T3a - Finding the operating point of a pumping system 2023.pptx

Keith Vaugh
Keith VaughSTEM Education & Design em MAGVA Design + Letterpress
KV
WORKED EXAMPLES
{Pumping Systems Example 2}
Keith Vaugh BEng (AERO) MEng
PUMPING SYSTEM OPERATING POINT
A centrifugal pump pumps water at 25 °C through a cast iron pipes in the system as illustrated. The pump
has an impeller of 200 mm diameter and a shutoff head H0 = 7.6 m off water when operated at 1170 rpm.
The best efficiency occurs at a volumetric flow rate of 68m3/h where the head H is 6.7m for this speed.
Given these conditions it can be shown that the parabolic equation representing this pump system is given
by; 𝐻 = 7.6 − 1.95 × 10−4
𝑉
·
2
If the pump is scaled to 1750 rpm, the parabolic equation can be shown to be 𝐻 = 17 − 1.95 ×
10−4 𝑉
·
2
For this case;
• Develop an algebraic expression for the general shape of the system resistance curve.
• Calculate and plot the system resistance curve.
• Solve graphically for the system operating point.
PUMPING SYSTEM OPERATING POINT
0.6 m 900 m
250 mm diameter 200 mm diameter
Given
Pump operating at 1750 rpm with a 𝐻 = 𝐻0 − 𝐴𝑉
·
2
where H0 = 17 m and 𝐴 =
1.95 × 10−4
𝑚/ (𝑚3
/ℎ)2
. The pipe from the first reservoir to the pump has a
length of 0.6 m and a diameter of 250 mm, and the pipe from the pump to the
second reservoir has a length of 900 m and a diameter of 200 mm. Water at 25
degrees celsius is transferred horizontally between the reservoirs and the level of
water in each is at the same height.
Find:
(a) A general algebraic expression for the system head curve
(b) The system head curve by direct calculation
(c) The system operating point using a graphical solution
Solution
Apply the energy equation to the flow system
Total head loss is the summation of the major and minor losses in the system
𝑓 = −1.8𝑙𝑜𝑔10
𝜖
𝐷
3.7
1.11
−
6.9
𝑅𝑒
−2
𝑃𝑖𝑛
𝜌𝑔
+
𝑈𝑖𝑛
2
2𝑔
+ 𝑧𝑖𝑛 =
𝑃𝑜𝑢𝑡
𝜌𝑔
+
𝑈𝑜𝑢𝑡
2
2𝑔
+ 𝑧𝑜𝑢𝑡 + 𝑓
𝐿
𝐷
𝑈𝑝𝑖𝑝𝑒
2
2𝑔
+ ∑𝑓
𝐿𝑒
𝐷
𝑈𝑝𝑖𝑝𝑒
2
2𝑔
+ ∑𝐾
𝑈𝑝𝑖𝑝𝑒
2
2𝑔
− 𝐻
𝐻 =
ℎ𝑝
𝑔
ℎ𝐿 = 𝑓
𝐿
𝐷
𝑈𝑝𝑖𝑝𝑒
2
2𝑔
+ ∑𝑓
𝐿𝑒
𝐷
𝑈𝑝𝑖𝑝𝑒
2
2𝑔
+ ∑𝐾
𝑈𝑝𝑖𝑝𝑒
2
2𝑔
𝑃𝑖𝑛
𝜌𝑔
+
𝑈𝑖𝑛
2
2𝑔
+ 𝑧𝑖𝑛 =
𝑃𝑜𝑢𝑡
𝜌𝑔
+
𝑈𝑜𝑢𝑡
2
2𝑔
+ 𝑧𝑜𝑢𝑡 + ℎ𝐿 − 𝐻
Friction factor
Total head loss is the summation of the major and minor losses in the system
The energy equation for steady incompressible pipe flow can be written as;
𝑁𝑃𝑆𝐻𝐴 =
𝑃𝑝𝑢𝑚𝑝 + 𝑃𝑎𝑡𝑚 − 𝑃𝑣𝑎𝑝𝑜𝑢𝑟
𝜌𝑔
Net Positive Suction Head Available
GOVERNING EQUATIONS
GOVERNING EQUATIONS
Piping system -
𝑃0
𝜌𝑔
+
𝑈0
2
2𝑔
+ 𝑧0 + 𝐻𝑎 =
𝑃3
𝜌𝑔
+
𝑈3
2
2𝑔
+ 𝑧3 +
ℎ𝑙𝑡
𝑔
Friction Factor - 𝑓 = −1.8𝑙𝑜𝑔10
𝜖
𝐷
3.7
1.11
+
6.9
𝑅𝑒
−2
where z0 and z3 are the surface levels for the supply and discharge reservoirs respectively
ASSUMPTIONS
P0 = P3 =Patm
U0 = U3 = 0
z0 =z3
𝐻𝑎 =
ℎ𝑙𝑡
𝑔
=
ℎ𝑙𝑇01
𝑔
+
ℎ𝑙𝑇23
𝑔
= 𝐻𝑙𝑇
Simplifying the Governing Equation
where section ① and ② are located just upstream and downstream from the pump, respectively.
ℎ𝑙𝑇23
= 𝑓2
𝐿2
𝐷2
𝑈2
2
2
+ 𝐾𝑒𝑥𝑖𝑡
𝑈2
2
2
= 𝑓2
𝐿2
𝐷2
+ 𝐾𝑒𝑥𝑖𝑡
𝑈2
2
2
ℎ𝑙𝑇01
= 𝐾𝑒𝑛𝑡
𝑈1
2
2
+ 𝑓1
𝐿1
𝐷1
𝑈1
2
2
= 𝐾𝑒𝑛𝑡 + 𝑓1
𝐿1
𝐷1
𝑈1
2
2
① ② ③
⓪
The total heads losses are the sum of the
major and minor losses, so
From continuity, 𝑈1𝐴1 = 𝑈2𝐴2 therefore 𝑈1 = 𝑈2
𝐴2
𝐴1
= 𝑈2
𝐷2
𝐷1
2
Hence
𝐻𝑙𝑇
= 𝐾𝑒𝑛𝑡 + 𝑓1
𝐿1
𝐷1
𝐷2
𝐷1
4
+ 𝑓2
𝐿2
𝐷2
+ 𝐾𝑒𝑥𝑖𝑡
𝑈2
2
2𝑔
𝐻𝑙𝑇
=
ℎ𝑙𝑡
𝑔
= 𝐾𝑒𝑛𝑡 + 𝑓1
𝐿1
𝐷1
𝑈2
2
2𝑔
𝐷2
𝐷1
4
+ 𝑓2
𝐿2
𝐷2
+ 𝐾𝑒𝑥𝑖𝑡
𝑈2
2
2𝑔
Simplifying this equation results in an equation representative of the Total Head Loss in the pipes as
consequence of the Major and Minor Head Losses
At the operating point as per the simplified governing equation 𝐻𝑎 =
ℎ𝑙𝑡
𝑔
=
ℎ𝑙𝑇01
𝑔
+
ℎ𝑙𝑇23
𝑔
= 𝐻𝑙𝑇
the head loss is equal to
the head produced nay the pump given by 𝐻 = 𝐻0 − 𝐴𝑉
·
2
where 𝐻0 = 17𝑚 and 𝐴 = 1.95 × 10−4
𝑚/ (𝑚3
/ℎ)2
𝐻𝑙𝑇
=
ℎ𝑙𝑡
𝑔
= 𝐾𝑒𝑛𝑡 + 𝑓1
𝐿1
𝐷1
𝑈1
2
2𝑔
+ 𝑓2
𝐿2
𝐷2
+ 𝐾𝑒𝑥𝑖𝑡
𝑈2
2
2𝑔
𝑈1 = 𝑈2
𝐴2
𝐴1
= 𝑈2
𝐷2
𝐷1
2
ℎ𝑙𝑇23
= 𝑓2
𝐿2
𝐷2
𝑈2
2
2
+ 𝐾𝑒𝑥𝑖𝑡
𝑈2
2
2
= 𝑓2
𝐿2
𝐷2
+ 𝐾𝑒𝑥𝑖𝑡
𝑈2
2
2
ℎ𝑙𝑇01
= 𝐾𝑒𝑛𝑡
𝑈1
2
2
+ 𝑓1
𝐿1
𝐷1
𝑈1
2
2
= 𝐾𝑒𝑛𝑡 + 𝑓1
𝐿1
𝐷1
𝑈1
2
2
Pipe on the Left side of the pump
Pipe on the Right side of the pump
𝐻𝑙𝑇
= ℎ𝑙𝑇01
+ ℎ𝑙𝑇23
Add these two equations to get the total head loss in the system
But from continuity
Gives
𝑈1
2
= 𝑈2
𝐷2
𝐷1
2 2
= 𝑈2
2
𝐷2
𝐷1
4
𝐻𝑙𝑇
=
ℎ𝑙𝑡
𝑔
= 𝐾𝑒𝑛𝑡 + 𝑓1
𝐿1
𝐷1
1
2𝑔
𝑈2
2
×
𝐷2
𝐷1
4
+ 𝑓2
𝐿2
𝐷2
+ 𝐾𝑒𝑥𝑖𝑡
𝑈2
2
2𝑔
Table 1 - Data given in question or sourced from fluids tables
Given Data Value Units Source
Water at 25 Degrees
Pipe Diameter D1 25 cm
Pipe Diameter D2 20 cm
ε 2.6E-04 m Tables
Patm 101.3 kPa
Kinematic Viscosity 8.96E-07 m2/s Tables
Density 997 kg/m3
z1 0 m
z2 0 m
Lsuction 0.6 m Side of pump
Ldelivery 900 m Side of pump
LT 900.6 m
For minor losses, K
Reentrant 0.5 Tables
Sudden Expansion 1 Tables
KT 1.5
Compile all available data into a table
Some data needs to be sourced from
reference tables, databases etc…
EXAMPLE Table: Roughness for pipes of common Engineering Materials
Pipe Roughness, ε (mm)
Riveted steel 0.9 - 9
Concrete 0.3 - 3
Wood Stave 0.2 - 0.9
Cast Iron 0.26
Glavanised Iron 0.15
Asphalted Cast Iron 0.12
Commercial Steel or Wrought
Iron
0.046
Dran Tubing 0.0015
Generate a data table populated with the calculations distilled from the formulas developed
Table 2 - Data Tabulation and Analysis to determine the operating point of the system
Volumetric
Flow Rate
(m3/hr)
U1 (m/s)
Reynolds
Number, Re
Friction
Factor, f1
U2 (m/s)
Reynolds
Number, Re
Friction
Factor, f2
New Pipes
(m)
Pump Curve
(m)
0 0.00 0.00 0.0000 0.00 0.00 0.00 0.00 17.00
25 0.14 39457.07 0.0246 0.22 49321.34 0.0246 0.28 16.88
50 0.28 78914.14 0.0226 0.44 98642.68 0.0230 1.04 16.51
75 0.42 118371.21 0.0218 0.66 147964.02 0.0224 2.28 15.90
100 0.57 157828.28 0.0214 0.88 197285.35 0.0221 4.00 15.05
125 0.71 197285.35 0.0211 1.10 246606.69 0.0219 6.19 13.95
150 0.85 236742.42 0.0209 1.33 295928.03 0.0217 8.86 12.61
175 0.99 276199.49 0.0208 1.55 345249.37 0.0216 12.01 11.03
200 1.13 315656.57 0.0207 1.77 394570.71 0.0215 15.63 9.20
225 1.27 355113.64 0.0206 1.99 443892.05 0.0215 19.73 7.13
250 1.41 394570.71 0.0205 2.21 493213.38 0.0214 24.31 4.81
Table 2 - Data Tabulation and Analysis to determine the operating point of the system
Volumetric
Flow Rate
(m3/hr)
U1 (m/s)
Reynolds
Number, Re
Friction
Factor, f1
U2 (m/s)
Reynolds
Number, Re
Friction
Factor, f2
New Pipes
(m)
Pump Curve
(m)
0 0.00 0.00 0.0000 0.00 0.00 0.00 0.00 17.00
25 0.14 39457.07 0.0246 0.22 49321.34 0.0246 0.28 16.88
50 0.28 78914.14 0.0226 0.44 98642.68 0.0230 1.04 16.51
75 0.42 118371.21 0.0218 0.66 147964.02 0.0224 2.28 15.90
100 0.57 157828.28 0.0214 0.88 197285.35 0.0221 4.00 15.05
125 0.71 197285.35 0.0211 1.10 246606.69 0.0219 6.19 13.95
150 0.85 236742.42 0.0209 1.33 295928.03 0.0217 8.86 12.61
175 0.99 276199.49 0.0208 1.55 345249.37 0.0216 12.01 11.03
200 1.13 315656.57 0.0207 1.77 394570.71 0.0215 15.63 9.20
225 1.27 355113.64 0.0206 1.99 443892.05 0.0215 19.73 7.13
250 1.41 394570.71 0.0205 2.21 493213.38 0.0214 24.31 4.81
𝐻𝑙𝑇
= 𝐾𝑒𝑛𝑡 + 𝑓1
𝐿1
𝐷1
𝐷2
𝐷1
4
+ 𝑓2
𝐿2
𝐷2
+ 𝐾𝑒𝑥𝑖𝑡
𝑈2
2
2𝑔
𝐻 = 17 − 1.95 × 10−4 𝑉
·
2
Plot the relevant curves and identify the operating point for the pumping system.
0.00
2.00
4.00
6.00
8.00
10.00
12.00
14.00
16.00
18.00
20.00
0 50 100 150 200 250
Pump
Head
(m)
Volumetric Flow Rate in m^3/hr
New Pipes (m)
Where curves cross is the
optimum operating point for
the system. The graphical solution is
shown on the plot. At the
operating point H ≈ 11.4 m
and the volumetric flow
rate, 170 m3/h.
As pipes age with time, build up forms on the inner walls. This must be taken into account when
designing the system. Typical multipliers are available that can be applied to the calculations
Table 2 - Data Tabulation and Analysis to determine the operating point of the system
Volumetric
Flow Rate
(m3/hr)
U1 (m/s)
Reynolds
Number,
Re
Friction
Factor, f1
U2 (m/s)
Reynolds
Number,
Re
Friction
Factor, f2
New Pipes
(m)
Age pipes
10 years
Age pipes
20 years
Pump Curve
(m)
0 0.00 0.00 0.0000 0.00 0.00 0.00 0.00 17.00
25 0.14 39457.07 0.0246 0.22 49321.34 0.0246 0.28 16.88
50 0.28 78914.14 0.0226 0.44 98642.68 0.0230 1.04 16.51
75 0.42 118371.21 0.0218 0.66 147964.02 0.0224 2.28 15.90
100 0.57 157828.28 0.0214 0.88 197285.35 0.0221 4.00 15.05
125 0.71 197285.35 0.0211 1.10 246606.69 0.0219 6.19 13.95
150 0.85 236742.42 0.0209 1.33 295928.03 0.0217 8.86 12.61
175 0.99 276199.49 0.0208 1.55 345249.37 0.0216 12.01 11.03
200 1.13 315656.57 0.0207 1.77 394570.71 0.0215 15.63 9.20
225 1.27 355113.64 0.0206 1.99 443892.05 0.0215 19.73 7.13
250 1.41 394570.71 0.0205 2.21 493213.38 0.0214 24.31 4.81
Add two new
columns to
the table
Table 2: Typical Multipliers applied to friction
factors, with ageing pipes
Pipe
Age (Years)
Small Pipes,
100 - 250
mm
Large Pipes,
300 - 1500
mm
New 1.00 1.00
10 2.2 1.60
20 5.00 2.00
30 7.25 2.20
40 8.75 2.40
50 9.6 2.86
60 10.0 3.70
70 10.1 4.70
From the table locate the multipliers
for the ageing pipe
Multiply these values by the fraction
factor for that condition
Given that each pipe is ≤ 250 mm diameter the multiplier for 10 years is 2.2 and for 20 years is 5
Table 3 - Data Tabulation and Analysis to determine the operating point of the system
Volumetric
Flow Rate
(m3/hr)
U1 (m/s) Reynolds
Number, Re
Friction
Factor, f1
U2 (m/s) Reynolds
Number,
Re
Friction
Factor, f2
New
Pipes (m)
Ageing
pipes 10
years
Ageing
pipes 20
years
0 0.00 0.00 0.0000 0.00 0.00 0.00 0.00 0.00 0.00 17.00
25 0.14 39457.07 0.0246 0.22 49321.34 0.0246 0.28 0.61 2.41 16.88
50 0.28 78914.14 0.0226 0.44 98642.68 0.0230 1.04 2.28 9.02 16.51
75 0.42 118371.21 0.0218 0.66 147964.0
2
0.0224 2.28 4.99 19.76 15.90
100 0.57 157828.28 0.0214 0.88 197285.3
5
0.0221 4.00 8.74 34.62 15.05
125 0.71 197285.35 0.0211 1.10 246606.6
9
0.0219 6.19 13.54 53.61 13.95
150 0.85 236742.42 0.0209 1.33 295928.0
3
0.0217 8.86 19.37 76.72 12.61
175 0.99 276199.49 0.0208 1.55 345249.3
7
0.0216 12.01 26.25 103.95 11.03
200 1.13 315656.57 0.0207 1.77 394570.7
1
0.0215 15.63 34.16 135.30 9.20
225 1.27 355113.64 0.0206 1.99 443892.0
5
0.0215 19.73 43.12 170.77 7.13
0.00
2.50
5.00
7.50
10.00
12.50
15.00
17.50
20.00
0 75 150 225 300
Pump
Head
(m)
Volumetric Flow Rate (m^3/hr)
New Pipes (m) Ageing pipes 10 years Ageing pipes 20 years
Plot the relevant curves and identify the operating point for the ageing pipes in the pumping system.
The graphical solution is
shown on the plot. At the
operating point for new
pipes H ≈ 11.4 m and the
volumetric flow rate, 170
m3/h, for 10 year old pipes
H ≈ 13.75 m and the
volumetric flow rate, 127
m3/h, and for 10 year old
pipes H ≈ 16 m and the
volumetric flow rate, 67
m3/h.
1 de 16

Recomendados

PROBLEMA 3 por
PROBLEMA 3 PROBLEMA 3
PROBLEMA 3 yeisyynojos
150 visualizações3 slides
T3b - MASTER - Pump flow system - operating point 2023.pptx por
T3b - MASTER - Pump flow system - operating point 2023.pptxT3b - MASTER - Pump flow system - operating point 2023.pptx
T3b - MASTER - Pump flow system - operating point 2023.pptxKeith Vaugh
1.5K visualizações18 slides
Sizing of water piping system por
Sizing of water piping systemSizing of water piping system
Sizing of water piping systemTajudeen Ibrahim
1.2K visualizações14 slides
MATHEMATICAL MODELLING FOR ANALYSIS OF CHANGE IN SHAPE OF SUCTION MANIFOLD TO... por
MATHEMATICAL MODELLING FOR ANALYSIS OF CHANGE IN SHAPE OF SUCTION MANIFOLD TO...MATHEMATICAL MODELLING FOR ANALYSIS OF CHANGE IN SHAPE OF SUCTION MANIFOLD TO...
MATHEMATICAL MODELLING FOR ANALYSIS OF CHANGE IN SHAPE OF SUCTION MANIFOLD TO...ijiert bestjournal
35 visualizações11 slides
Automatic Generation Control por
Automatic Generation ControlAutomatic Generation Control
Automatic Generation ControlMINAL RADE
1.1K visualizações44 slides
Pwm Control Strategy for Controlling Of Parallel Rectifiers In Single Phase T... por
Pwm Control Strategy for Controlling Of Parallel Rectifiers In Single Phase T...Pwm Control Strategy for Controlling Of Parallel Rectifiers In Single Phase T...
Pwm Control Strategy for Controlling Of Parallel Rectifiers In Single Phase T...IJERA Editor
391 visualizações8 slides

Mais conteúdo relacionado

Similar a T3a - Finding the operating point of a pumping system 2023.pptx

Episode 40 : DESIGN EXAMPLE – DILUTE PHASE PNEUMATIC CONVEYING (Part 2) por
Episode 40 : DESIGN EXAMPLE – DILUTE PHASE PNEUMATIC CONVEYING (Part 2)Episode 40 : DESIGN EXAMPLE – DILUTE PHASE PNEUMATIC CONVEYING (Part 2)
Episode 40 : DESIGN EXAMPLE – DILUTE PHASE PNEUMATIC CONVEYING (Part 2)SAJJAD KHUDHUR ABBAS
826 visualizações19 slides
Episode 40 : DESIGN EXAMPLE – DILUTE PHASE PNEUMATIC CONVEYING por
Episode 40 :  DESIGN EXAMPLE – DILUTE PHASE PNEUMATIC CONVEYINGEpisode 40 :  DESIGN EXAMPLE – DILUTE PHASE PNEUMATIC CONVEYING
Episode 40 : DESIGN EXAMPLE – DILUTE PHASE PNEUMATIC CONVEYINGSAJJAD KHUDHUR ABBAS
6.1K visualizações19 slides
Chapter_9_Instrument.pdf por
Chapter_9_Instrument.pdfChapter_9_Instrument.pdf
Chapter_9_Instrument.pdfAnshuChandola1
4 visualizações25 slides
Momentum equation.pdf por
 Momentum equation.pdf Momentum equation.pdf
Momentum equation.pdfDr. Ezzat Elsayed Gomaa
179 visualizações43 slides
LiquidHeatControl por
LiquidHeatControlLiquidHeatControl
LiquidHeatControlMohammad Abu Sayed
107 visualizações17 slides
Flash Steam and Steam Condensates in Return Lines por
Flash Steam and Steam Condensates in Return LinesFlash Steam and Steam Condensates in Return Lines
Flash Steam and Steam Condensates in Return LinesVijay Sarathy
756 visualizações5 slides

Similar a T3a - Finding the operating point of a pumping system 2023.pptx(20)

Episode 40 : DESIGN EXAMPLE – DILUTE PHASE PNEUMATIC CONVEYING (Part 2) por SAJJAD KHUDHUR ABBAS
Episode 40 : DESIGN EXAMPLE – DILUTE PHASE PNEUMATIC CONVEYING (Part 2)Episode 40 : DESIGN EXAMPLE – DILUTE PHASE PNEUMATIC CONVEYING (Part 2)
Episode 40 : DESIGN EXAMPLE – DILUTE PHASE PNEUMATIC CONVEYING (Part 2)
SAJJAD KHUDHUR ABBAS826 visualizações
Episode 40 : DESIGN EXAMPLE – DILUTE PHASE PNEUMATIC CONVEYING por SAJJAD KHUDHUR ABBAS
Episode 40 :  DESIGN EXAMPLE – DILUTE PHASE PNEUMATIC CONVEYINGEpisode 40 :  DESIGN EXAMPLE – DILUTE PHASE PNEUMATIC CONVEYING
Episode 40 : DESIGN EXAMPLE – DILUTE PHASE PNEUMATIC CONVEYING
SAJJAD KHUDHUR ABBAS6.1K visualizações
Chapter_9_Instrument.pdf por AnshuChandola1
Chapter_9_Instrument.pdfChapter_9_Instrument.pdf
Chapter_9_Instrument.pdf
AnshuChandola14 visualizações
LiquidHeatControl por Mohammad Abu Sayed
LiquidHeatControlLiquidHeatControl
LiquidHeatControl
Mohammad Abu Sayed107 visualizações
Flash Steam and Steam Condensates in Return Lines por Vijay Sarathy
Flash Steam and Steam Condensates in Return LinesFlash Steam and Steam Condensates in Return Lines
Flash Steam and Steam Condensates in Return Lines
Vijay Sarathy756 visualizações
Numerical Calculation of Solid-Liquid two-Phase Flow Inside a Small Sewage Pump por theijes
Numerical Calculation of Solid-Liquid two-Phase Flow Inside a Small Sewage PumpNumerical Calculation of Solid-Liquid two-Phase Flow Inside a Small Sewage Pump
Numerical Calculation of Solid-Liquid two-Phase Flow Inside a Small Sewage Pump
theijes32 visualizações
Flow measurement basics por Salman1011
Flow measurement basicsFlow measurement basics
Flow measurement basics
Salman10111.9K visualizações
Control system por abhishek ambhore
Control systemControl system
Control system
abhishek ambhore412 visualizações
Metal cutting tool position control using static output feedback and full sta... por Mustefa Jibril
Metal cutting tool position control using static output feedback and full sta...Metal cutting tool position control using static output feedback and full sta...
Metal cutting tool position control using static output feedback and full sta...
Mustefa Jibril66 visualizações
Performance of a_centrifugal_pump_autosaved por Dickens Mimisa
Performance of a_centrifugal_pump_autosavedPerformance of a_centrifugal_pump_autosaved
Performance of a_centrifugal_pump_autosaved
Dickens Mimisa1.8K visualizações
Radial flow fan test por Wolkite University
Radial flow fan testRadial flow fan test
Radial flow fan test
Wolkite University1.2K visualizações
Radial flow fan test por Wolkite University
Radial flow fan testRadial flow fan test
Radial flow fan test
Wolkite University270 visualizações
pipe lines lec 1.pptx por amirashraf61
pipe lines lec 1.pptxpipe lines lec 1.pptx
pipe lines lec 1.pptx
amirashraf6117 visualizações
Optimum overhaul of pumps 2014 por Ray Beebe
Optimum overhaul of pumps 2014Optimum overhaul of pumps 2014
Optimum overhaul of pumps 2014
Ray Beebe1.2K visualizações
Energy efficiency in pumps and fans ppt por D.Pawan Kumar
Energy efficiency in pumps and fans pptEnergy efficiency in pumps and fans ppt
Energy efficiency in pumps and fans ppt
D.Pawan Kumar6.8K visualizações
5_2018_05_15!02_24_23_AM.pptx por PrakashGohil5
5_2018_05_15!02_24_23_AM.pptx5_2018_05_15!02_24_23_AM.pptx
5_2018_05_15!02_24_23_AM.pptx
PrakashGohil526 visualizações

Mais de Keith Vaugh

T2c - Centrifugal Pumps, turbines and Impeller calculations 2023.pptx por
T2c - Centrifugal Pumps, turbines and Impeller calculations 2023.pptxT2c - Centrifugal Pumps, turbines and Impeller calculations 2023.pptx
T2c - Centrifugal Pumps, turbines and Impeller calculations 2023.pptxKeith Vaugh
1.5K visualizações76 slides
T2b - Momentum of Fluids 2023.pptx por
T2b - Momentum of Fluids 2023.pptxT2b - Momentum of Fluids 2023.pptx
T2b - Momentum of Fluids 2023.pptxKeith Vaugh
1.5K visualizações18 slides
T2a - Fluid Discharge 2023.pptx por
T2a - Fluid Discharge 2023.pptxT2a - Fluid Discharge 2023.pptx
T2a - Fluid Discharge 2023.pptxKeith Vaugh
1.5K visualizações27 slides
T1 - Essential Fluids - 2023.pptx por
T1 - Essential Fluids - 2023.pptxT1 - Essential Fluids - 2023.pptx
T1 - Essential Fluids - 2023.pptxKeith Vaugh
1.5K visualizações44 slides
L7 - SecondLawThermo 2023.pptx por
L7 - SecondLawThermo 2023.pptxL7 - SecondLawThermo 2023.pptx
L7 - SecondLawThermo 2023.pptxKeith Vaugh
1.5K visualizações44 slides
L6 - Mass&EnergyClosedVol 2023.pptx por
L6 - Mass&EnergyClosedVol 2023.pptxL6 - Mass&EnergyClosedVol 2023.pptx
L6 - Mass&EnergyClosedVol 2023.pptxKeith Vaugh
1.5K visualizações35 slides

Mais de Keith Vaugh(20)

T2c - Centrifugal Pumps, turbines and Impeller calculations 2023.pptx por Keith Vaugh
T2c - Centrifugal Pumps, turbines and Impeller calculations 2023.pptxT2c - Centrifugal Pumps, turbines and Impeller calculations 2023.pptx
T2c - Centrifugal Pumps, turbines and Impeller calculations 2023.pptx
Keith Vaugh1.5K visualizações
T2b - Momentum of Fluids 2023.pptx por Keith Vaugh
T2b - Momentum of Fluids 2023.pptxT2b - Momentum of Fluids 2023.pptx
T2b - Momentum of Fluids 2023.pptx
Keith Vaugh1.5K visualizações
T2a - Fluid Discharge 2023.pptx por Keith Vaugh
T2a - Fluid Discharge 2023.pptxT2a - Fluid Discharge 2023.pptx
T2a - Fluid Discharge 2023.pptx
Keith Vaugh1.5K visualizações
T1 - Essential Fluids - 2023.pptx por Keith Vaugh
T1 - Essential Fluids - 2023.pptxT1 - Essential Fluids - 2023.pptx
T1 - Essential Fluids - 2023.pptx
Keith Vaugh1.5K visualizações
L7 - SecondLawThermo 2023.pptx por Keith Vaugh
L7 - SecondLawThermo 2023.pptxL7 - SecondLawThermo 2023.pptx
L7 - SecondLawThermo 2023.pptx
Keith Vaugh1.5K visualizações
L6 - Mass&EnergyClosedVol 2023.pptx por Keith Vaugh
L6 - Mass&EnergyClosedVol 2023.pptxL6 - Mass&EnergyClosedVol 2023.pptx
L6 - Mass&EnergyClosedVol 2023.pptx
Keith Vaugh1.5K visualizações
L5 - EnergyAnalysisClosedSys 2023.pptx por Keith Vaugh
L5 - EnergyAnalysisClosedSys 2023.pptxL5 - EnergyAnalysisClosedSys 2023.pptx
L5 - EnergyAnalysisClosedSys 2023.pptx
Keith Vaugh1.5K visualizações
L4 - PropertiesPureSubstances 2023.pptx por Keith Vaugh
L4 - PropertiesPureSubstances 2023.pptxL4 - PropertiesPureSubstances 2023.pptx
L4 - PropertiesPureSubstances 2023.pptx
Keith Vaugh1.5K visualizações
L2 - Basic Concepts 2023 UD.pptx por Keith Vaugh
L2 - Basic Concepts 2023 UD.pptxL2 - Basic Concepts 2023 UD.pptx
L2 - Basic Concepts 2023 UD.pptx
Keith Vaugh1.5K visualizações
L1 - ES & Thermofluids 2023 Master SS.pptx por Keith Vaugh
L1 - ES & Thermofluids 2023 Master SS.pptxL1 - ES & Thermofluids 2023 Master SS.pptx
L1 - ES & Thermofluids 2023 Master SS.pptx
Keith Vaugh1.5K visualizações
L1 - Energy Systems and Thermofluids 2021-22 por Keith Vaugh
L1 - Energy Systems and Thermofluids 2021-22L1 - Energy Systems and Thermofluids 2021-22
L1 - Energy Systems and Thermofluids 2021-22
Keith Vaugh3.1K visualizações
CAD & Analysis Introduction por Keith Vaugh
CAD & Analysis IntroductionCAD & Analysis Introduction
CAD & Analysis Introduction
Keith Vaugh1.7K visualizações
Wind Energy Lecture slides por Keith Vaugh
Wind Energy Lecture slidesWind Energy Lecture slides
Wind Energy Lecture slides
Keith Vaugh19.3K visualizações
Hydropower por Keith Vaugh
HydropowerHydropower
Hydropower
Keith Vaugh26.3K visualizações
Fluid discharge por Keith Vaugh
Fluid dischargeFluid discharge
Fluid discharge
Keith Vaugh49.7K visualizações
Essential fluids por Keith Vaugh
Essential fluids Essential fluids
Essential fluids
Keith Vaugh29.6K visualizações
Essential fluid mechanics por Keith Vaugh
Essential fluid mechanicsEssential fluid mechanics
Essential fluid mechanics
Keith Vaugh3K visualizações
L6 Wind Energy por Keith Vaugh
L6  Wind EnergyL6  Wind Energy
L6 Wind Energy
Keith Vaugh5.5K visualizações
L4 Bio mass por Keith Vaugh
L4 Bio massL4 Bio mass
L4 Bio mass
Keith Vaugh5.4K visualizações
L3 Solar por Keith Vaugh
L3   SolarL3   Solar
L3 Solar
Keith Vaugh5K visualizações

Último

Payment Integration using Braintree Connector | MuleSoft Mysore Meetup #37 por
Payment Integration using Braintree Connector | MuleSoft Mysore Meetup #37Payment Integration using Braintree Connector | MuleSoft Mysore Meetup #37
Payment Integration using Braintree Connector | MuleSoft Mysore Meetup #37MysoreMuleSoftMeetup
50 visualizações17 slides
Nelson_RecordStore.pdf por
Nelson_RecordStore.pdfNelson_RecordStore.pdf
Nelson_RecordStore.pdfBrynNelson5
46 visualizações10 slides
DISTILLATION.pptx por
DISTILLATION.pptxDISTILLATION.pptx
DISTILLATION.pptxAnupkumar Sharma
65 visualizações47 slides
Thanksgiving!.pdf por
Thanksgiving!.pdfThanksgiving!.pdf
Thanksgiving!.pdfEnglishCEIPdeSigeiro
500 visualizações17 slides
Papal.pdf por
Papal.pdfPapal.pdf
Papal.pdfMariaKenney3
68 visualizações24 slides
Narration lesson plan por
Narration lesson planNarration lesson plan
Narration lesson planTARIQ KHAN
75 visualizações11 slides

Último(20)

Payment Integration using Braintree Connector | MuleSoft Mysore Meetup #37 por MysoreMuleSoftMeetup
Payment Integration using Braintree Connector | MuleSoft Mysore Meetup #37Payment Integration using Braintree Connector | MuleSoft Mysore Meetup #37
Payment Integration using Braintree Connector | MuleSoft Mysore Meetup #37
MysoreMuleSoftMeetup50 visualizações
Nelson_RecordStore.pdf por BrynNelson5
Nelson_RecordStore.pdfNelson_RecordStore.pdf
Nelson_RecordStore.pdf
BrynNelson546 visualizações
DISTILLATION.pptx por Anupkumar Sharma
DISTILLATION.pptxDISTILLATION.pptx
DISTILLATION.pptx
Anupkumar Sharma65 visualizações
Papal.pdf por MariaKenney3
Papal.pdfPapal.pdf
Papal.pdf
MariaKenney368 visualizações
Narration lesson plan por TARIQ KHAN
Narration lesson planNarration lesson plan
Narration lesson plan
TARIQ KHAN75 visualizações
EILO EXCURSION PROGRAMME 2023 por info33492
EILO EXCURSION PROGRAMME 2023EILO EXCURSION PROGRAMME 2023
EILO EXCURSION PROGRAMME 2023
info33492202 visualizações
JRN 362 - Lecture Twenty-Three (Epilogue) por Rich Hanley
JRN 362 - Lecture Twenty-Three (Epilogue)JRN 362 - Lecture Twenty-Three (Epilogue)
JRN 362 - Lecture Twenty-Three (Epilogue)
Rich Hanley41 visualizações
ANGULARJS.pdf por ArthyR3
ANGULARJS.pdfANGULARJS.pdf
ANGULARJS.pdf
ArthyR351 visualizações
Meet the Bible por Steve Thomason
Meet the BibleMeet the Bible
Meet the Bible
Steve Thomason78 visualizações
Class 9 lesson plans por TARIQ KHAN
Class 9 lesson plansClass 9 lesson plans
Class 9 lesson plans
TARIQ KHAN82 visualizações
ICS3211_lecture 09_2023.pdf por Vanessa Camilleri
ICS3211_lecture 09_2023.pdfICS3211_lecture 09_2023.pdf
ICS3211_lecture 09_2023.pdf
Vanessa Camilleri141 visualizações
The Future of Micro-credentials: Is Small Really Beautiful? por Mark Brown
The Future of Micro-credentials:  Is Small Really Beautiful?The Future of Micro-credentials:  Is Small Really Beautiful?
The Future of Micro-credentials: Is Small Really Beautiful?
Mark Brown75 visualizações
MercerJesse2.1Doc.pdf por jessemercerail
MercerJesse2.1Doc.pdfMercerJesse2.1Doc.pdf
MercerJesse2.1Doc.pdf
jessemercerail314 visualizações
Parts of Speech (1).pptx por mhkpreet001
Parts of Speech (1).pptxParts of Speech (1).pptx
Parts of Speech (1).pptx
mhkpreet00146 visualizações
UNIDAD 3 6º C.MEDIO.pptx por MarcosRodriguezUcedo
UNIDAD 3 6º C.MEDIO.pptxUNIDAD 3 6º C.MEDIO.pptx
UNIDAD 3 6º C.MEDIO.pptx
MarcosRodriguezUcedo146 visualizações
PRELIMS ANSWER.pptx por souravkrpodder
PRELIMS ANSWER.pptxPRELIMS ANSWER.pptx
PRELIMS ANSWER.pptx
souravkrpodder50 visualizações
BÀI TẬP BỔ TRỢ TIẾNG ANH 11 THEO ĐƠN VỊ BÀI HỌC - CẢ NĂM - CÓ FILE NGHE (FRIE... por Nguyen Thanh Tu Collection
BÀI TẬP BỔ TRỢ TIẾNG ANH 11 THEO ĐƠN VỊ BÀI HỌC - CẢ NĂM - CÓ FILE NGHE (FRIE...BÀI TẬP BỔ TRỢ TIẾNG ANH 11 THEO ĐƠN VỊ BÀI HỌC - CẢ NĂM - CÓ FILE NGHE (FRIE...
BÀI TẬP BỔ TRỢ TIẾNG ANH 11 THEO ĐƠN VỊ BÀI HỌC - CẢ NĂM - CÓ FILE NGHE (FRIE...
Nguyen Thanh Tu Collection89 visualizações

T3a - Finding the operating point of a pumping system 2023.pptx

  • 1. KV WORKED EXAMPLES {Pumping Systems Example 2} Keith Vaugh BEng (AERO) MEng
  • 2. PUMPING SYSTEM OPERATING POINT A centrifugal pump pumps water at 25 °C through a cast iron pipes in the system as illustrated. The pump has an impeller of 200 mm diameter and a shutoff head H0 = 7.6 m off water when operated at 1170 rpm. The best efficiency occurs at a volumetric flow rate of 68m3/h where the head H is 6.7m for this speed. Given these conditions it can be shown that the parabolic equation representing this pump system is given by; 𝐻 = 7.6 − 1.95 × 10−4 𝑉 · 2 If the pump is scaled to 1750 rpm, the parabolic equation can be shown to be 𝐻 = 17 − 1.95 × 10−4 𝑉 · 2 For this case; • Develop an algebraic expression for the general shape of the system resistance curve. • Calculate and plot the system resistance curve. • Solve graphically for the system operating point.
  • 3. PUMPING SYSTEM OPERATING POINT 0.6 m 900 m 250 mm diameter 200 mm diameter
  • 4. Given Pump operating at 1750 rpm with a 𝐻 = 𝐻0 − 𝐴𝑉 · 2 where H0 = 17 m and 𝐴 = 1.95 × 10−4 𝑚/ (𝑚3 /ℎ)2 . The pipe from the first reservoir to the pump has a length of 0.6 m and a diameter of 250 mm, and the pipe from the pump to the second reservoir has a length of 900 m and a diameter of 200 mm. Water at 25 degrees celsius is transferred horizontally between the reservoirs and the level of water in each is at the same height. Find: (a) A general algebraic expression for the system head curve (b) The system head curve by direct calculation (c) The system operating point using a graphical solution Solution Apply the energy equation to the flow system
  • 5. Total head loss is the summation of the major and minor losses in the system 𝑓 = −1.8𝑙𝑜𝑔10 𝜖 𝐷 3.7 1.11 − 6.9 𝑅𝑒 −2 𝑃𝑖𝑛 𝜌𝑔 + 𝑈𝑖𝑛 2 2𝑔 + 𝑧𝑖𝑛 = 𝑃𝑜𝑢𝑡 𝜌𝑔 + 𝑈𝑜𝑢𝑡 2 2𝑔 + 𝑧𝑜𝑢𝑡 + 𝑓 𝐿 𝐷 𝑈𝑝𝑖𝑝𝑒 2 2𝑔 + ∑𝑓 𝐿𝑒 𝐷 𝑈𝑝𝑖𝑝𝑒 2 2𝑔 + ∑𝐾 𝑈𝑝𝑖𝑝𝑒 2 2𝑔 − 𝐻 𝐻 = ℎ𝑝 𝑔 ℎ𝐿 = 𝑓 𝐿 𝐷 𝑈𝑝𝑖𝑝𝑒 2 2𝑔 + ∑𝑓 𝐿𝑒 𝐷 𝑈𝑝𝑖𝑝𝑒 2 2𝑔 + ∑𝐾 𝑈𝑝𝑖𝑝𝑒 2 2𝑔 𝑃𝑖𝑛 𝜌𝑔 + 𝑈𝑖𝑛 2 2𝑔 + 𝑧𝑖𝑛 = 𝑃𝑜𝑢𝑡 𝜌𝑔 + 𝑈𝑜𝑢𝑡 2 2𝑔 + 𝑧𝑜𝑢𝑡 + ℎ𝐿 − 𝐻 Friction factor Total head loss is the summation of the major and minor losses in the system The energy equation for steady incompressible pipe flow can be written as; 𝑁𝑃𝑆𝐻𝐴 = 𝑃𝑝𝑢𝑚𝑝 + 𝑃𝑎𝑡𝑚 − 𝑃𝑣𝑎𝑝𝑜𝑢𝑟 𝜌𝑔 Net Positive Suction Head Available GOVERNING EQUATIONS
  • 6. GOVERNING EQUATIONS Piping system - 𝑃0 𝜌𝑔 + 𝑈0 2 2𝑔 + 𝑧0 + 𝐻𝑎 = 𝑃3 𝜌𝑔 + 𝑈3 2 2𝑔 + 𝑧3 + ℎ𝑙𝑡 𝑔 Friction Factor - 𝑓 = −1.8𝑙𝑜𝑔10 𝜖 𝐷 3.7 1.11 + 6.9 𝑅𝑒 −2 where z0 and z3 are the surface levels for the supply and discharge reservoirs respectively ASSUMPTIONS P0 = P3 =Patm U0 = U3 = 0 z0 =z3
  • 7. 𝐻𝑎 = ℎ𝑙𝑡 𝑔 = ℎ𝑙𝑇01 𝑔 + ℎ𝑙𝑇23 𝑔 = 𝐻𝑙𝑇 Simplifying the Governing Equation where section ① and ② are located just upstream and downstream from the pump, respectively. ℎ𝑙𝑇23 = 𝑓2 𝐿2 𝐷2 𝑈2 2 2 + 𝐾𝑒𝑥𝑖𝑡 𝑈2 2 2 = 𝑓2 𝐿2 𝐷2 + 𝐾𝑒𝑥𝑖𝑡 𝑈2 2 2 ℎ𝑙𝑇01 = 𝐾𝑒𝑛𝑡 𝑈1 2 2 + 𝑓1 𝐿1 𝐷1 𝑈1 2 2 = 𝐾𝑒𝑛𝑡 + 𝑓1 𝐿1 𝐷1 𝑈1 2 2 ① ② ③ ⓪ The total heads losses are the sum of the major and minor losses, so
  • 8. From continuity, 𝑈1𝐴1 = 𝑈2𝐴2 therefore 𝑈1 = 𝑈2 𝐴2 𝐴1 = 𝑈2 𝐷2 𝐷1 2 Hence 𝐻𝑙𝑇 = 𝐾𝑒𝑛𝑡 + 𝑓1 𝐿1 𝐷1 𝐷2 𝐷1 4 + 𝑓2 𝐿2 𝐷2 + 𝐾𝑒𝑥𝑖𝑡 𝑈2 2 2𝑔 𝐻𝑙𝑇 = ℎ𝑙𝑡 𝑔 = 𝐾𝑒𝑛𝑡 + 𝑓1 𝐿1 𝐷1 𝑈2 2 2𝑔 𝐷2 𝐷1 4 + 𝑓2 𝐿2 𝐷2 + 𝐾𝑒𝑥𝑖𝑡 𝑈2 2 2𝑔 Simplifying this equation results in an equation representative of the Total Head Loss in the pipes as consequence of the Major and Minor Head Losses At the operating point as per the simplified governing equation 𝐻𝑎 = ℎ𝑙𝑡 𝑔 = ℎ𝑙𝑇01 𝑔 + ℎ𝑙𝑇23 𝑔 = 𝐻𝑙𝑇 the head loss is equal to the head produced nay the pump given by 𝐻 = 𝐻0 − 𝐴𝑉 · 2 where 𝐻0 = 17𝑚 and 𝐴 = 1.95 × 10−4 𝑚/ (𝑚3 /ℎ)2
  • 9. 𝐻𝑙𝑇 = ℎ𝑙𝑡 𝑔 = 𝐾𝑒𝑛𝑡 + 𝑓1 𝐿1 𝐷1 𝑈1 2 2𝑔 + 𝑓2 𝐿2 𝐷2 + 𝐾𝑒𝑥𝑖𝑡 𝑈2 2 2𝑔 𝑈1 = 𝑈2 𝐴2 𝐴1 = 𝑈2 𝐷2 𝐷1 2 ℎ𝑙𝑇23 = 𝑓2 𝐿2 𝐷2 𝑈2 2 2 + 𝐾𝑒𝑥𝑖𝑡 𝑈2 2 2 = 𝑓2 𝐿2 𝐷2 + 𝐾𝑒𝑥𝑖𝑡 𝑈2 2 2 ℎ𝑙𝑇01 = 𝐾𝑒𝑛𝑡 𝑈1 2 2 + 𝑓1 𝐿1 𝐷1 𝑈1 2 2 = 𝐾𝑒𝑛𝑡 + 𝑓1 𝐿1 𝐷1 𝑈1 2 2 Pipe on the Left side of the pump Pipe on the Right side of the pump 𝐻𝑙𝑇 = ℎ𝑙𝑇01 + ℎ𝑙𝑇23 Add these two equations to get the total head loss in the system But from continuity Gives 𝑈1 2 = 𝑈2 𝐷2 𝐷1 2 2 = 𝑈2 2 𝐷2 𝐷1 4 𝐻𝑙𝑇 = ℎ𝑙𝑡 𝑔 = 𝐾𝑒𝑛𝑡 + 𝑓1 𝐿1 𝐷1 1 2𝑔 𝑈2 2 × 𝐷2 𝐷1 4 + 𝑓2 𝐿2 𝐷2 + 𝐾𝑒𝑥𝑖𝑡 𝑈2 2 2𝑔
  • 10. Table 1 - Data given in question or sourced from fluids tables Given Data Value Units Source Water at 25 Degrees Pipe Diameter D1 25 cm Pipe Diameter D2 20 cm ε 2.6E-04 m Tables Patm 101.3 kPa Kinematic Viscosity 8.96E-07 m2/s Tables Density 997 kg/m3 z1 0 m z2 0 m Lsuction 0.6 m Side of pump Ldelivery 900 m Side of pump LT 900.6 m For minor losses, K Reentrant 0.5 Tables Sudden Expansion 1 Tables KT 1.5 Compile all available data into a table Some data needs to be sourced from reference tables, databases etc… EXAMPLE Table: Roughness for pipes of common Engineering Materials Pipe Roughness, ε (mm) Riveted steel 0.9 - 9 Concrete 0.3 - 3 Wood Stave 0.2 - 0.9 Cast Iron 0.26 Glavanised Iron 0.15 Asphalted Cast Iron 0.12 Commercial Steel or Wrought Iron 0.046 Dran Tubing 0.0015
  • 11. Generate a data table populated with the calculations distilled from the formulas developed Table 2 - Data Tabulation and Analysis to determine the operating point of the system Volumetric Flow Rate (m3/hr) U1 (m/s) Reynolds Number, Re Friction Factor, f1 U2 (m/s) Reynolds Number, Re Friction Factor, f2 New Pipes (m) Pump Curve (m) 0 0.00 0.00 0.0000 0.00 0.00 0.00 0.00 17.00 25 0.14 39457.07 0.0246 0.22 49321.34 0.0246 0.28 16.88 50 0.28 78914.14 0.0226 0.44 98642.68 0.0230 1.04 16.51 75 0.42 118371.21 0.0218 0.66 147964.02 0.0224 2.28 15.90 100 0.57 157828.28 0.0214 0.88 197285.35 0.0221 4.00 15.05 125 0.71 197285.35 0.0211 1.10 246606.69 0.0219 6.19 13.95 150 0.85 236742.42 0.0209 1.33 295928.03 0.0217 8.86 12.61 175 0.99 276199.49 0.0208 1.55 345249.37 0.0216 12.01 11.03 200 1.13 315656.57 0.0207 1.77 394570.71 0.0215 15.63 9.20 225 1.27 355113.64 0.0206 1.99 443892.05 0.0215 19.73 7.13 250 1.41 394570.71 0.0205 2.21 493213.38 0.0214 24.31 4.81
  • 12. Table 2 - Data Tabulation and Analysis to determine the operating point of the system Volumetric Flow Rate (m3/hr) U1 (m/s) Reynolds Number, Re Friction Factor, f1 U2 (m/s) Reynolds Number, Re Friction Factor, f2 New Pipes (m) Pump Curve (m) 0 0.00 0.00 0.0000 0.00 0.00 0.00 0.00 17.00 25 0.14 39457.07 0.0246 0.22 49321.34 0.0246 0.28 16.88 50 0.28 78914.14 0.0226 0.44 98642.68 0.0230 1.04 16.51 75 0.42 118371.21 0.0218 0.66 147964.02 0.0224 2.28 15.90 100 0.57 157828.28 0.0214 0.88 197285.35 0.0221 4.00 15.05 125 0.71 197285.35 0.0211 1.10 246606.69 0.0219 6.19 13.95 150 0.85 236742.42 0.0209 1.33 295928.03 0.0217 8.86 12.61 175 0.99 276199.49 0.0208 1.55 345249.37 0.0216 12.01 11.03 200 1.13 315656.57 0.0207 1.77 394570.71 0.0215 15.63 9.20 225 1.27 355113.64 0.0206 1.99 443892.05 0.0215 19.73 7.13 250 1.41 394570.71 0.0205 2.21 493213.38 0.0214 24.31 4.81 𝐻𝑙𝑇 = 𝐾𝑒𝑛𝑡 + 𝑓1 𝐿1 𝐷1 𝐷2 𝐷1 4 + 𝑓2 𝐿2 𝐷2 + 𝐾𝑒𝑥𝑖𝑡 𝑈2 2 2𝑔 𝐻 = 17 − 1.95 × 10−4 𝑉 · 2
  • 13. Plot the relevant curves and identify the operating point for the pumping system. 0.00 2.00 4.00 6.00 8.00 10.00 12.00 14.00 16.00 18.00 20.00 0 50 100 150 200 250 Pump Head (m) Volumetric Flow Rate in m^3/hr New Pipes (m) Where curves cross is the optimum operating point for the system. The graphical solution is shown on the plot. At the operating point H ≈ 11.4 m and the volumetric flow rate, 170 m3/h.
  • 14. As pipes age with time, build up forms on the inner walls. This must be taken into account when designing the system. Typical multipliers are available that can be applied to the calculations Table 2 - Data Tabulation and Analysis to determine the operating point of the system Volumetric Flow Rate (m3/hr) U1 (m/s) Reynolds Number, Re Friction Factor, f1 U2 (m/s) Reynolds Number, Re Friction Factor, f2 New Pipes (m) Age pipes 10 years Age pipes 20 years Pump Curve (m) 0 0.00 0.00 0.0000 0.00 0.00 0.00 0.00 17.00 25 0.14 39457.07 0.0246 0.22 49321.34 0.0246 0.28 16.88 50 0.28 78914.14 0.0226 0.44 98642.68 0.0230 1.04 16.51 75 0.42 118371.21 0.0218 0.66 147964.02 0.0224 2.28 15.90 100 0.57 157828.28 0.0214 0.88 197285.35 0.0221 4.00 15.05 125 0.71 197285.35 0.0211 1.10 246606.69 0.0219 6.19 13.95 150 0.85 236742.42 0.0209 1.33 295928.03 0.0217 8.86 12.61 175 0.99 276199.49 0.0208 1.55 345249.37 0.0216 12.01 11.03 200 1.13 315656.57 0.0207 1.77 394570.71 0.0215 15.63 9.20 225 1.27 355113.64 0.0206 1.99 443892.05 0.0215 19.73 7.13 250 1.41 394570.71 0.0205 2.21 493213.38 0.0214 24.31 4.81 Add two new columns to the table Table 2: Typical Multipliers applied to friction factors, with ageing pipes Pipe Age (Years) Small Pipes, 100 - 250 mm Large Pipes, 300 - 1500 mm New 1.00 1.00 10 2.2 1.60 20 5.00 2.00 30 7.25 2.20 40 8.75 2.40 50 9.6 2.86 60 10.0 3.70 70 10.1 4.70 From the table locate the multipliers for the ageing pipe Multiply these values by the fraction factor for that condition
  • 15. Given that each pipe is ≤ 250 mm diameter the multiplier for 10 years is 2.2 and for 20 years is 5 Table 3 - Data Tabulation and Analysis to determine the operating point of the system Volumetric Flow Rate (m3/hr) U1 (m/s) Reynolds Number, Re Friction Factor, f1 U2 (m/s) Reynolds Number, Re Friction Factor, f2 New Pipes (m) Ageing pipes 10 years Ageing pipes 20 years 0 0.00 0.00 0.0000 0.00 0.00 0.00 0.00 0.00 0.00 17.00 25 0.14 39457.07 0.0246 0.22 49321.34 0.0246 0.28 0.61 2.41 16.88 50 0.28 78914.14 0.0226 0.44 98642.68 0.0230 1.04 2.28 9.02 16.51 75 0.42 118371.21 0.0218 0.66 147964.0 2 0.0224 2.28 4.99 19.76 15.90 100 0.57 157828.28 0.0214 0.88 197285.3 5 0.0221 4.00 8.74 34.62 15.05 125 0.71 197285.35 0.0211 1.10 246606.6 9 0.0219 6.19 13.54 53.61 13.95 150 0.85 236742.42 0.0209 1.33 295928.0 3 0.0217 8.86 19.37 76.72 12.61 175 0.99 276199.49 0.0208 1.55 345249.3 7 0.0216 12.01 26.25 103.95 11.03 200 1.13 315656.57 0.0207 1.77 394570.7 1 0.0215 15.63 34.16 135.30 9.20 225 1.27 355113.64 0.0206 1.99 443892.0 5 0.0215 19.73 43.12 170.77 7.13
  • 16. 0.00 2.50 5.00 7.50 10.00 12.50 15.00 17.50 20.00 0 75 150 225 300 Pump Head (m) Volumetric Flow Rate (m^3/hr) New Pipes (m) Ageing pipes 10 years Ageing pipes 20 years Plot the relevant curves and identify the operating point for the ageing pipes in the pumping system. The graphical solution is shown on the plot. At the operating point for new pipes H ≈ 11.4 m and the volumetric flow rate, 170 m3/h, for 10 year old pipes H ≈ 13.75 m and the volumetric flow rate, 127 m3/h, and for 10 year old pipes H ≈ 16 m and the volumetric flow rate, 67 m3/h.