0.844𝑚/𝑠 × 0.12𝑚 1.01 × 10−6𝑚2/𝑠 = 1.05 × 105 𝜖 𝐷 = 0.046𝑚𝑚 0.12𝑚 = 3.8 × 10−4 𝑓 = −1.8𝑙𝑜𝑔10 3.8 × 10−4 3.7 1.11 + 6.9 1.05 × 105 −2 = 0.0194 1 𝑓 = −1.8𝑙𝑜𝑔10 𝜖 𝐷 3.7 1.11 + 6.9 𝑅𝑒 Therefore using Note for Clarification - kinematic Viscosity, 𝜈 = 𝜇 𝜌
  • 8. KV • Saturation temperature Tsat: The temperature at which a pure substance changes phase at a given pressure. • Saturation pressure Psat: The pressure at which a pure substance changes phase at a given temperature. • Vapor pressure (Pv): The pressure exerted by its vapour in phase equilibrium with its liquid at a given temperature. It is identical to the saturation pressure Psat of the liquid (Pv = Psat). • Partial pressure: The pressure of a gas or vapor in a mixture with other gases. For example, atmospheric air is a mixture of dry air and water vapour, and atmospheric pressure is the sum of the partial pressure of dry air and the partial pressure of water vapour. VAPOUR PRESSURE AND CAVITATION
  • 9. KV • There is a possibility of the liquid pressure in liquid-flow systems dropping below the vapour pressure at some locations, and the resulting unplanned vaporisation. • The vapour bubbles (called cavitation bubbles since they form “cavities” in the liquid) collapse as they are swept away from the low-pressure regions, generating highly destructive, extremely high-pressure waves. • This phenomenon, which is a common cause for drop in performance and even the erosion of impeller blades, is called cavitation, and it is an important consideration in the design of hydraulic turbines and pumps. Cavitation damage on a 16-mm by 23-mm aluminium sample tested at 60 m/s for 2.5 h. The sample was located at the cavity collapse region downstream of a cavity generator specifically designed to produce high damage potential.
  • 10. CONSIDER THE LOSSES (Major & Minor) Pd Ps Zd Zs Elev. Surface of Water in Tank Elev. Surface of Water in Sump Elev. Eye of Impeller Height Foot Valve with Hinge Disk Sudden Enlargement Standard 90° Elbows Table 1: Representative Dimensionless Equivalent Lengths for Values and Fittings Fitting Type Equivalent Length, Valves (Fully Open) - Gate Valve 8 - Globe Valve 340 - Angle Valve 150 - Ball Valve 3 - Lift Check Valve: Globe Lift 600 - Lift Check Valve: Angle Lift 55 - Foot Valve with Strainer: Poppet Disk 420 - Foot Valve with Strainer: Hinged Disk 75 Standard Elbow: 90º 30 Standard Elbow: 45º 16 Return bend, close pattern 50 Standard Tee: Flow Through Run 20 Standard Tee: Flow Through Branch 60
  • 11. CONSIDER THE LOSSES (Major & Minor) Pd Ps Zd Zs Elev. Surface of Water in Tank Elev. Surface of Water in Sump Elev. Eye of Impeller Height Foot Valve with Hinge Disk Sudden Enlargement Standard 90° Elbows
  • 12. The total pressure at the eye of the impeller 𝑃𝑝𝑢𝑚𝑝 = −𝜌𝑔 𝑧𝑝𝑢𝑚𝑝 − 𝑧𝑖𝑛 + 𝑓 𝐿 𝐷 + 𝐿𝑒 𝐷 𝑈𝑝𝑖𝑝𝑒 2 2𝑔 + 𝐾 𝑈𝑝𝑖𝑝𝑒 2 2𝑔 From part (c) above 𝑃𝑝𝑢𝑚𝑝 = −𝜌𝑔 8.5𝑚 − 6𝑚 + 0.0194 7𝑚 0.12𝑚 + 105 × 0.12𝑚 0.12𝑚 0.884 2 𝑚/𝑠 2 × 9.81𝑚/𝑠2 + 0.78 × 0.884 2 𝑚/𝑠 2 × 9.81𝑚/𝑠2 𝑃𝑝𝑢𝑚𝑝 = −26015𝑃𝑎(𝑔𝑎𝑢𝑔𝑒) = −26𝑘𝑃𝑎(𝑔𝑎𝑢𝑔𝑒) The Required head at the Pump from equation developed in (d) 𝐻 = 𝑧𝑜𝑢𝑡 − 𝑧𝑖𝑛 + 𝑓 𝐿 𝐷 + 𝐿𝑒 𝐷 + 𝐾 𝑈𝑝𝑖𝑝𝑒 2 2𝑔 𝐻 = 60𝑚 − 6𝑚 + 0.0194 257𝑚 0.12𝑚 + 135𝑚 × 0.12𝑚 0.12𝑚 + 1.78 0.884𝑚 2 2 × 9.81𝑚/𝑠2 𝐻 = 55.83𝑚 Hinged Foot Valve plus One 90º Elbow Just Re-entrant Re-entrant plus Sudden Enlargement
  • 13. The Net Positive Suction Head Available (NPSHA) 𝑁𝑃𝑆𝐻𝐴 = 𝑃𝑝𝑢𝑚𝑝 + 𝑃𝑎𝑡𝑚 − 𝑃𝑣𝑎𝑝𝑜𝑢𝑟 𝜌𝑔 = −26𝑘𝑃𝑎 + 101.3𝑘𝑃𝑎 − 2.34𝑘𝑃𝑎 998𝑘𝑔/𝑚3 × 9.81𝑚/𝑠2 A pump would be selected by finding one for which the NPSHR is less than the NPSHA. Based on the data and the information in the pump selection chart, a 5AE8N or a 3AE14 pump would be capable of supplying the required head at the given flow rate. The pump should be operated at a speed of between 1750 and 3500 rpm, but the efficiency may not be acceptable. One should consult a complete catalog to make an informed decision. 𝑁𝑃𝑆𝐻𝐴 = 7.4𝑚 Select a pump suitable for this application and provide a justification
  • 14. 1 foot - 0.3048 meters 1 gpm - 0.0038 m3/min 1 gpm - 3.785 l/min Select these pumps for this case
  • 15. Develop and format appropriately an excel worksheet which calculates the; •Pump head for a range of volumetric flow rates •calculates the impact that the ageing of the pipes have on the Pump Head at twenty years and forty years of service Assume a head at 600 L/min for 40 year old pipes is 80% of the maximum head of the pump, and that the pump curve has the form 𝐻 = 𝐻𝑜 − 𝐴𝑉 · 2 . Using the calculations from the Excel worksheet, plot the Pump Curve and the system curves for new pipes, pipes at 20 years service and pipes at 40 years service. PUMP SYSTEM EXAMPLE Pt 2
  • 16. Table 2 - Data given in question or sourced from fluids tables Given Data Value Units Source Water at 20 Degrees Pipe Diameter 12 cm ε 4.6E-05 mm Patm 101.3 kPa Kinematic Viscosity 1.01E-06 m2/s Tables Pvapour 2.34 kPa Tables Density 998 kg/m3 z1 6 m z2 60 m Lsuction 7 m Side of pump Ldelivery 250 m Side of pump LT 257 m Equivalent Lengths Hinged Disk Foot Valve 75 Tables Angle Lift Valve 0 Tables Gate Valve 0 Tables Standard 90 deg Elbow 30 2 of these Tables Le 135 Note 2 Elbows K Reentrant 0.78 Tables Sudden Expansion 1 Tables KT 1.78 20 Years 5 Tables 40 Years 8.75 Tables Summarise the Data provide in a table. Begin by summarising all the relevant data from the question into a table. Data that is not provided in the question should be sourced from the relevant tables and resources available in the essential reading text book (Fundamentals of Thermal Fluid Sciences from semester I) or from online sources. Pay particular caution to units and ensure these are corrected to the SI unit system. The data in the summary table should be linked to the calculations in the data sheets developed from the governing equations created previously in the question
  • 17. Table 3: Calculate results Volumetric Flow Rate (L/Min) Vel (m/s) Reynolds Number, Re Friction Factor, f New Pipes (m) 20 Year Pipe (m) 40 Year Pipe (m) Pump Curve (m) 0 0.000 0.000 0.0000 54.00 54.00 54.00 86.88 200 0.295 35017.589 0.0234 54.24 55.19 56.07 84.95 400 0.589 70035.178 0.0207 54.86 58.20 61.32 79.16 600 0.884 105052.768 0.0194 55.83 62.89 69.50 69.52 800 1.179 140070.357 0.0187 57.15 69.22 80.54 56.03 1000 1.474 175087.946 0.0182 58.80 77.19 94.43 38.68 1200 1.768 210105.535 0.0179 60.78 86.78 111.15 17.47 1400 2.063 245123.125 0.0177 63.11 97.99 130.69 -7.60 1600 2.358 280140.714 0.0175 65.77 110.81 153.04 -36.52 1800 2.653 315158.303 0.0173 68.76 125.24 178.20 -69.29 2000 2.947 350175.892 0.0172 72.09 141.29 206.17 -105.93 𝐻600 = 69.5𝑚 𝐻𝑜 = 69.5𝑚 0.8 = 86.875𝑚 𝐻 = 𝐻𝑜 − 𝐴𝑉2 · ⟶ 69.5𝑚 = 86.875𝑚 − 𝐴 6002 𝐴 = 86.875𝑚 − 69.5𝑚 6002 = 4.82 × 10−5 𝑚/(𝐿/𝑚𝑖𝑛) Assume that the heat at 600 L/min for 40 year old pipe is 80% of the maximum head for the pump, and that the pump curve has the form 𝐻 = 𝐻𝑜 − 𝐴𝑉2 · 𝐻 = 𝐻𝑜 − 𝐴𝑉2 ·
  • 18. 50.00 54.00 58.00 62.00 66.00 70.00 74.00 78.00 82.00 86.00 90.00 200 300 400 500 600 700 800 900 1000 Pump Head (m) Volumetric Flow Rate in L/min New Pipes (m) 20 Year Pipe (m) 40 Year Pipe (m)

Notas do Editor

  1. Let us consider a simple case of laminar flow between two parallel plates separated by a small distance d. The upper plate moves at a constant velocity U while the lower plate remains at rest. At the plate fluid interface in both cases there is no velocity due to the strong forces of attraction. Therefore the velocity profile in the fluid is given by
  2. Let us consider a simple case of laminar flow between two parallel plates separated by a small distance d. The upper plate moves at a constant velocity U while the lower plate remains at rest. At the plate fluid interface in both cases there is no velocity due to the strong forces of attraction. Therefore the velocity profile in the fluid is given by