5. The Mathematic Formulation
Any function that satisfies
( ) ( )
f t f t T
where T is a constant and is called the period
of the function.
6. Example:
4
cos
3
cos
)
(
t
t
t
f
Find its period.
)
(
)
( T
t
f
t
f
)
(
4
1
cos
)
(
3
1
cos
4
cos
3
cos T
t
T
t
t
t
Fact: )
2
cos(
cos
m
m
T
2
3
n
T
2
4
m
T 6
n
T 8
24
T smallest T
7. Example:
t
t
t
f 2
1 cos
cos
)
(
Find its period.
)
(
)
( T
t
f
t
f
)
(
cos
)
(
cos
cos
cos 2
1
2
1 T
t
T
t
t
t
m
T 2
1
n
T 2
2
n
m
2
1
2
1
must be a
rational number
12. Orthogonal Functions
Call a set of functions {k} orthogonal
on an interval a < t < b if it satisfies
n
m
r
n
m
dt
t
t
n
b
a
n
m
0
)
(
)
(
13. Orthogonal set of Sinusoidal
Functions
Define 0=2/T.
0
,
0
)
cos(
2
/
2
/
0
m
dt
t
m
T
T
0
,
0
)
sin(
2
/
2
/
0
m
dt
t
m
T
T
n
m
T
n
m
dt
t
n
t
m
T
T 2
/
0
)
cos(
)
cos(
2
/
2
/
0
0
n
m
T
n
m
dt
t
n
t
m
T
T 2
/
0
)
sin(
)
sin(
2
/
2
/
0
0
n
m
dt
t
n
t
m
T
T
and
all
for
,
0
)
cos(
)
sin(
2
/
2
/
0
0
We now prove this one
16. Orthogonal set of Sinusoidal
Functions
Define 0=2/T.
0
,
0
)
cos(
2
/
2
/
0
m
dt
t
m
T
T
0
,
0
)
sin(
2
/
2
/
0
m
dt
t
m
T
T
n
m
T
n
m
dt
t
n
t
m
T
T 2
/
0
)
cos(
)
cos(
2
/
2
/
0
0
n
m
T
n
m
dt
t
n
t
m
T
T 2
/
0
)
sin(
)
sin(
2
/
2
/
0
0
n
m
dt
t
n
t
m
T
T
and
all
for
,
0
)
cos(
)
sin(
2
/
2
/
0
0
,
3
sin
,
2
sin
,
sin
,
3
cos
,
2
cos
,
cos
,
1
0
0
0
0
0
0
t
t
t
t
t
t
,
3
sin
,
2
sin
,
sin
,
3
cos
,
2
cos
,
cos
,
1
0
0
0
0
0
0
t
t
t
t
t
t
an orthogonal set.
an orthogonal set.
18. Proof
Use the following facts:
0
,
0
)
cos(
2
/
2
/
0
m
dt
t
m
T
T
0
,
0
)
sin(
2
/
2
/
0
m
dt
t
m
T
T
n
m
T
n
m
dt
t
n
t
m
T
T 2
/
0
)
cos(
)
cos(
2
/
2
/
0
0
n
m
T
n
m
dt
t
n
t
m
T
T 2
/
0
)
sin(
)
sin(
2
/
2
/
0
0
n
m
dt
t
n
t
m
T
T
and
all
for
,
0
)
cos(
)
sin(
2
/
2
/
0
0
19. Example (Square Wave)
1
1
2
2
0
0
dt
a
,
2
,
1
0
sin
1
cos
2
2
0
0
n
nt
n
ntdt
an
,
6
,
4
,
2
0
,
5
,
3
,
1
/
2
)
1
cos
(
1
cos
1
sin
2
2
0
0
n
n
n
n
n
nt
n
ntdt
bn
2 3 4 5
-
-2
-3
-4
-5
-6
f(t)
1
20. 1
1
2
2
0
0
dt
a
,
2
,
1
0
sin
1
cos
2
2
0
0
n
nt
n
ntdt
an
,
6
,
4
,
2
0
,
5
,
3
,
1
/
2
)
1
cos
(
1
cos
1
sin
2
1
0
0
n
n
n
n
n
nt
n
ntdt
bn
2 3 4 5
-
-2
-3
-4
-5
-6
f(t)
1
Example (Square Wave)
t
t
t
t
f 5
sin
5
1
3
sin
3
1
sin
2
2
1
)
(
t
t
t
t
f 5
sin
5
1
3
sin
3
1
sin
2
2
1
)
(
21. 1
1
2
2
0
0
dt
a
,
2
,
1
0
sin
1
cos
2
2
0
0
n
nt
n
ntdt
an
,
6
,
4
,
2
0
,
5
,
3
,
1
/
2
)
1
cos
(
1
cos
1
sin
2
1
0
0
n
n
n
n
n
nt
n
ntdt
bn
2 3 4 5
-
-2
-3
-4
-5
-6
f(t)
1
Example (Square Wave)
-0.5
0
0.5
1
1.5
t
t
t
t
f 5
sin
5
1
3
sin
3
1
sin
2
2
1
)
(
t
t
t
t
f 5
sin
5
1
3
sin
3
1
sin
2
2
1
)
(
23. Harmonics
t
n
b
t
n
a
a
t
f
n
n
n
n 0
1
0
1
0
sin
cos
2
)
(
T
f
2
2 0
0
Define , called the fundamental angular frequency.
0
n
n
Define , called the n-th harmonic of the periodic function.
t
b
t
a
a
t
f n
n
n
n
n
n
sin
cos
2
)
(
1
1
0
24. Harmonics
t
b
t
a
a
t
f n
n
n
n
n
n
sin
cos
2
)
(
1
1
0
)
sin
cos
(
2 1
0
t
b
t
a
a
n
n
n
n
n
1
2
2
2
2
2
2
0
sin
cos
2 n
n
n
n
n
n
n
n
n
n
n t
b
a
b
t
b
a
a
b
a
a
1
2
2
0
sin
sin
cos
cos
2 n
n
n
n
n
n
n t
t
b
a
a
)
cos(
1
0 n
n
n
n t
C
C
25. Amplitudes and Phase Angles
)
cos(
)
(
1
0 n
n
n
n t
C
C
t
f
2
0
0
a
C
2
2
n
n
n b
a
C
n
n
n
a
b
1
tan
harmonic amplitude phase angle
27. Complex Exponentials
t
n
j
t
n
e t
jn
0
0 sin
cos
0
t
jn
t
jn
e
e
t
n 0
0
2
1
cos 0
t
n
j
t
n
e t
jn
0
0 sin
cos
0
t
jn
t
jn
t
jn
t
jn
e
e
j
e
e
j
t
n 0
0
0
0
2
2
1
sin 0
28. Complex Form of the Fourier Series
t
n
b
t
n
a
a
t
f
n
n
n
n 0
1
0
1
0
sin
cos
2
)
(
t
jn
t
jn
n
n
t
jn
t
jn
n
n e
e
b
j
e
e
a
a 0
0
0
0
1
1
0
2
2
1
2
1
0 0
0
)
(
2
1
)
(
2
1
2 n
t
jn
n
n
t
jn
n
n e
jb
a
e
jb
a
a
1
0
0
0
n
t
jn
n
t
jn
n e
c
e
c
c
)
(
2
1
)
(
2
1
2
0
0
n
n
n
n
n
n
jb
a
c
jb
a
c
a
c
)
(
2
1
)
(
2
1
2
0
0
n
n
n
n
n
n
jb
a
c
jb
a
c
a
c
29. Complex Form of the Fourier Series
1
0
0
0
)
(
n
t
jn
n
t
jn
n e
c
e
c
c
t
f
1
1
0
0
0
n
t
jn
n
n
t
jn
n e
c
e
c
c
n
t
jn
ne
c 0
)
(
2
1
)
(
2
1
2
0
0
n
n
n
n
n
n
jb
a
c
jb
a
c
a
c
)
(
2
1
)
(
2
1
2
0
0
n
n
n
n
n
n
jb
a
c
jb
a
c
a
c
30. Complex Form of the Fourier Series
2
/
2
/
0
0 )
(
1
2
T
T
dt
t
f
T
a
c
)
(
2
1
n
n
n jb
a
c
2
/
2
/
0
2
/
2
/
0 sin
)
(
cos
)
(
1 T
T
T
T
tdt
n
t
f
j
tdt
n
t
f
T
2
/
2
/
0
0 )
sin
)(cos
(
1 T
T
dt
t
n
j
t
n
t
f
T
2
/
2
/
0
)
(
1 T
T
t
jn
dt
e
t
f
T
2
/
2
/
0
)
(
1
)
(
2
1 T
T
t
jn
n
n
n dt
e
t
f
T
jb
a
c )
(
2
1
)
(
2
1
2
0
0
n
n
n
n
n
n
jb
a
c
jb
a
c
a
c
)
(
2
1
)
(
2
1
2
0
0
n
n
n
n
n
n
jb
a
c
jb
a
c
a
c
31. Complex Form of the Fourier Series
n
t
jn
ne
c
t
f 0
)
(
n
t
jn
ne
c
t
f 0
)
(
dt
e
t
f
T
c
T
T
t
jn
n
2
/
2
/
0
)
(
1 dt
e
t
f
T
c
T
T
t
jn
n
2
/
2
/
0
)
(
1
)
(
2
1
)
(
2
1
2
0
0
n
n
n
n
n
n
jb
a
c
jb
a
c
a
c
)
(
2
1
)
(
2
1
2
0
0
n
n
n
n
n
n
jb
a
c
jb
a
c
a
c
If f(t) is real,
*
n
n c
c
n
n j
n
n
n
j
n
n e
c
c
c
e
c
c
|
|
,
|
| *
2
2
2
1
|
|
|
| n
n
n
n b
a
c
c
n
n
n
a
b
1
tan
,
3
,
2
,
1
n
0
0
2
1
a
c
32. Complex Frequency Spectra
n
n j
n
n
n
j
n
n e
c
c
c
e
c
c
|
|
,
|
| *
2
2
2
1
|
|
|
| n
n
n
n b
a
c
c
n
n
n
a
b
1
tan
,
3
,
2
,
1
n
0
0
2
1
a
c
|cn|
amplitude
spectrum
n
phase
spectrum
37. Example
dt
e
T
A
c
d t
jn
n
0
0
d
t
jn
e
jn
T
A
0
0
0
1
0
0
1
1 0
jn
e
jn
T
A d
jn
)
1
(
1 0
0
d
jn
e
jn
T
A
2
/
0
sin
d
jn
e
T
d
n
T
d
n
T
Ad
T
T
d
t
f(t)
A
0
)
(
1 2
/
2
/
2
/
0
0
0
0 d
jn
d
jn
d
jn
e
e
e
jn
T
A
40. Decomposition
Any function f(t) can be expressed as the
sum of an even function fe(t) and an odd
function fo(t).
)
(
)
(
)
( t
f
t
f
t
f o
e
)]
(
)
(
[
)
( 2
1
t
f
t
f
t
fe
)]
(
)
(
[
)
( 2
1
t
f
t
f
t
fo
Even Part
Odd Part
44. Hidden Symmetry
The following is a asymmetry periodic function:
Adding a constant to get symmetry property.
A
T
T
A/2
A/2
T
T
45. Fourier Coefficients of
Symmetrical Waveforms
The use of symmetry properties simplifies the
calculation of Fourier coefficients.
– Even Functions
– Odd Functions
– Half-Wave
– Even Quarter-Wave
– Odd Quarter-Wave
– Hidden
46. Fourier Coefficients of Even Functions
)
(
)
( t
f
t
f
t
n
a
a
t
f
n
n 0
1
0
cos
2
)
(
2
/
0
0 )
cos(
)
(
4 T
n dt
t
n
t
f
T
a
47. Fourier Coefficients of Odd Functions
)
(
)
( t
f
t
f
t
n
b
t
f
n
n 0
1
sin
)
(
2
/
0
0 )
sin(
)
(
4 T
n dt
t
n
t
f
T
b
48. Fourier Coefficients for Half-Wave Symmetry
)
(
)
( T
t
f
t
f
and
2
/
)
( T
t
f
t
f
T
T/2
T/2
The Fourier series contains only odd harmonics.
The Fourier series contains only odd harmonics.
49. Fourier Coefficients for Half-Wave Symmetry
)
(
)
( T
t
f
t
f
and
2
/
)
( T
t
f
t
f
)
sin
cos
(
)
(
1
0
0
n
n
n t
n
b
t
n
a
t
f
odd
for
)
cos(
)
(
4
even
for
0
2
/
0
0 n
dt
t
n
t
f
T
n
a T
n
odd
for
)
sin(
)
(
4
even
for
0
2
/
0
0 n
dt
t
n
t
f
T
n
b T
n
50. Fourier Coefficients for
Even Quarter-Wave Symmetry
T
T/2
T/2
]
)
1
2
cos[(
)
( 0
1
1
2 t
n
a
t
f
n
n
4
/
0
0
1
2 ]
)
1
2
cos[(
)
(
8 T
n dt
t
n
t
f
T
a
51. Fourier Coefficients for
Odd Quarter-Wave Symmetry
]
)
1
2
sin[(
)
( 0
1
1
2 t
n
b
t
f
n
n
4
/
0
0
1
2 ]
)
1
2
sin[(
)
(
8 T
n dt
t
n
t
f
T
b
T
T/2
T/2
52. Example
Even Quarter-Wave Symmetry
4
/
0
0
1
2 ]
)
1
2
cos[(
)
(
8 T
n dt
t
n
t
f
T
a
4
/
0
0 ]
)
1
2
cos[(
8 T
dt
t
n
T
4
/
0
0
0
]
)
1
2
sin[(
)
1
2
(
8
T
t
n
T
n
)
1
2
(
4
)
1
( 1
n
n
T
T/2
T/2
1
1
T T/4
T/4
53. Example
Even Quarter-Wave Symmetry
4
/
0
0
1
2 ]
)
1
2
cos[(
)
(
8 T
n dt
t
n
t
f
T
a
4
/
0
0 ]
)
1
2
cos[(
8 T
dt
t
n
T
4
/
0
0
0
]
)
1
2
sin[(
)
1
2
(
8
T
t
n
T
n
)
1
2
(
4
)
1
( 1
n
n
T
T/2
T/2
1
1
T T/4
T/4
t
t
t
t
f 0
0
0 5
cos
5
1
3
cos
3
1
cos
4
)
(
t
t
t
t
f 0
0
0 5
cos
5
1
3
cos
3
1
cos
4
)
(
54. Example
T
T/2
T/2
1
1
T T/4
T/4
Odd Quarter-Wave Symmetry
4
/
0
0
1
2 ]
)
1
2
sin[(
)
(
8 T
n dt
t
n
t
f
T
b
4
/
0
0 ]
)
1
2
sin[(
8 T
dt
t
n
T
4
/
0
0
0
]
)
1
2
cos[(
)
1
2
(
8
T
t
n
T
n
)
1
2
(
4
n
55. Example
T
T/2
T/2
1
1
T T/4
T/4
Odd Quarter-Wave Symmetry
4
/
0
0
1
2 ]
)
1
2
sin[(
)
(
8 T
n dt
t
n
t
f
T
b
4
/
0
0 ]
)
1
2
sin[(
8 T
dt
t
n
T
4
/
0
0
0
]
)
1
2
cos[(
)
1
2
(
8
T
t
n
T
n
)
1
2
(
4
n
t
t
t
t
f 0
0
0 5
sin
5
1
3
sin
3
1
sin
4
)
(
t
t
t
t
f 0
0
0 5
sin
5
1
3
sin
3
1
sin
4
)
(
57. Non-Periodic Function Representation
A non-periodic function f(t) defined over (0, )
can be expanded into a Fourier series which is
defined only in the interval (0, ).
58. Without Considering Symmetry
A non-periodic function f(t) defined over (0, )
can be expanded into a Fourier series which is
defined only in the interval (0, ).
T
59. Expansion Into Even Symmetry
A non-periodic function f(t) defined over (0, )
can be expanded into a Fourier series which is
defined only in the interval (0, ).
T=2
60. Expansion Into Odd Symmetry
A non-periodic function f(t) defined over (0, )
can be expanded into a Fourier series which is
defined only in the interval (0, ).
T=2
61. Expansion Into Half-Wave Symmetry
A non-periodic function f(t) defined over (0, )
can be expanded into a Fourier series which is
defined only in the interval (0, ).
T=2
62. Expansion Into
Even Quarter-Wave Symmetry
A non-periodic function f(t) defined over (0, )
can be expanded into a Fourier series which is
defined only in the interval (0, ).
T/2=2
T=4
63. Expansion Into
Odd Quarter-Wave Symmetry
A non-periodic function f(t) defined over (0, )
can be expanded into a Fourier series which is
defined only in the interval (0, ).
T/2=2 T=4
65. Approximation a function
Use
k
n
n
n
k t
n
b
t
n
a
a
t
S
1
0
0
0
sin
cos
2
)
(
to represent f(t) on interval T/2 < t < T/2.
Define )
(
)
(
)
( t
S
t
f
t k
k
2
/
2
/
2
)]
(
[
1 T
T
k
k dt
t
T
E Mean-Square
Error
66. Approximation a function
Show that using Sk(t) to represent f(t) has
least mean-square property.
2
/
2
/
2
)]
(
[
1 T
T
k
k dt
t
T
E
2
/
2
/
2
1
0
0
0
sin
cos
2
)
(
1 T
T
k
n
n
n dt
t
n
b
t
n
a
a
t
f
T
Proven by setting Ek/ai = 0 and Ek/bi = 0.
67. Approximation a function
2
/
2
/
2
)]
(
[
1 T
T
k
k dt
t
T
E
2
/
2
/
2
1
0
0
0
sin
cos
2
)
(
1 T
T
k
n
n
n dt
t
n
b
t
n
a
a
t
f
T
0
)
(
1
2
2
/
2
/
0
0
T
T
k
dt
t
f
T
a
a
E 0
)
(
1
2
2
/
2
/
0
0
T
T
k
dt
t
f
T
a
a
E
0
cos
)
(
2 2
/
2
/
0
T
T
n
n
k
tdt
n
t
f
T
a
a
E 0
cos
)
(
2 2
/
2
/
0
T
T
n
n
k
tdt
n
t
f
T
a
a
E
0
sin
)
(
2 2
/
2
/
0
T
T
n
n
k
tdt
n
t
f
T
b
b
E 0
sin
)
(
2 2
/
2
/
0
T
T
n
n
k
tdt
n
t
f
T
b
b
E
68. Mean-Square Error
2
/
2
/
2
)]
(
[
1 T
T
k
k dt
t
T
E
2
/
2
/
2
1
0
0
0
sin
cos
2
)
(
1 T
T
k
n
n
n dt
t
n
b
t
n
a
a
t
f
T
2
/
2
/
1
2
2
2
0
2
)
(
2
1
4
)]
(
[
1 T
T
k
n
n
n
k b
a
a
dt
t
f
T
E
2
/
2
/
1
2
2
2
0
2
)
(
2
1
4
)]
(
[
1 T
T
k
n
n
n
k b
a
a
dt
t
f
T
E
69. Mean-Square Error
2
/
2
/
2
)]
(
[
1 T
T
k
k dt
t
T
E
2
/
2
/
2
1
0
0
0
sin
cos
2
)
(
1 T
T
k
n
n
n dt
t
n
b
t
n
a
a
t
f
T
2
/
2
/
1
2
2
2
0
2
)
(
2
1
4
)]
(
[
1 T
T
k
n
n
n b
a
a
dt
t
f
T
2
/
2
/
1
2
2
2
0
2
)
(
2
1
4
)]
(
[
1 T
T
k
n
n
n b
a
a
dt
t
f
T
70. Mean-Square Error
2
/
2
/
2
)]
(
[
1 T
T
k
k dt
t
T
E
2
/
2
/
2
1
0
0
0
sin
cos
2
)
(
1 T
T
k
n
n
n dt
t
n
b
t
n
a
a
t
f
T
2
/
2
/
1
2
2
2
0
2
)
(
2
1
4
)]
(
[
1 T
T
n
n
n b
a
a
dt
t
f
T
2
/
2
/
1
2
2
2
0
2
)
(
2
1
4
)]
(
[
1 T
T
n
n
n b
a
a
dt
t
f
T
74. Impulse Train
0
t
T 2T 3T
T
2T
3T
n
T nT
t
t )
(
)
(
n
T nT
t
t )
(
)
(
75. Fourier Series of the Impulse Train
n
T nT
t
t )
(
)
(
n
T nT
t
t )
(
)
(
T
dt
t
T
a
T
T
T
2
)
(
2 2
/
2
/
0
T
dt
t
n
t
T
a
T
T
T
n
2
)
cos(
)
(
2 2
/
2
/
0
0
)
sin(
)
(
2 2
/
2
/
0
dt
t
n
t
T
b
T
T
T
n
n
T t
n
T
T
t 0
cos
2
1
)
(
n
T t
n
T
T
t 0
cos
2
1
)
(
)
0
(
)
(
)
(
dt
t
t )
0
(
)
(
)
(
dt
t
t
76. Complex Form
Fourier Series of the Impulse Train
T
dt
t
T
a
c
T
T
T
1
)
(
1
2
2
/
2
/
0
0
T
dt
e
t
T
c
T
T
t
jn
T
n
1
)
(
1 2
/
2
/
0
n
t
jn
T e
T
t 0
1
)
(
n
t
jn
T e
T
t 0
1
)
(
n
T nT
t
t )
(
)
(
n
T nT
t
t )
(
)
(
)
0
(
)
(
)
(
dt
t
t )
0
(
)
(
)
(
dt
t
t
78. Fourier Series / Transform
Fourier Series deals with discrete variable
(harmonics of )
Fourier Transform deals with continuous
frequency
0
0 2 f
79. Fourier Series / Transform
dt
e
t
f
F
t
f t
j
2
)
(
)
(
)}
(
{
d
e
F
F
t
f t
j2
1
)
(
)}
(
{
)
(
n
t
f
jn
ne
c
t
f 0
2
)
(
2
/
2
/
2 0
)
(
1 T
T
t
f
jn
n dt
e
t
f
T
c
0
0 2 f
83. Example: Unit Impulse
dt
e
t
F t
j
2
)
(
)
(
1
0
0
2
e
e j
dt
e
t
t
F t
j
2
0 )
(
)
(
0
2 t
j
e
84. Fourier Series of the Impulse Train
T
dt
e
t
s
T
c
T
T
t
j
T
n
T
n
1
)
(
1 2
/
2
/
2
n
t
T
n
j
T e
T
t
s
2
1
)
(
n
t
T
n
j
T e
T
t
s
2
1
)
(
n
T T
n
t
t
s )
(
)
(
n
T T
n
t
t
s )
(
)
(
85. Fourier Transform of the Impulse Train
n
n
t
T
n
j
T
T
n
T
e
T
t
s
S
)
(
1
}
1
{
)}
(
{
)
(
2
n
n
t
T
n
j
T
T
n
T
e
T
t
s
S
)
(
1
}
1
{
)}
(
{
)
(
2
)
(
}
{
2
T
n
e
t
T
n
j
)
(
}
{
2
T
n
e
t
T
n
j
87. Convolution
A mathematical operator which computes the
“amount of overlap” between two functions.
Can be thought of as a general moving
average
Discrete domain:
Continuous domain:
88. Discrete domain
Basic steps
1. Flip (reverse) one of the digital functions.
2. Shift it along the time axis by one sample.
3. Multiply the corresponding values of the two digital functions.
4. Summate the products from step 3 to get one point of the
digital convolution.
5. Repeat steps 1-4 to obtain the digital convolution at all times
that the functions overlap.
Example
103. DFT: How to compute FT?
T
n
j
n
n
n
t
j
t
j
n
t
j
e
f
dt
e
T
n
t
t
f
dt
e
T
n
t
t
f
dt
e
t
f
F
2
2
2
2
)
(
)
(
)
(
)
(
)
(
~
)
(
~
)
(
)
(
)
(
T
n
f
dt
T
n
t
t
f
fn
104. Discrete Fourier Transform
T
n
j
n
ne
f
F
2
)
(
~ )
( T
n
f
fn
1
,
2
,
1
,
0
,
T
M
m
T
1/
to
0
period
over the
)
(
~
of
samples
spaced
equally
Obtain
DFT
for the
basis
the
is
period
one
Sampling
period
one
over
zed
characteri
be
to
need
)
(
~
T
1
period
with
periodic
infinitely
and
continuous
is
)
(
~
function
discrete
a
is
M
m
F
M
F
F
fn
105. Discrete Fourier Transform
T
n
j
n
ne
f
F
2
)
(
~
)
( T
n
f
fn
1
,
2
,
1
,
0
,
T
M
m
M
m
1
,
2
,
1
,
0
,
DFT
1
0
/
2
M
m
e
f
F
M
n
M
mn
j
n
m
1
,
2
,
1
,
0
,
1
IDFT
1
0
/
2
M
n
e
F
M
f
M
m
M
mn
j
m
n
108. Discrete Fourier Transform Pair
1
0
/
2
)
(
)
(
M
x
M
ux
j
e
x
f
u
F
1
0
/
2
)
(
1
)
(
M
u
M
ux
j
e
u
F
M
x
f
uniformly
taken
samples
discrete
of
set
finite
any
to
applicable
Is
/
1
Interval
Frequency
of
t
Independen
Interval
Sampling
of
t
Independen
:
pair
DFT
T
T
110. Sampling & Frequency Intervals
T
interval
sampling
the
on
depends
DFT
the
by
spanned
s
frequencie
of
Range
sampled.
is
)
(
over which
duration
the
on
depends
frequency
in
Resolution
1
;
1
1
;
t
f
T
u
T
u
M
T
T
M
u
T
M
T
120. Inverse Discrete Fourier Transform
1
,
2
,
1
,
0
,
)
(
)
(
:
DFT
1
0
/
2
M
u
e
x
f
u
F
M
x
M
ux
j
))
(
(
1
)
(
))
(
(
1
)
(
1
)
(
:
conjugate
complex
Taking
1
,
2
,
1
,
0
,
)
(
1
)
(
:
IDFT
*
*
*
1
0
/
2
*
*
1
0
/
2
u
F
DFT
M
x
f
u
F
DFT
M
e
u
F
M
x
f
M
x
e
u
F
M
x
f
M
u
M
ux
j
M
u
M
ux
j
122. DFT / IDFT Complexity
)
(
)
1
(
)
(
)
(
)
(
computed.
-
pre
are
that
Assume
1
,
2
,
1
,
0
,
)
(
)
(
2
2
2
/
2
1
0
/
2
M
O
M
M
M
Add
M
O
M
M
Mult
e
M
u
e
x
f
u
F
M
ux
j
M
x
M
ux
j
135. 2-D Discrete Sifting Property
)
0
,
0
(
)
,
(
)
,
( f
y
x
y
x
f
x y
)
,
(
)
,
(
)
,
( 0
0
0
0 y
x
f
y
y
x
x
y
x
f
x y
137. 2-D Continuous Fourier
Transform Pair
dz
dt
e
z
t
f
F z
t
j )
(
2
)
,
(
)
,
(
d
d
e
F
z
t
f z
t
j )
(
2
)
,
(
)
,
(
142. Frequency Aliasing
Signals sampled below Nyquist rate (under-
sampled) have overlapped periods.
In aliasing, high frequency components
masquerade as low frequency components in
sampled function. Hence, ‘aliasing’ or ‘false
identity’.
145. Frequency Aliasing
Most band-limited signals have infinite
frequency components in sampled signal due
to finite duration of sampling.
n
T
n
T
n
t
c
T
n
f
t
f
t
h
H
F
F
t
f
/
)
(
sin
)
(
)
(
~
)
(
)}
(
)
(
~
{
)}
(
{
)
( 1
1
otherwise
T
t
t
h
0
0
1
)
(
146. Frequency Aliasing
Aliasing is inevitable while working with
sampled records of finite length
Aliasing can be reduced by smoothing the
input function to attenuate higher frequencies
(defocusing images)
This is known as ‘anti-aliasing’ and has to be
done before the function is sampled
147. Aliasing & Interpolation
n
T
n
T
n
t
c
T
n
f
t
f /
)
(
sin
)
(
)
(
,
function
sinc
of
sum
of
ion
interpolat
0
)
(
sin
and
1
)
0
(
sin
as
),
(
)
(
T
k
t
m
c
c
T
k
t
T
k
f
t
f
148. Aliasing in Images
Spatial Aliasing
– Due to under-sampling in space
Temporal Aliasing
– Due to slow time interval between frames in video
– Wagon-Wheel Effect
157. Aliasing Artifact: Moiré Patterns
Beat patterns produced between two gratings
of approximately equal spacing
Common in images with periodic or nearly
periodic content
164. Properties of 2-D DFT:
Spatial & Frequency Intervals
Z
N
v
T
M
u
1
1
165. Properties of 2-D DFT:
Translation & Rotation
)
,
(
)
,
(
sin
cos
sin
cos
:
s
coordinate
polar
In
)
,
(
)
,
(
)
,
(
)
,
(
0
0
)
/
/
(
2
0
0
)
/
/
(
2
0
0
0
0
0
0
F
r
f
v
u
r
y
r
x
e
v
u
F
y
y
x
x
f
e
y
x
f
v
u
u
F
N
v
y
M
u
x
j
N
y
v
M
x
u
j
166. Properties of 2-D DFT:
Periodicity
)
,
(
)
,
(
)
,
(
)
,
(
2
1
2
1
N
k
v
M
k
u
F
N
k
v
u
F
v
M
k
u
F
v
u
F
)
,
(
)
,
(
)
,
(
)
,
(
2
1
2
1
N
k
y
M
k
x
f
N
k
y
x
f
y
M
k
x
f
y
x
f
169. Properties of 2-D DFT:
Symmetry
)
,
(
2
)
,
(
)
,
(
)
,
(
)
,
(
2
)
,
(
)
,
(
)
,
(
)
,
(
)
,
(
)
,
(
y
x
w
y
x
w
y
x
w
y
x
w
y
x
w
y
x
w
y
x
w
y
x
w
y
x
w
y
x
w
y
x
w
o
o
e
e
o
e
170. Properties of 2-D DFT:
Symmetry
)
,
(
)
,
(
)
,
(
)
,
(
0
)
,
(
)
,
(
1
0
1
0
y
N
x
M
w
y
x
w
y
N
x
M
w
y
x
w
y
x
w
y
x
w
o
o
e
e
o
M
x
N
y
e
173. Fourier Spectrum & Phase Angle
)
,
(
)
,
(
)
,
(
)
,
(
:
Spectrum
Power
)
,
(
)
,
(
arctan
:
Angle
Phase
)
,
(
)
,
(
)
,
(
:
Spectrum
Fourier
)
,
(
)
,
(
)
,
(
)
,
(
2
2
2
)
,
(
2
/
1
2
2
)
,
(
v
u
I
v
u
R
v
u
F
v
u
P
v
u
R
v
u
I
e
v
u
I
v
u
R
v
u
F
e
v
u
F
v
u
jI
v
u
R
v
u
F
v
u
j
v
u
j
174. Fourier Spectrum & Phase Angle
)
,
(
)
,
(
)
0
,
0
(
)
,
(
)
,
(
symmetry
odd
has
Angle
Phase
)
,
(
)
,
(
symmetry
even
has
Spectrum
symmetric
conjugate
is
FT
,
)
,
(
real
For
1
0
1
0
y
x
f
MN
y
x
f
F
v
u
v
u
v
u
F
v
u
F
y
x
f
M
x
N
y