A Solution Procedure To Solve Multi Objective Fractional Transportation Problem

β€’β€’

Custom Writing Service http://StudyHub.vip/A-Solution-Procedure-To-Solve-Multi-Obj πŸ‘ˆ

International Refereed Journal of Engineering and Science (IRJES)
ISSN (Online) 2319-183X, (Print) 2319-1821
Volume 7, Issue 1 (January 2018), PP. 67-72
www.irjes.com 67 | Page
A Solution Procedure to Solve Multi objective Fractional Transportation
Problem
Dr. Doke Dnyaneshwar Maruti, M.Sc .Ph.D.(Statistics)
Associate Professor and Head of Dept. , Mathematics and Statistics.
M.L. DahanukarCollege., VileParle (East), Mumbai
Corresponding Author: Dr. Doke Dnyaneshwar Maruti
Abstract: In decision making process if the objective function is ratio of two linear functions and objective function is to
be optimized. For example one may be interested to know the ratio of total cost to total time required for transportation.
This ratio is an objective function which is fractional objective function. When there are several such fractional objectives to
be optimized simultaneously then the problem becomes multi objective fractional programming problem (MOFLPP).
Initially Hungarian mathematician BelaMartos constructed such type of problem and named it as hyperbolic programming
problem. Same problem in general referred as Linear Fractional Programming Problem. Fractional programming problem
can be converted into linear programming problem (LPP) by using variable transformation given by Charnes and Cooper.
Then it can be solved by Simplex Method for Linear Programming Problem. .
In this paper we propose to solve multi objective fractional transportation problem. Initially will solve each of the
transportation problem as single objective and then using Taylor series approach expand each of the problem about its
optimal solution and ignoring second and higher order error terms each of the objective is converted into linear one. Then the
problem reduces to MOLTPP. Evaluate each of the objectives at every optimal solution and obtain evaluation matrix. Define
hyperbolic membership function using best and worst values of objective function with reference to evaluation matrix. These
membership functions are fuzzy functions Compromise solution is obtained using weighted a.m. of hyperbolic membership
functions and also weights quadratic mean of hyperbolic membership functions. Propose o solve problem at the end to
explain the procedure.
Keywords: Multi objective, compromise solution, hyperbolic membership function.
---------------------------------------------------------------------------------------------------------------------------------------
Date of Submission: 19 -01-2018 Date of acceptance: 33-01-2018
---------------------------------------------------------------------------------------------------------------------------
I. INTRODUCTION
It is well known fact that the transportation problem is special case of linear programming problem. In same way
multi objective fractional transportation programming problem is special case of multi objective fractional programming
problem. In this paper we will deal with multi objective fractional transportation programming problem. The problem is to
transfer goods from different origins to several destinations such that many fractional objective functions attain their optimal
values. Again optimizing several objectives simultaneously is not possible. Thus the golden mean is to find compromise
solution. For compromise solution there are several methods which are proved to be efficient. In next section linear
fractional transportation problem (LFTP) is introduced.
1. Formulation of Linear Fractional TP.(LFTP)
In general a problem is specified as under
i) There are m supply points from which goods are to be transported. Supply available at 𝑖𝑑𝑕point is at most π‘Žπ‘–π‘“π‘œπ‘Ÿπ‘– =
1,2, … , π‘š
ii) There are n demand centres where good are required. Minimum requirement of 𝑗𝑑𝑕 demand centre is 𝑏𝑗 π‘“π‘œπ‘Ÿπ‘— =
1,2, … , 𝑛.
iii) Profit matrix is 𝑃 = 𝑝𝑖𝑗 π‘–π‘ π‘š Γ— 𝑛 matrix where 𝑝𝑖𝑗 is profit of transporting one unit from 𝑖𝑑𝑕
origin to 𝑗𝑑𝑕
destination.
iv) Cost matrix is 𝐷 = 𝑑𝑖𝑗 π‘–π‘ π‘š Γ— 𝑛, matrix where 𝑑𝑖𝑗 is cost of transporting one unit from 𝑖𝑑𝑕
origin to 𝑗𝑑𝑕
destination
v) 𝑝0 and 𝑑0 be the fixed profit and cost respectively
vi) Suppose variableπ‘₯𝑖𝑗 denotes number units to be transported from 𝑖𝑑𝑕
origin to 𝑗𝑑𝑕
destination.
The objective function is,
π‘€π‘Žπ‘₯π‘–π‘šπ‘–π‘§π‘’ π‘œπ‘Ÿ π‘€π‘–π‘›π‘–π‘šπ‘–π‘§π‘’π‘„ π‘₯ =
𝑃(π‘₯)
𝐷(π‘₯)
=
𝑝𝑖𝑗
𝑛
𝑗=1
π‘š
𝑖=1 π‘₯𝑖𝑗 + 𝑝0
𝑑𝑖𝑗
𝑛
𝑗 =1
π‘š
𝑖=1 π‘₯𝑖𝑗 + 𝑑0
(1)
𝑆𝑒𝑏𝑗𝑒𝑐𝑑 π‘‘π‘œ π‘π‘œπ‘›π‘ π‘‘π‘Ÿπ‘Žπ‘–π‘›π‘‘π‘ ,
π‘₯𝑖𝑗
𝑛
𝑗 =1
≀ π‘Žπ‘–π‘“π‘œπ‘Ÿπ‘– = 1,2, … , π‘š (2)
π‘₯𝑖𝑗
π‘š
𝑖=1
≀ 𝑏𝑗 π‘“π‘œπ‘Ÿπ‘— = 1,2, … , 𝑛 (3)
π‘₯𝑖𝑗 β‰₯ 0 π‘“π‘œπ‘Ÿπ‘– = 1,2, … , π‘šπ‘Žπ‘›π‘‘π‘— = 1,2, … . , 𝑛 (4)
A Solution Procedure to Solve Multi objective Fractional Transportation Problem
www.irjes.com 68 | Page
𝑄 π‘₯ is called objective function which is fractional. Note that 𝑃(π‘₯) and 𝐷(π‘₯) are linear and (2) ,(3) and (4) are also linear.
Hence the name of the problem is linear fractional transportation Programming problem (LFTPP).
Here 𝐷 π‘₯ > 0 , for every 𝑋 = π‘₯𝑖𝑗 π‘€π‘•π‘’π‘Ÿπ‘’π‘‹ ∈ 𝑆, Where S is feasible set defined by constraint (2),(3) and (4).
Lastly we assume thatπ‘Žπ‘– > 0 π‘Žπ‘›π‘‘ 𝑏𝑗 > 0 π‘“π‘œπ‘Ÿ 𝑖 = 1,2, … , π‘š π‘Žπ‘›π‘‘ 𝑗 = 1,2, … . , 𝑛
Total supply is not less than total demand i.e. π‘Žπ‘– β‰₯
π‘š
𝑖=1 𝑏𝑗
𝑛
𝑗 =1 (5)
The problem is to find𝑋 = π‘₯𝑖𝑗 π‘€π‘•π‘’π‘Ÿπ‘’π‘‹ ∈ π‘†π‘Žπ‘›π‘‘ satisfying (2-4) and having optimal value of (1).
This LFTPP has following properties,
1. The problem has a feasible solution, i.e. feasible set 𝑆 β‰  βˆ….It means that solution set is non empty.
2. The set of feasible solutions is bounded.
3. The problem is always solvable.
2. Definitions.
i) If total demand equals to total supply, i.e.
π‘Žπ‘– =
π‘š
𝑖=1
𝑏𝑗
𝑛
𝑗 =1
(6)
Then LFTP is said to be balanced transportation problem.
Non negativity condition (4) and demand and supply conditions (2-3) at the most gives following bound to decision
variables.
0 ≀ π‘₯𝑖𝑗 ≀ min𝑖,𝑗 π‘Žπ‘–, 𝑏𝑗 π‘“π‘œπ‘Ÿ 𝑖 = 1,2, … , π‘š π‘Žπ‘›π‘‘ 𝑗 = 1,2, … , 𝑛.
ii) LFTP 𝑄 π‘₯ =
𝑃(π‘₯)
𝐷(π‘₯)
=
𝑝𝑖𝑗
𝑛
𝑗=1
π‘š
𝑖=1 π‘₯𝑖𝑗 +𝑝0
𝑑𝑖𝑗
𝑛
𝑗=1
π‘š
𝑖=1 π‘₯𝑖𝑗 +𝑑0
(7)
is said to be in canonical form if
π‘₯𝑖𝑗 = π‘Žπ‘–π‘“π‘œπ‘Ÿπ‘– = 1,2, … , π‘š
𝑛
𝑗 =1
(8)
π‘₯𝑖𝑗 = 𝑏𝑗 π‘“π‘œπ‘Ÿπ‘— = 1,2, …, (9)
π‘š
𝑖=1
π‘₯𝑖𝑗 β‰₯ 0 π‘“π‘œπ‘Ÿπ‘– = 1,2, … , π‘šπ‘Žπ‘›π‘‘π‘— = 1,2, … . , 𝑛 (10)
iii) There is exactly one equality redundant constraint in (8) and (9). When any one of the constraint in (8) and (9) are
dropped, what remains is exactly π‘š + 𝑛 βˆ’ 1 linearly independent equations.
iv) A solution of LFTPP is said to be basic solution if it satisfies conditions (8) and (9).In basic solution there are π‘š + 𝑛 βˆ’
1 non zero values of variables in basis.
v) A basic solution of the LFTPP is said to basic feasible (BFS) if all values in basis are non-negative i.e. it satisfies
condition (10).
vi) The basic solution is degenerate if at least one of its basic variable equal to zero. Otherwise it is said to be non-
degenerate.
3. Theorems
i) The linear fractional transportation problem is solvable if and only if itis balanced LFTPP.
The problem is balanced means π‘Žπ‘– =
π‘š
𝑖=1 𝑏𝑗
𝑛
𝑗=1
ii) If all π‘Žπ‘– π‘Žπ‘›π‘‘ 𝑏𝑗 in LFTPP are positive integers, then every basic solution of LFTPP is integer vector.
Hence if all π‘Žπ‘–π‘Žπ‘›π‘‘π‘π‘— of LFTPP are positive integers and the problem is in the canonical form then LFTPP has an optimal
solution x* with all elements as positive integers.
4. Multi Objective Linear Fractional Transportation Programming Problem.
Suppose 𝑄1 π‘₯ =
𝑃1 π‘₯
𝐷1 π‘₯
, 𝑄2 π‘₯ =
𝑃2 π‘₯
𝐷2 π‘₯
, … . . , π‘„π‘˜ π‘₯ =
π‘ƒπ‘˜ π‘₯
π·π‘˜ π‘₯
arek linear fractional transportation problems such that all objective functions to be optimised simultaneously subject to
constraint (2) ,(3),(4) and (5) and π·π‘˜ π‘₯ β‰₯ 0 for every k then the problem is called Multi Objective Linear Fractional
Transportation Programming Problem (MOLFTPP). Where
𝑄𝑙 π‘₯ =
𝑝𝑖𝑗
𝑙
π‘₯𝑖𝑗
𝑛
𝑗=1
π‘š
𝑖=1
𝑑𝑖𝑗
β€²
π‘₯𝑖𝑗
𝑛
𝑗=1
π‘š
𝑖=1
π‘“π‘œπ‘Ÿ 𝑙 = 1,2, … π‘˜
𝑝𝑖𝑗
𝑙
is profit of transporting one unit from 𝑖𝑑𝑕
origin to 𝑗𝑑𝑕
destination in case of 𝑙𝑑𝑕
objective function.
𝑑𝑖𝑗
𝑙
is cost of transporting one unit from 𝑖𝑑𝑕
origin to 𝑗𝑑𝑕
destinationin case of 𝑙𝑑𝑕
objective function.
5. Algorithm To Solve MOLFTPP
A Solution Procedure to Solve Multi objective Fractional Transportation Problem
www.irjes.com 69 | Page
i) Consider MOLFTPP,π‘€π‘Žπ‘₯π‘–π‘šπ‘–π‘§π‘’ { 𝑄1 π‘₯ , 𝑄2 π‘₯ , … , π‘„π‘˜ π‘₯ } subject to constraint (8-10).
ii) Find optimal solution of each of the linear fractional transportation problem as single objective function subject to
constraint. LINGO software can be used to find optimal solution of each of the fractional transportation problem.
iii) Suppose 𝑋𝑙
βˆ—
is optimal solution of 𝑄𝑙 π‘₯ π‘“π‘œπ‘Ÿπ‘™ = 1,2, … , π‘˜
iv) Expand objective function 𝑄𝑙 π‘₯ about𝑋𝑙
βˆ—
= π‘₯𝑖𝑗 using Taylor’s theorem and ignoring second and higher order
terms convert 𝑄𝑙 π‘₯ into linear function.
Consider𝑄𝑙(π‘₯) =
𝑃𝑙(π‘₯)
𝐷𝑙(π‘₯)
and 𝑋𝑙
βˆ—
be the optimal solution of 𝑄𝑙(π‘₯) ,then using Taylor Series approach
differentiate𝑄𝑙 π‘₯ with respect to each of the variable partially.
𝑄𝑙(π‘₯) β‰… 𝑄𝑙 𝑋𝑙
βˆ—
+ π‘₯11 βˆ’ π‘₯11𝑙
πœ•π‘„π‘™ 𝑋𝑙
πœ•π‘₯11 π‘Žπ‘‘π‘‹π‘–
βˆ—
+ π‘₯12 βˆ’ π‘₯12𝑙
πœ•π‘„π‘™ 𝑋𝑙
πœ•π‘₯12 π‘Žπ‘‘π‘‹π‘–
βˆ—
+ β‹― + π‘₯π‘šπ‘› βˆ’ π‘₯π‘šπ‘›π‘™
πœ•π‘„π‘™ 𝑋𝑙
πœ•π‘₯π‘šπ‘› π‘Žπ‘‘π‘‹π‘–
βˆ—
+ 𝑂(𝑕2)
π‘Šπ‘•π‘’π‘Ÿπ‘’π‘‚ 𝑕2
Represents second and higher order terms of the expansion which we will ignore. Using this expansion each of
the objective function becomes linear function. To avoid complexity of notations we write,𝑄𝑙(π‘₯) = 𝑍𝑙 π‘₯ π‘“π‘œπ‘Ÿπ‘™ = 1,2, … , π‘˜
The problem is to π‘€π‘Žπ‘₯π‘–π‘šπ‘–π‘§π‘’ {𝑍1 π‘₯ , 𝑍2 π‘₯ , … . , π‘π‘˜ π‘₯ } subject to (7-10) i.e.Multi Objective Linear Transportation
Programming Problem. (MOLTPP).It can be solved by using fuzzy compromise approach as stated in next section.
v) Fuzzy Compromise approach for MOLTPP.
Consider MOLTPP
π‘€π‘Žπ‘₯π‘–π‘šπ‘–π‘§π‘’ {𝑍1 π‘₯ , 𝑍2 π‘₯ , … . , π‘π‘˜ π‘₯ } ---------------- (11)
Subject to (7-10) and 𝑋 ∈ 𝑆, where𝑆is set of feasible solutions.
Solution to (11) is often conflicting as several objectives cannot be optimized simultaneously. To find compromise
solutions first solve each of the objective function as marginal or single objective function. Here we have converted Multi-
objective Linear Fractional Transportations Programming problem to Multi-objective Linear Programming problem using
Taylor series approach. Thus each of the MOLTPP can be solved using any one of the techniques of LPP. Once we solve
each of the problems individually then evaluate each of the objective function at optimal solutions of all the objectives.
Suppose 𝑋𝑙
βˆ—
is optimal solution of 𝑙𝑑𝑕
objective function. Find values of each objective at optimal solution of 𝑙𝑑𝑕
objective
function for all 𝑙 = 1,2, … , π‘˜.Thus we have evaluation matrix of order π‘˜ Γ— π‘˜ as given below.
𝑍1 π‘₯1
βˆ—
𝑍1 π‘₯2
βˆ—
… … … . . 𝑍1 π‘₯π‘˜
βˆ—
.
𝑍2 π‘₯1
βˆ—
𝑍2 π‘₯2
βˆ—
… … … 𝑍2 π‘₯π‘˜
βˆ—
:
:
π‘π‘˜ π‘₯1
βˆ—
π‘π‘˜ π‘₯2
βˆ—
… … . … π‘π‘˜ ( π‘₯π‘˜
βˆ—
).
6. Fuzzy Programming Approach For Compromise Solution Of MOLTPP
Define Hyperbolic Membership function for each of the linearized objective function as under,.
Consider multi objective linear transportation problem.
π‘€π‘Žπ‘₯π‘–π‘šπ‘–π‘§π‘’ 𝑍 π‘₯ = 𝑍1 π‘₯ , 𝑍2 π‘₯ , … , π‘π‘˜ π‘₯ β€²
𝑖. 𝑒. π‘€π‘Žπ‘₯π‘–π‘šπ‘–π‘§π‘’ π‘π‘˜ π‘₯ = cij
k
xij
n
j=1
π‘š
𝑖=1
, π‘˜ = 1,2, … , 𝐾
𝑆𝑒𝑏𝑗𝑒𝑐𝑑 π‘‘π‘œ
π‘₯𝑖𝑗 =
𝑛
𝑗 =1
π‘Žπ‘– , 𝑖 = 1,2, … . , π‘š , π‘₯𝑖𝑗
π‘š
𝑖=1
= 𝑏𝑗 , 𝑗 = 1,2, … . , 𝑛
π‘Žπ‘– = 𝑏𝑗
n
j=1
π‘š
𝑖=1 And π‘₯𝑖𝑗 β‰₯ 0 π‘“π‘œπ‘Ÿ π‘Žπ‘™π‘™ 𝑖 π‘Žπ‘›π‘‘ 𝑗
Subject to x ∈ 𝑿
Where 𝑿 set of feasible solutions.
Solve each of the objectives as single objective function and then find evaluation matrix. Find best possible value
of each of the objective and worst possible value for each of the objective. Define these values as under,
π‘ˆπ‘˜ = π‘€π‘Žπ‘₯ π‘π‘˜ π‘₯ , π‘˜ = 1,2, … , 𝐾 ,πΏπ‘˜ = 𝑀𝑖𝑛 π‘π‘˜ π‘₯ , π‘˜ = 1,2, … , 𝐾
Hyperbolic membership function for π‘˜π‘‘π‘• objective function is defined as under, πœ‘π‘˜ : 𝑋 β†’ 0,1 . As given below,
πœ‘π‘˜ π‘₯ =
1 𝑖𝑓 π‘π‘˜ (π‘₯) ≀ πΏπ‘˜
1
2
tanh⁑
(
π‘ˆπ‘˜ + πΏπ‘˜
2
βˆ’ π‘π‘˜ π‘₯ ) π›Όπ‘˜ +
1
2
0 𝑖𝑓 π‘π‘˜ (π‘₯) β‰₯ π‘ˆπ‘˜
𝑖𝑓 πΏπ‘˜ ≀ π‘π‘˜ (π‘₯) ≀ π‘ˆπ‘˜
Where π›Όπ‘˜ =
6
π‘ˆπ‘˜ βˆ’πΏπ‘˜
7. Compromise Solution of MLOFTPP
A Solution Procedure to Solve Multi objective Fractional Transportation Problem
www.irjes.com 70 | Page
a) Aggregation operator as weighted arithmetic mean of hyperbolic membership functions. Thus the MOLFPP becomes
single objective nonlinear transportation problem.
π‘€π‘Žπ‘₯π‘–π‘šπ‘–π‘§π‘’ πœ‡ π‘₯ = πœ‘π‘–
π‘˜
𝑖=1 𝑀𝑖
𝑆𝑒𝑏𝑗𝑒𝑐𝑑 π‘‘π‘œ 𝑔𝑖𝑣𝑒𝑛 𝑠𝑒𝑑 π‘œπ‘“ π‘π‘œπ‘›π‘ π‘‘π‘Ÿπ‘Žπ‘–π‘›π‘‘π‘ 
b) Aggregation operator as weighted quadratic mean of hyperbolic membership functions. Thus the MOLFPP becomes
single objective nonlinear transportation problem.
π‘€π‘Žπ‘₯π‘–π‘šπ‘–π‘§π‘’ πœ‡ ( π‘₯)= πœ‘π‘–
2
π‘˜
𝑖=1 𝑀𝑖
1
2
= πœ‘π‘–
2
π‘˜
𝑖=1 𝑀𝑖
𝑆𝑒𝑏𝑗𝑒𝑐𝑑 π‘‘π‘œ 𝑔𝑖𝑣𝑒𝑛 𝑠𝑒𝑑 π‘œπ‘“ π‘π‘œπ‘›π‘ π‘‘π‘Ÿπ‘Žπ‘–π‘›π‘‘π‘ 
Thus to find compromise solution is nothing but single objective nonlinear programming problem. In this method objective
function is nonlinear and constraints are linear. Hence the problem is solved by LINGO techniques of nonlinear
optimization.
II. CONCLUSION
Above method dives efficient solutions of multi objective fractional transportation problem using fuzzy programming
approach.
Example: Consider following two objective fractional transportation problem,
π‘€π‘Žπ‘₯π‘–π‘šπ‘–π‘§π‘’ 𝑄1 π‘₯ =
10π‘₯11 + 14π‘₯12 + 8π‘₯13 + 12π‘₯14 + 8π‘₯21 + 12π‘₯22 + 14π‘₯23 + 8π‘₯24 + 9π‘₯31 + 6π‘₯32 + 15π‘₯33 + 9π‘₯34
15π‘₯11 + 12π‘₯12 + 16π‘₯13 + 8π‘₯14 + 10π‘₯21 + 6π‘₯22 + 13π‘₯23 + 12π‘₯24 + 13π‘₯31 + 15π‘₯32 + 12π‘₯33 + 10π‘₯34
π‘€π‘Žπ‘₯π‘–π‘šπ‘–π‘§π‘’ 𝑄2 π‘₯ =
14π‘₯11 + 9π‘₯12 + 11π‘₯13 + 9π‘₯14 + 12π‘₯21 + 9π‘₯22 + 6π‘₯23 + 15π‘₯24 + 6π‘₯31 + 9π‘₯32 + 12π‘₯33 + 10π‘₯34
12π‘₯11 + 14π‘₯12 + 7π‘₯13 + 17π‘₯14 + 6π‘₯21 + 11π‘₯22 + 13π‘₯23 + 10π‘₯24 + 9π‘₯31 + 15π‘₯32 + 12π‘₯33 + 16π‘₯34
π‘†π‘’π‘π‘—π‘’π‘π‘‘π‘‘π‘œ
π‘₯11 + π‘₯12 + π‘₯13 + π‘₯14 = 15, π‘₯21 + π‘₯22 + π‘₯23 + π‘₯24 = 25
π‘₯31 + π‘₯32 + π‘₯33 + π‘₯34 = 20, π‘₯11 + π‘₯21 + π‘₯31 = 15
π‘₯12 + π‘₯22 + π‘₯32 = 25 , π‘₯13 + π‘₯23 + π‘₯33 = 5 , π‘₯14 + π‘₯24 + π‘₯34 = 15
, π‘₯𝑖𝑗 β‰₯ 0 π‘“π‘œπ‘Ÿπ‘– = 1,2,3 π‘Žπ‘›π‘‘π‘— = 1,2,3,4
a) Step1: A LINGO code to solve 𝑄1 π‘₯ is as under,
MAX
= (10*X11+14*X12+8*X13+12*X14+8*X21+12*X22+14*X23+8*X24+
9*X31+6*X32+15*X33+9*X34)/(15*X11+12*X12+16*X13+8*X14+10*X21+6*X22+13*X23+12*X24+13*X31+15*X3
2+12*X33+10*X34);
X11+X12+X13+X14=15; X21+X22+X23+X24=25;
X31+X32+X33+X34=20; X11+X21+X31=15; X12+X22+X32=25;
X13+X23+X33=5;X14+X24+X34=15;
X11>=0; X12>=0;X13>=0;X14>=0;X21>=0; X22>=0;X23>=0;X24>=0;
X31>=0;X32>=0;X33>=0;X34>=0;
Optimal Solution of 𝑄1 π‘₯ is,
𝑋1
βˆ—
= π‘₯14 = 15, π‘₯22 = 25 , π‘₯31 = 15, , π‘₯33 = 5, π‘Žπ‘›π‘‘π‘„1 𝑋1
βˆ—
= 1.314286
Similarly Optimal Solution of 𝑄2 π‘₯ is,
𝑋2
βˆ—
= π‘₯11 = 5, π‘₯12 = 5, π‘₯13 = 5, π‘₯21 = 10, π‘₯24 = 15, π‘₯32 = 20 π‘Žπ‘›π‘‘π‘„2 𝑋2
βˆ—
= 1.02996
b) Following MATLAB program finds coefficients of xij’s to convert it into linear function using Taylor Series.
% A program to find coefficients of linear objective function.
P1 = [10;14;8;12;8;12;14;8;9;6;15;9];D1 = [15;12;16;8;10;6;13;12;13;15;12;10];
X1 = [0;0;0;15;0;25;0;0;15;0;5;0];
C1P = P1'*(D1'*X1);C1D = D1'*(P1'*X1);Z1 = (C1P-C1D)/((D1'*X1)^2);
P2 = [14;9;11;9;12;9;6;15;6;9;12;10];D2 = [12;14;7;17;6;11;13;10;9;15;14;16];
X2 = [5;5;5;0;10;0;0;15;0;20;0;0];
C2P = P2'*(D2'*X2);C2D = D2'*(P2'*X2);Z2 = (C2P -C2D)/((D2'*X2)^2);
U1 = (P1'*X1) /(D1'*X1); L1 = (P1'*X2)/(D1'*X2);
U2 = (P2'*X2)/(D2'*X2); L2 = (P2'*X1)/(D2'*X1);
c) LinearObjective Functions.
π‘€π‘Žπ‘₯π‘–π‘šπ‘–π‘§π‘’ 𝑍1 π‘₯ π‘Žπ‘›π‘‘ 𝑍2 π‘₯ , π‘Šπ‘•π‘’π‘Ÿπ‘’,
𝑍1 π‘₯ = 1.3143 βˆ’ 0.185π‘₯11 βˆ’ 0.0034π‘₯12 βˆ’ 0.0248π‘₯13 + 0.0028π‘₯14 βˆ’ 0.0098π‘₯21 + 0.0078π‘₯22 βˆ’ 0.0059π‘₯23
βˆ’ 0.0148π‘₯24 βˆ’ 0.0154π‘₯31 βˆ’ 0.0261 π‘₯32 βˆ’ 0.0015π‘₯33 βˆ’ 0.00079π‘₯34
𝑍2 π‘₯ = 1.0296 + 0.0024π‘₯11 βˆ’ 0.0080π‘₯12 + 0.0056π‘₯13 βˆ’ 0.0126π‘₯14 + 0.0086π‘₯21 βˆ’ 0.0034π‘₯22 βˆ’ 0.0109π‘₯23
+ 0.0070π‘₯24 βˆ’ 0.0048π‘₯31 βˆ’ 0.0095 π‘₯32 βˆ’ 0.0036π‘₯33 βˆ’ 0.0096π‘₯34
𝑆𝑒𝑏𝑗𝑒𝑐𝑑 π‘‘π‘œ π‘₯11 + π‘₯12 + π‘₯13 + π‘₯14 = 15,π‘₯21 + π‘₯22 + π‘₯23 + π‘₯24 = 25
π‘₯31 + π‘₯32 + π‘₯33 + π‘₯34 = 20,π‘₯11 + π‘₯21 + π‘₯31 = 15, π‘₯12 + π‘₯22 + π‘₯32 = 25 ,
π‘₯13 + π‘₯23 + π‘₯33 = 5 ,π‘₯14 + π‘₯24 + π‘₯34 = 15,
,π‘₯𝑖𝑗 β‰₯ 0 π‘“π‘œπ‘Ÿ 𝑖 = 1,2,3 π‘Žπ‘›π‘‘ 𝑗 = 1,2,3,4
c) Evaluation Matrix:
A Solution Procedure to Solve Multi objective Fractional Transportation Problem
www.irjes.com 71 | Page
π’πŸ π‘ΏπŸ
βˆ—
π’πŸ π‘ΏπŸ
βˆ—
π’πŸ π‘ΏπŸ
βˆ—
π’πŸ π‘ΏπŸ
βˆ— =
1.3143 0.6038
0.6939 1.0296
Thus π‘ˆ1 = 1.3143 , 𝐿1 = 0.6038 ,π‘ˆ2 = 1.0296 , 𝐿2 = 0.6939
d) Hyperbolic Membership Function:
πœ‘π‘˜ π‘₯ =
1
2
tanh⁑
(
π‘ˆπ‘˜ + πΏπ‘˜
2
βˆ’ π‘π‘˜ π‘₯ ) π›Όπ‘˜ +
1
2
Whereπ›Όπ‘˜ =
6
π‘ˆπ‘˜ βˆ’πΏπ‘˜
, for k=1,2
π‘ˆ1+𝐿1
2
= 0.9590, 𝛼1 =
6
π‘ˆ1βˆ’πΏ1
= 8.44475
π‘ˆ2+𝐿2
2
= 0.86175,𝛼2 =
6
π‘ˆ2βˆ’πΏ2
= 17.8731
πœ‘1 π‘₯ =
1
2
tanh⁑
π‘ˆ1+𝐿1
2
βˆ’ 𝑍1 π‘₯ ) 𝛼1 +
1
2
=
1
2
tanh⁑0.9590 βˆ’ 8.4475 𝑍1 π‘₯ +
1
2
πœ‘2 π‘₯ =
1
2
tanh⁑
π‘ˆ2+𝐿2
2
βˆ’ 𝑍2 π‘₯ 𝛼2 +
1
2
=
1
2
tanh⁑0.86175 βˆ’ 17.8731 𝑍2 π‘₯ +
1
2
e) Compromise Solution
i) Weighted A.M. mean of hyperbolic membership functions.
π‘€π‘Žπ‘₯π‘–π‘šπ‘–π‘§π‘’ πœ‡ π‘₯ = πœ‘π‘–
π‘˜
𝑖=1 𝑀𝑖𝑆𝑒𝑏𝑗𝑒𝑐𝑑 π‘‘π‘œ 𝑔𝑖𝑣𝑒𝑛 𝑠𝑒𝑑 π‘œπ‘“ π‘π‘œπ‘›π‘ π‘‘π‘Ÿπ‘Žπ‘–π‘›π‘‘π‘ 
MAX
=(0.5*@TANH(0.9590 -8.44475*(1.3143-0.185*X11-0.0034*X12
-0.0248*X13+0.0028*X14-0.0098*X21+0.0078*X22-0.0059*X23
-0.0148*X24-0.0154*X31-0.0261*X32-0.0015*X33-0.0079*X34))+0.5)*0.1+
(0.5*@TANH(0.86175-17.8731*(1.0296+0.0024*X11-0.0080*X12+0.0056*X13-
.0126*X14+0.0086*X21-0.0034*X22-0.0109*X23+0.007*X24-0.0048*X31
-0.0095*X32-0.0036*X33-0.0096*X34))+0.5)*0.9;
! ENTER DEMAND AND SUPPLY CONSTRAINTS;
X11+X12+X13+X14=15;X21+X22+X23+X24=25;X31+X32+X33+X34=20; X11+X21+X31=15;
X12+X22+X32=25;X13+X23+X33=5; X14+X24+X34=15;
! ENTER NON NEGATIVITY CONSTRAINTS;
X11>=0; X12>=0; X13>=0; X14>=0;X21>=0; X22>=0; X23>=0; X24>=0;
X31>=0; X32>=0; X33>=0; X34>=0;
@GIN(X11);@GIN(X12);@GIN(X13);@GIN(X14);
@GIN(X21);@GIN(X22);@GIN(X23);@GIN(X24);
@GIN(X31);@GIN(X32);@GIN(X33);@GIN(X34);
For different values of weights we have following solutions.
X1* (0.2,0.6) (0.3,0.7) 0.6,0.4) (0.8,0.2) (0.9,0.1) X2*
X11 0 0 15 15 11 14 5
X12 0 0 0 0 0 0 5
X13 0 1 0 0 4 0 5
X14 15 14 0 0 0 1 0
X21 0 0 0 0 0 1 10
X23 25 23 5 6 10 5 0
X33 0 2 5 4 0 5 0
X24 0 0 15 15 15 14 15
X31 15 15 0 0 4 0 0
X32 0 2 20 19 15 20 20
X33 5 2 0 1 1 0 0
X34 0 1 0 0 0 0 0
Q1 1.3143 1.20871 0.65 0.66709 0.68997 0.65992 0.60377
Q2 0.70345 0.6831 0.92 0.93423 0.98701 0.90812 1.0296
ii) Weighted Quadratic Mean of hyperbolic membership functions.
π‘€π‘Žπ‘₯π‘–π‘šπ‘–π‘§π‘’ πœ‡ ( π‘₯)= πœ‘π‘–
2
π‘˜
𝑖=1 𝑀𝑖
1
2
= πœ‘π‘–
2
π‘˜
𝑖=1 𝑀𝑖
𝑆𝑒𝑏𝑗𝑒𝑐𝑑 π‘‘π‘œ 𝑔𝑖𝑣𝑒𝑛 𝑠𝑒𝑑 π‘œπ‘“ π‘π‘œπ‘›π‘ π‘‘π‘Ÿπ‘Žπ‘–π‘›π‘‘π‘ 
MAX
=@SQRT(((0.5*@TANH(0.9590 -8.44475*(1.3143-0.185*X11-0.0034*X12
-0.0248*X13+0.0028*X14-0.0098*X21+0.0078*X22-0.0059*X23
-0.0148*X24-0.0154*X31-0.0261*X32-0.0015*X33-0.0079*X34))+0.5)^2)*0.1+
((0.5*@TANH(0.86175-17.8731*(1.0296+0.0024*X11-0.0080*X12+0.0056*X13-
.0126*X14+0.0086*X21-0.0034*X22-0.0109*X23+0.007*X24-0.0048*X31
-0.0095*X32-0.0036*X33-0.0096*X34))+0.5)^2)*0.9);
! ENTER DEMAND AND SUPPLY CONSTRAINTS;
X11+X12+X13+X14=15;X21+X22+X23+X24=25;X31+X32+X33+X34=20;
X11+X21+X31=15; X12+X22+X32=25;X13+X23+X33=5; X14+X24+X34=15;
! ENTER NON NEGATIVITY CONSTRAINTS;
X11>=0; X12>=0; X13>=0; X14>=0;X21>=0; X22>=0; X23>=0; X24>=0;
X31>=0; X32>=0; X33>=0; X34>=0;
@GIN(X11);@GIN(X12);@GIN(X13);@GIN(X14);
@GIN(X21);@GIN(X22);@GIN(X23);@GIN(X24);
A Solution Procedure to Solve Multi objective Fractional Transportation Problem
www.irjes.com 72 | Page
@GIN(X31);@GIN(X32);@GIN(X33);@GIN(X34);
For different values of weights we have following solutions.
X1* (0.1,0.9) (0.2,0.8) (0.4,0.6) (0.6,0.4) (0.9,0.1) X2*
X11 0 0 15 12 15 14 5
X12 0 0 0 0 0 0 5
X13 0 2 0 3 0 0 5
X14 15 13 0 0 0 1 0
X21 0 0 0 0 0 1 10
X23 25 21 6 19 5 5 0
X33 0 2 4 2 5 5 0
X24 0 2 15 4 15 14 15
X31 15 15 0 3 0 0 0
X32 0 4 19 6 20 20 20
X33 5 1 1 0 0 0 0
X34 0 0 0 11 0 0 0
Q1 1.3143 1.1088 0.6671 0.9069 0.6500 0.6599 0.60377
Q2 0.70345 0.7065 0.9342 0.8540 0.9200 0.9081 1.0296
REFERENCES
1
Alexandra I. Tkacenkoβ€œThe generalized algorithm for solving the fractional multi objective transportation problem.”
ROMAI J.,1(2006),197-202.
2
Alexandra I. Tkacenkoβ€œThe Multiple criteria transportation model” . (Special case ) Recent advances in applied
mathematical and computational science Volume 1
3 Aneja YP, Nair KPK .”Bicriteria Transportation Problems.” Management Science, 1979; 25:73-8.
5
Charnes,A., Cooper W.W. β€œProgramming with linear fractional”. Naval Res. Logistics Quart. Vol. 9, No.3 and No.4, 1962,
pp, 181-186.
8 Diaz JA . Solving multi objective transportation problem..EconomickoMathematickyObzor . 1978;14:273-74.
9
Diaz JA Finding a complete description of all efficient solutions to a multi objective transdportation.
EconomickoMathematicky Obzor1979;15;62-73.
10
Doke and Jadhav ,’ A fuzzy approach to solve multi objective fractional linear programming problem” International Journal
of Mathematics and Computer Research., Volume 4 ,Issue 5 ,pp 1379-13862016
11
Doke and Jadhav ,”A Solution to three objective transportation problems using fuzzy compromise programming approach.”,
International Journal of Modern Sciences and Engineering Technology, Vol. 2 Issue 1, pp 1-5 , 2015
12
Doke D.M. andJadhav V.A. β€œ A Fuzzy Approach to solve multi objective linear fractional transportation programming
problem”, International Journal of Statistika and MathematikaVol.18,issue 1 ,pp21-26,2016
13
Dr.V.A.Jadhav and Doke D.M. β€œ Solution procedure to solve Fractional Transportation problem with fuzzy cost and profit
coefficients”, International Journal of Mathematics and Computer Research., Volume 4 ,Issue 7 ,pp 1554-1562,2016
14
E. Bajalinov , Linear Fractional Programming ,Theory, Methods, Applications and Software, Kluwer Academic Publishers,
(2003)
15
Hale GonceKocken,MehmetAhlatcioglu , A compensatory approach to multi objective linear transportation problem with
fuzzy cost coefficients. Research Article.
16
H.J. Zimmermann, β€œ Fuzzy programming and linear programming with several objective functions”, Fuzzy Sets and
Systems, 85,pp 45-48,1997.
17 H.J. Zimmermann, "Fuzzy Set Theory and Its Applications, ", Kluwer Academic Publishers"
18
Lushu Li ,K.K.lai ,”A Fuzzy approach to multi objective transportation problem”, Computers and Operations’ Research (27)
(2000) 43-57
19
M. Chakraborty and Gupta β€œ Fuzzy mathematical programming for multi objective fractional programming problem,” Fuzzy
Sets and System,Vol.125,no.3,pp,335-342,2002.
21
PitramSingh ,Shiv Dutta Kumar and R.K.Singh, β€œ An approach for multi objective linear plus fractional programming
problem.”, International electronic Journal of Pure and applied Mathematics, volume 2 No. 3 ,2010,pp 103-110.
22
Ringuest J-L ,Rinks DB . Interactive solution for multi objective transportation problem. European Journal of Operations
Reaserch. 1987; 32: 96-106.
23
Singh et.al. β€œ Fuzzy multi objective linear plus linear fractional programming problem approximation and goal programming
approach,” International Journal of Mathematics and Computers in simulation, vol .5 no. 5,pp. 395-404,2011
24
StefenChanas and DorotaKutcha ,”A concept of the optimal solution of the transportation problem with fuzzy cost
coefficients”. Fuzzy Sets and Systems, 82, Issue 3, pp 40-48,2008.
25
SurapatiPramanik and Durga Banerjee β€œChance constrained multi objective linear plus linear fractional programming
problem based on Taylor’s series approximation”, International Journal of Engineering Research and Development, Vol 1,
Issue 3,
26
Singh et.al. β€œ Fuzzy multi objective linear plus linear fractional programming problem approximation and goal programming
approach,” International Journal of Mathematics and Computers in simulation, vol .5 no. 5,pp. 395-404,2011
27
Tokasari D.M. , β€œTaylor series approach to fuzzy multi objective linear fractional programming”, Information Science
,178(2008),pp 1189-1204.
28
V.J.Sudhakar and V.NavaneethaKumar . A different approach for solving two stage fuzzy transportation problem. Int.J.
Contemp. Math.Sciences, Vol. 6 ,2011,no. 11,517-526.
29
W.Ritha and J.MerlineVinotha .Multi objective two stage fuzzy transportation problem. Journal of Physical Sciences,
Vol.13,2009,107-120.
30 Zadeh LA .Fuzzy Sets .Information control. 1965; 8, 338:353.
Dr. Doke Dnyaneshwar Maruti. β€œA Solution Procedure to Solve Multi objective Fractional
Transportation Problem.” International Refereed Journal of Engineering and Science (IRJES),
vol. 07, no. 01, 2018, pp. 67–72.

Recomendados

Sampling-Based Planning Algorithms for Multi-Objective Missions por
Sampling-Based Planning Algorithms for Multi-Objective MissionsSampling-Based Planning Algorithms for Multi-Objective Missions
Sampling-Based Planning Algorithms for Multi-Objective MissionsMd Mahbubur Rahman
66 visualizaΓ§Γ΅esβ€’28 slides
A Proposed Method For Solving Quasi-Concave Quadratic Programming Problems By... por
A Proposed Method For Solving Quasi-Concave Quadratic Programming Problems By...A Proposed Method For Solving Quasi-Concave Quadratic Programming Problems By...
A Proposed Method For Solving Quasi-Concave Quadratic Programming Problems By...Finni Rice
18 visualizaΓ§Γ΅esβ€’7 slides
A partial linearization method for the traffic assignment problem.pdf por
A partial linearization method for the traffic assignment problem.pdfA partial linearization method for the traffic assignment problem.pdf
A partial linearization method for the traffic assignment problem.pdfAnn Wera
2 visualizaΓ§Γ΅esβ€’21 slides
Modified Procedure to Solve Fuzzy Transshipment Problem by using Trapezoidal ... por
Modified Procedure to Solve Fuzzy Transshipment Problem by using Trapezoidal ...Modified Procedure to Solve Fuzzy Transshipment Problem by using Trapezoidal ...
Modified Procedure to Solve Fuzzy Transshipment Problem by using Trapezoidal ...inventionjournals
37 visualizaΓ§Γ΅esβ€’5 slides
Unsteady MHD Flow Past A Semi-Infinite Vertical Plate With Heat Source/ Sink:... por
Unsteady MHD Flow Past A Semi-Infinite Vertical Plate With Heat Source/ Sink:...Unsteady MHD Flow Past A Semi-Infinite Vertical Plate With Heat Source/ Sink:...
Unsteady MHD Flow Past A Semi-Infinite Vertical Plate With Heat Source/ Sink:...IJERA Editor
28 visualizaΓ§Γ΅esβ€’6 slides

Mais conteΓΊdo relacionado

Similar a A Solution Procedure To Solve Multi Objective Fractional Transportation Problem

Applying Transformation Characteristics to Solve the Multi Objective Linear F... por
Applying Transformation Characteristics to Solve the Multi Objective Linear F...Applying Transformation Characteristics to Solve the Multi Objective Linear F...
Applying Transformation Characteristics to Solve the Multi Objective Linear F...AIRCC Publishing Corporation
106 visualizaΓ§Γ΅esβ€’8 slides
APPLYING TRANSFORMATION CHARACTERISTICS TO SOLVE THE MULTI OBJECTIVE LINEAR F... por
APPLYING TRANSFORMATION CHARACTERISTICS TO SOLVE THE MULTI OBJECTIVE LINEAR F...APPLYING TRANSFORMATION CHARACTERISTICS TO SOLVE THE MULTI OBJECTIVE LINEAR F...
APPLYING TRANSFORMATION CHARACTERISTICS TO SOLVE THE MULTI OBJECTIVE LINEAR F...ijcsit
24 visualizaΓ§Γ΅esβ€’8 slides
LP linear programming (summary) (5s) por
LP linear programming (summary) (5s)LP linear programming (summary) (5s)
LP linear programming (summary) (5s)DionΓ­sio Carmo-Neto
10K visualizaΓ§Γ΅esβ€’8 slides
Particle Swarm Optimization to Solve Multiple Traveling Salesman Problem por
Particle Swarm Optimization to Solve Multiple Traveling Salesman ProblemParticle Swarm Optimization to Solve Multiple Traveling Salesman Problem
Particle Swarm Optimization to Solve Multiple Traveling Salesman ProblemIRJET Journal
52 visualizaΓ§Γ΅esβ€’6 slides
An Interactive Decomposition Algorithm for Two-Level Large Scale Linear Multi... por
An Interactive Decomposition Algorithm for Two-Level Large Scale Linear Multi...An Interactive Decomposition Algorithm for Two-Level Large Scale Linear Multi...
An Interactive Decomposition Algorithm for Two-Level Large Scale Linear Multi...IJERA Editor
284 visualizaΓ§Γ΅esβ€’16 slides
Efficient Solution of Two-Stage Stochastic Linear Programs Using Interior Poi... por
Efficient Solution of Two-Stage Stochastic Linear Programs Using Interior Poi...Efficient Solution of Two-Stage Stochastic Linear Programs Using Interior Poi...
Efficient Solution of Two-Stage Stochastic Linear Programs Using Interior Poi...SSA KPI
526 visualizaΓ§Γ΅esβ€’32 slides

Similar a A Solution Procedure To Solve Multi Objective Fractional Transportation Problem(20)

Applying Transformation Characteristics to Solve the Multi Objective Linear F... por AIRCC Publishing Corporation
Applying Transformation Characteristics to Solve the Multi Objective Linear F...Applying Transformation Characteristics to Solve the Multi Objective Linear F...
Applying Transformation Characteristics to Solve the Multi Objective Linear F...
AIRCC Publishing Corporationβ€’106 visualizaΓ§Γ΅es
APPLYING TRANSFORMATION CHARACTERISTICS TO SOLVE THE MULTI OBJECTIVE LINEAR F... por ijcsit
APPLYING TRANSFORMATION CHARACTERISTICS TO SOLVE THE MULTI OBJECTIVE LINEAR F...APPLYING TRANSFORMATION CHARACTERISTICS TO SOLVE THE MULTI OBJECTIVE LINEAR F...
APPLYING TRANSFORMATION CHARACTERISTICS TO SOLVE THE MULTI OBJECTIVE LINEAR F...
ijcsitβ€’24 visualizaΓ§Γ΅es
LP linear programming (summary) (5s) por DionΓ­sio Carmo-Neto
LP linear programming (summary) (5s)LP linear programming (summary) (5s)
LP linear programming (summary) (5s)
DionΓ­sio Carmo-Netoβ€’10K visualizaΓ§Γ΅es
Particle Swarm Optimization to Solve Multiple Traveling Salesman Problem por IRJET Journal
Particle Swarm Optimization to Solve Multiple Traveling Salesman ProblemParticle Swarm Optimization to Solve Multiple Traveling Salesman Problem
Particle Swarm Optimization to Solve Multiple Traveling Salesman Problem
IRJET Journalβ€’52 visualizaΓ§Γ΅es
An Interactive Decomposition Algorithm for Two-Level Large Scale Linear Multi... por IJERA Editor
An Interactive Decomposition Algorithm for Two-Level Large Scale Linear Multi...An Interactive Decomposition Algorithm for Two-Level Large Scale Linear Multi...
An Interactive Decomposition Algorithm for Two-Level Large Scale Linear Multi...
IJERA Editorβ€’284 visualizaΓ§Γ΅es
Efficient Solution of Two-Stage Stochastic Linear Programs Using Interior Poi... por SSA KPI
Efficient Solution of Two-Stage Stochastic Linear Programs Using Interior Poi...Efficient Solution of Two-Stage Stochastic Linear Programs Using Interior Poi...
Efficient Solution of Two-Stage Stochastic Linear Programs Using Interior Poi...
SSA KPIβ€’526 visualizaΓ§Γ΅es
Algorithm Finding Maximum Concurrent Multicommodity Linear Flow with Limited ... por IJCNCJournal
Algorithm Finding Maximum Concurrent Multicommodity Linear Flow with Limited ...Algorithm Finding Maximum Concurrent Multicommodity Linear Flow with Limited ...
Algorithm Finding Maximum Concurrent Multicommodity Linear Flow with Limited ...
IJCNCJournalβ€’106 visualizaΓ§Γ΅es
A New Method to Solving Generalized Fuzzy Transportation Problem-Harmonic Mea... por AI Publications
A New Method to Solving Generalized Fuzzy Transportation Problem-Harmonic Mea...A New Method to Solving Generalized Fuzzy Transportation Problem-Harmonic Mea...
A New Method to Solving Generalized Fuzzy Transportation Problem-Harmonic Mea...
AI Publicationsβ€’62 visualizaΓ§Γ΅es
Certified global minima por ssuserfa7e73
Certified global minimaCertified global minima
Certified global minima
ssuserfa7e73β€’112 visualizaΓ§Γ΅es
Numerical Solutions of Burgers' Equation Project Report por Shikhar Agarwal
Numerical Solutions of Burgers' Equation Project ReportNumerical Solutions of Burgers' Equation Project Report
Numerical Solutions of Burgers' Equation Project Report
Shikhar Agarwalβ€’909 visualizaΓ§Γ΅es
A HYBRID COA/Ξ΅-CONSTRAINT METHOD FOR SOLVING MULTI-OBJECTIVE PROBLEMS por ijfcstjournal
A HYBRID COA/Ξ΅-CONSTRAINT METHOD FOR SOLVING MULTI-OBJECTIVE PROBLEMSA HYBRID COA/Ξ΅-CONSTRAINT METHOD FOR SOLVING MULTI-OBJECTIVE PROBLEMS
A HYBRID COA/Ξ΅-CONSTRAINT METHOD FOR SOLVING MULTI-OBJECTIVE PROBLEMS
ijfcstjournalβ€’303 visualizaΓ§Γ΅es
A HYBRID COA/Ξ΅-CONSTRAINT METHOD FOR SOLVING MULTI-OBJECTIVE PROBLEMS por ijfcstjournal
A HYBRID COA/Ξ΅-CONSTRAINT METHOD FOR SOLVING MULTI-OBJECTIVE PROBLEMSA HYBRID COA/Ξ΅-CONSTRAINT METHOD FOR SOLVING MULTI-OBJECTIVE PROBLEMS
A HYBRID COA/Ξ΅-CONSTRAINT METHOD FOR SOLVING MULTI-OBJECTIVE PROBLEMS
ijfcstjournalβ€’12 visualizaΓ§Γ΅es
Multi – Objective Two Stage Fuzzy Transportation Problem with Hexagonal Fuzzy... por IJERA Editor
Multi – Objective Two Stage Fuzzy Transportation Problem with Hexagonal Fuzzy...Multi – Objective Two Stage Fuzzy Transportation Problem with Hexagonal Fuzzy...
Multi – Objective Two Stage Fuzzy Transportation Problem with Hexagonal Fuzzy...
IJERA Editorβ€’34 visualizaΓ§Γ΅es
New Method for Finding an Optimal Solution of Generalized Fuzzy Transportatio... por BRNSS Publication Hub
New Method for Finding an Optimal Solution of Generalized Fuzzy Transportatio...New Method for Finding an Optimal Solution of Generalized Fuzzy Transportatio...
New Method for Finding an Optimal Solution of Generalized Fuzzy Transportatio...
BRNSS Publication Hubβ€’37 visualizaΓ§Γ΅es
Thesis por Marios Aspris
ThesisThesis
Thesis
Marios Asprisβ€’80 visualizaΓ§Γ΅es
Edge pso por Vaisakh Shaj
Edge psoEdge pso
Edge pso
Vaisakh Shajβ€’86 visualizaΓ§Γ΅es
International Refereed Journal of Engineering and Science (IRJES) por irjes
International Refereed Journal of Engineering and Science (IRJES)International Refereed Journal of Engineering and Science (IRJES)
International Refereed Journal of Engineering and Science (IRJES)
irjesβ€’329 visualizaΓ§Γ΅es
International Journal of Engineering Research and Development por IJERD Editor
International Journal of Engineering Research and DevelopmentInternational Journal of Engineering Research and Development
International Journal of Engineering Research and Development
IJERD Editorβ€’331 visualizaΓ§Γ΅es

Mais de Justin Knight

ABAP FAQ S On Reports Scripts BDC Dialogs ABAP Reporting SAP TERMINOLOGY por
ABAP FAQ S On Reports   Scripts   BDC   Dialogs ABAP Reporting SAP TERMINOLOGYABAP FAQ S On Reports   Scripts   BDC   Dialogs ABAP Reporting SAP TERMINOLOGY
ABAP FAQ S On Reports Scripts BDC Dialogs ABAP Reporting SAP TERMINOLOGYJustin Knight
7 visualizaΓ§Γ΅esβ€’124 slides
AI 03 Solving Problems By Searching por
AI 03 Solving Problems By SearchingAI 03 Solving Problems By Searching
AI 03 Solving Problems By SearchingJustin Knight
14 visualizaΓ§Γ΅esβ€’32 slides
ASSESSMENT AND EVALUATION IN EDUCATION por
ASSESSMENT AND EVALUATION IN EDUCATIONASSESSMENT AND EVALUATION IN EDUCATION
ASSESSMENT AND EVALUATION IN EDUCATIONJustin Knight
7 visualizaΓ§Γ΅esβ€’9 slides
Application Of Lean Six Sigma To Improve Service In Healthcare Facilities Man... por
Application Of Lean Six Sigma To Improve Service In Healthcare Facilities Man...Application Of Lean Six Sigma To Improve Service In Healthcare Facilities Man...
Application Of Lean Six Sigma To Improve Service In Healthcare Facilities Man...Justin Knight
4 visualizaΓ§Γ΅esβ€’62 slides
A Framework For Information Security Risk Management Communication por
A Framework For Information Security Risk Management CommunicationA Framework For Information Security Risk Management Communication
A Framework For Information Security Risk Management CommunicationJustin Knight
6 visualizaΓ§Γ΅esβ€’11 slides
A TRACER STUDY ON THE GRADUATES OF BACHELOR OF ARTS MAJORS IN ENGLISH AND IN ... por
A TRACER STUDY ON THE GRADUATES OF BACHELOR OF ARTS MAJORS IN ENGLISH AND IN ...A TRACER STUDY ON THE GRADUATES OF BACHELOR OF ARTS MAJORS IN ENGLISH AND IN ...
A TRACER STUDY ON THE GRADUATES OF BACHELOR OF ARTS MAJORS IN ENGLISH AND IN ...Justin Knight
13 visualizaΓ§Γ΅esβ€’18 slides

Mais de Justin Knight(20)

ABAP FAQ S On Reports Scripts BDC Dialogs ABAP Reporting SAP TERMINOLOGY por Justin Knight
ABAP FAQ S On Reports   Scripts   BDC   Dialogs ABAP Reporting SAP TERMINOLOGYABAP FAQ S On Reports   Scripts   BDC   Dialogs ABAP Reporting SAP TERMINOLOGY
ABAP FAQ S On Reports Scripts BDC Dialogs ABAP Reporting SAP TERMINOLOGY
Justin Knightβ€’7 visualizaΓ§Γ΅es
AI 03 Solving Problems By Searching por Justin Knight
AI 03 Solving Problems By SearchingAI 03 Solving Problems By Searching
AI 03 Solving Problems By Searching
Justin Knightβ€’14 visualizaΓ§Γ΅es
ASSESSMENT AND EVALUATION IN EDUCATION por Justin Knight
ASSESSMENT AND EVALUATION IN EDUCATIONASSESSMENT AND EVALUATION IN EDUCATION
ASSESSMENT AND EVALUATION IN EDUCATION
Justin Knightβ€’7 visualizaΓ§Γ΅es
Application Of Lean Six Sigma To Improve Service In Healthcare Facilities Man... por Justin Knight
Application Of Lean Six Sigma To Improve Service In Healthcare Facilities Man...Application Of Lean Six Sigma To Improve Service In Healthcare Facilities Man...
Application Of Lean Six Sigma To Improve Service In Healthcare Facilities Man...
Justin Knightβ€’4 visualizaΓ§Γ΅es
A Framework For Information Security Risk Management Communication por Justin Knight
A Framework For Information Security Risk Management CommunicationA Framework For Information Security Risk Management Communication
A Framework For Information Security Risk Management Communication
Justin Knightβ€’6 visualizaΓ§Γ΅es
A TRACER STUDY ON THE GRADUATES OF BACHELOR OF ARTS MAJORS IN ENGLISH AND IN ... por Justin Knight
A TRACER STUDY ON THE GRADUATES OF BACHELOR OF ARTS MAJORS IN ENGLISH AND IN ...A TRACER STUDY ON THE GRADUATES OF BACHELOR OF ARTS MAJORS IN ENGLISH AND IN ...
A TRACER STUDY ON THE GRADUATES OF BACHELOR OF ARTS MAJORS IN ENGLISH AND IN ...
Justin Knightβ€’13 visualizaΓ§Γ΅es
A Review On Recognition Of Sentiment Analysis Of Marathi Tweets Using Machine... por Justin Knight
A Review On Recognition Of Sentiment Analysis Of Marathi Tweets Using Machine...A Review On Recognition Of Sentiment Analysis Of Marathi Tweets Using Machine...
A Review On Recognition Of Sentiment Analysis Of Marathi Tweets Using Machine...
Justin Knightβ€’4 visualizaΓ§Γ΅es
Agricultural Mechanization Development In The Philippines por Justin Knight
Agricultural Mechanization Development In The PhilippinesAgricultural Mechanization Development In The Philippines
Agricultural Mechanization Development In The Philippines
Justin Knightβ€’4 visualizaΓ§Γ΅es
An Object Approach For Web Presentations por Justin Knight
An Object Approach For Web PresentationsAn Object Approach For Web Presentations
An Object Approach For Web Presentations
Justin Knightβ€’4 visualizaΓ§Γ΅es
American Ways - An Introducation To American Culture.PDF por Justin Knight
American Ways - An Introducation To American Culture.PDFAmerican Ways - An Introducation To American Culture.PDF
American Ways - An Introducation To American Culture.PDF
Justin Knightβ€’2 visualizaΓ§Γ΅es
Area-Energy Tradeoffs In Memory Design por Justin Knight
Area-Energy Tradeoffs In Memory DesignArea-Energy Tradeoffs In Memory Design
Area-Energy Tradeoffs In Memory Design
Justin Knightβ€’4 visualizaΓ§Γ΅es
A Compilation Of Case Digests For Transportation Law por Justin Knight
A Compilation Of Case Digests For Transportation LawA Compilation Of Case Digests For Transportation Law
A Compilation Of Case Digests For Transportation Law
Justin Knightβ€’4 visualizaΓ§Γ΅es
A New Childhood Social Studies Curriculum For A New Generation Of Citizenship por Justin Knight
A New Childhood Social Studies Curriculum For A New Generation Of CitizenshipA New Childhood Social Studies Curriculum For A New Generation Of Citizenship
A New Childhood Social Studies Curriculum For A New Generation Of Citizenship
Justin Knightβ€’4 visualizaΓ§Γ΅es
A Supporting Hand In Dealing With Interpersonal Conflicts The Role Of Intera... por Justin Knight
A Supporting Hand In Dealing With Interpersonal Conflicts  The Role Of Intera...A Supporting Hand In Dealing With Interpersonal Conflicts  The Role Of Intera...
A Supporting Hand In Dealing With Interpersonal Conflicts The Role Of Intera...
Justin Knightβ€’3 visualizaΓ§Γ΅es
Aligning IT With Business Objectives A Critical Survival And Success Factor ... por Justin Knight
Aligning IT With Business Objectives  A Critical Survival And Success Factor ...Aligning IT With Business Objectives  A Critical Survival And Success Factor ...
Aligning IT With Business Objectives A Critical Survival And Success Factor ...
Justin Knightβ€’5 visualizaΓ§Γ΅es
APPLICATION NOTE IMPROVED CHARGING METHODS FOR LEAD-ACID BATTERIES USING THE ... por Justin Knight
APPLICATION NOTE IMPROVED CHARGING METHODS FOR LEAD-ACID BATTERIES USING THE ...APPLICATION NOTE IMPROVED CHARGING METHODS FOR LEAD-ACID BATTERIES USING THE ...
APPLICATION NOTE IMPROVED CHARGING METHODS FOR LEAD-ACID BATTERIES USING THE ...
Justin Knightβ€’6 visualizaΓ§Γ΅es
An Analytical Framework For Miles And Snow Typology And Dynamic Capabilities por Justin Knight
An Analytical Framework For Miles And Snow Typology And Dynamic CapabilitiesAn Analytical Framework For Miles And Snow Typology And Dynamic Capabilities
An Analytical Framework For Miles And Snow Typology And Dynamic Capabilities
Justin Knightβ€’4 visualizaΓ§Γ΅es
7 Element Of Speaking por Justin Knight
7 Element Of Speaking7 Element Of Speaking
7 Element Of Speaking
Justin Knightβ€’5 visualizaΓ§Γ΅es
A New Perspective On Survival Outcomes In Multiple Sclerosis por Justin Knight
A New Perspective On Survival Outcomes In Multiple SclerosisA New Perspective On Survival Outcomes In Multiple Sclerosis
A New Perspective On Survival Outcomes In Multiple Sclerosis
Justin Knightβ€’5 visualizaΓ§Γ΅es
Assessment Of Institutional Open Access Digital Repositories In India Dealing... por Justin Knight
Assessment Of Institutional Open Access Digital Repositories In India Dealing...Assessment Of Institutional Open Access Digital Repositories In India Dealing...
Assessment Of Institutional Open Access Digital Repositories In India Dealing...
Justin Knightβ€’4 visualizaΓ§Γ΅es

Último

Guidelines & Identification of Early Sepsis DR. NN CHAVAN 02122023.pptx por
Guidelines & Identification of Early Sepsis DR. NN CHAVAN 02122023.pptxGuidelines & Identification of Early Sepsis DR. NN CHAVAN 02122023.pptx
Guidelines & Identification of Early Sepsis DR. NN CHAVAN 02122023.pptxNiranjan Chavan
38 visualizaΓ§Γ΅esβ€’48 slides
BΓ€I TαΊ¬P Bα»” TRα»’ TIαΊΎNG ANH 11 THEO ĐƠN VỊ BΓ€I HỌC - CαΊ’ NΔ‚M - CΓ“ FILE NGHE (FRIE... por
BΓ€I TαΊ¬P Bα»” TRα»’ TIαΊΎNG ANH 11 THEO ĐƠN VỊ BΓ€I HỌC - CαΊ’ NΔ‚M - CΓ“ FILE NGHE (FRIE...BΓ€I TαΊ¬P Bα»” TRα»’ TIαΊΎNG ANH 11 THEO ĐƠN VỊ BΓ€I HỌC - CαΊ’ NΔ‚M - CΓ“ FILE NGHE (FRIE...
BΓ€I TαΊ¬P Bα»” TRα»’ TIαΊΎNG ANH 11 THEO ĐƠN VỊ BΓ€I HỌC - CαΊ’ NΔ‚M - CΓ“ FILE NGHE (FRIE...Nguyen Thanh Tu Collection
71 visualizaΓ§Γ΅esβ€’91 slides
Payment Integration using Braintree Connector | MuleSoft Mysore Meetup #37 por
Payment Integration using Braintree Connector | MuleSoft Mysore Meetup #37Payment Integration using Braintree Connector | MuleSoft Mysore Meetup #37
Payment Integration using Braintree Connector | MuleSoft Mysore Meetup #37MysoreMuleSoftMeetup
44 visualizaΓ§Γ΅esβ€’17 slides
MercerJesse2.1Doc.pdf por
MercerJesse2.1Doc.pdfMercerJesse2.1Doc.pdf
MercerJesse2.1Doc.pdfjessemercerail
301 visualizaΓ§Γ΅esβ€’5 slides
Mineral nutrition and Fertilizer use of Cashew por
 Mineral nutrition and Fertilizer use of Cashew Mineral nutrition and Fertilizer use of Cashew
Mineral nutrition and Fertilizer use of CashewAruna Srikantha Jayawardana
53 visualizaΓ§Γ΅esβ€’107 slides
Creative Restart 2023: Atila Martins - Craft: A Necessity, Not a Choice por
Creative Restart 2023: Atila Martins - Craft: A Necessity, Not a ChoiceCreative Restart 2023: Atila Martins - Craft: A Necessity, Not a Choice
Creative Restart 2023: Atila Martins - Craft: A Necessity, Not a ChoiceTaste
41 visualizaΓ§Γ΅esβ€’50 slides

Último(20)

Guidelines & Identification of Early Sepsis DR. NN CHAVAN 02122023.pptx por Niranjan Chavan
Guidelines & Identification of Early Sepsis DR. NN CHAVAN 02122023.pptxGuidelines & Identification of Early Sepsis DR. NN CHAVAN 02122023.pptx
Guidelines & Identification of Early Sepsis DR. NN CHAVAN 02122023.pptx
Niranjan Chavanβ€’38 visualizaΓ§Γ΅es
BΓ€I TαΊ¬P Bα»” TRα»’ TIαΊΎNG ANH 11 THEO ĐƠN VỊ BΓ€I HỌC - CαΊ’ NΔ‚M - CΓ“ FILE NGHE (FRIE... por Nguyen Thanh Tu Collection
BΓ€I TαΊ¬P Bα»” TRα»’ TIαΊΎNG ANH 11 THEO ĐƠN VỊ BΓ€I HỌC - CαΊ’ NΔ‚M - CΓ“ FILE NGHE (FRIE...BΓ€I TαΊ¬P Bα»” TRα»’ TIαΊΎNG ANH 11 THEO ĐƠN VỊ BΓ€I HỌC - CαΊ’ NΔ‚M - CΓ“ FILE NGHE (FRIE...
BΓ€I TαΊ¬P Bα»” TRα»’ TIαΊΎNG ANH 11 THEO ĐƠN VỊ BΓ€I HỌC - CαΊ’ NΔ‚M - CΓ“ FILE NGHE (FRIE...
Nguyen Thanh Tu Collectionβ€’71 visualizaΓ§Γ΅es
Payment Integration using Braintree Connector | MuleSoft Mysore Meetup #37 por MysoreMuleSoftMeetup
Payment Integration using Braintree Connector | MuleSoft Mysore Meetup #37Payment Integration using Braintree Connector | MuleSoft Mysore Meetup #37
Payment Integration using Braintree Connector | MuleSoft Mysore Meetup #37
MysoreMuleSoftMeetupβ€’44 visualizaΓ§Γ΅es
MercerJesse2.1Doc.pdf por jessemercerail
MercerJesse2.1Doc.pdfMercerJesse2.1Doc.pdf
MercerJesse2.1Doc.pdf
jessemercerailβ€’301 visualizaΓ§Γ΅es
Mineral nutrition and Fertilizer use of Cashew por Aruna Srikantha Jayawardana
 Mineral nutrition and Fertilizer use of Cashew Mineral nutrition and Fertilizer use of Cashew
Mineral nutrition and Fertilizer use of Cashew
Aruna Srikantha Jayawardanaβ€’53 visualizaΓ§Γ΅es
Creative Restart 2023: Atila Martins - Craft: A Necessity, Not a Choice por Taste
Creative Restart 2023: Atila Martins - Craft: A Necessity, Not a ChoiceCreative Restart 2023: Atila Martins - Craft: A Necessity, Not a Choice
Creative Restart 2023: Atila Martins - Craft: A Necessity, Not a Choice
Tasteβ€’41 visualizaΓ§Γ΅es
Java Simplified: Understanding Programming Basics por Akshaj Vadakkath Joshy
Java Simplified: Understanding Programming BasicsJava Simplified: Understanding Programming Basics
Java Simplified: Understanding Programming Basics
Akshaj Vadakkath Joshyβ€’625 visualizaΓ§Γ΅es
StudioX.pptx por NikhileshSathyavarap
StudioX.pptxStudioX.pptx
StudioX.pptx
NikhileshSathyavarapβ€’89 visualizaΓ§Γ΅es
NodeJS and ExpressJS.pdf por ArthyR3
NodeJS and ExpressJS.pdfNodeJS and ExpressJS.pdf
NodeJS and ExpressJS.pdf
ArthyR3β€’47 visualizaΓ§Γ΅es
CUNY IT Picciano.pptx por apicciano
CUNY IT Picciano.pptxCUNY IT Picciano.pptx
CUNY IT Picciano.pptx
apiccianoβ€’60 visualizaΓ§Γ΅es
Retail Store Scavenger Hunt.pptx por jmurphy154
Retail Store Scavenger Hunt.pptxRetail Store Scavenger Hunt.pptx
Retail Store Scavenger Hunt.pptx
jmurphy154β€’52 visualizaΓ§Γ΅es
INT-244 Topic 6b Confucianism por S Meyer
INT-244 Topic 6b ConfucianismINT-244 Topic 6b Confucianism
INT-244 Topic 6b Confucianism
S Meyerβ€’44 visualizaΓ§Γ΅es
Pharmaceutical Inorganic Chemistry Unit IVMiscellaneous compounds Expectorant... por Ms. Pooja Bhandare
Pharmaceutical Inorganic Chemistry Unit IVMiscellaneous compounds Expectorant...Pharmaceutical Inorganic Chemistry Unit IVMiscellaneous compounds Expectorant...
Pharmaceutical Inorganic Chemistry Unit IVMiscellaneous compounds Expectorant...
Ms. Pooja Bhandareβ€’194 visualizaΓ§Γ΅es
JQUERY.pdf por ArthyR3
JQUERY.pdfJQUERY.pdf
JQUERY.pdf
ArthyR3β€’103 visualizaΓ§Γ΅es
Narration lesson plan por TARIQ KHAN
Narration lesson planNarration lesson plan
Narration lesson plan
TARIQ KHANβ€’69 visualizaΓ§Γ΅es
Volf work.pdf por MariaKenney3
Volf work.pdfVolf work.pdf
Volf work.pdf
MariaKenney3β€’75 visualizaΓ§Γ΅es
ICS3211_lecture 09_2023.pdf por Vanessa Camilleri
ICS3211_lecture 09_2023.pdfICS3211_lecture 09_2023.pdf
ICS3211_lecture 09_2023.pdf
Vanessa Camilleriβ€’134 visualizaΓ§Γ΅es
Education of marginalized and socially disadvantages segments.pptx por GarimaBhati5
Education of marginalized and socially disadvantages segments.pptxEducation of marginalized and socially disadvantages segments.pptx
Education of marginalized and socially disadvantages segments.pptx
GarimaBhati5β€’40 visualizaΓ§Γ΅es
unidad 3.pdf por MarcosRodriguezUcedo
unidad 3.pdfunidad 3.pdf
unidad 3.pdf
MarcosRodriguezUcedoβ€’129 visualizaΓ§Γ΅es

A Solution Procedure To Solve Multi Objective Fractional Transportation Problem

  • 1. International Refereed Journal of Engineering and Science (IRJES) ISSN (Online) 2319-183X, (Print) 2319-1821 Volume 7, Issue 1 (January 2018), PP. 67-72 www.irjes.com 67 | Page A Solution Procedure to Solve Multi objective Fractional Transportation Problem Dr. Doke Dnyaneshwar Maruti, M.Sc .Ph.D.(Statistics) Associate Professor and Head of Dept. , Mathematics and Statistics. M.L. DahanukarCollege., VileParle (East), Mumbai Corresponding Author: Dr. Doke Dnyaneshwar Maruti Abstract: In decision making process if the objective function is ratio of two linear functions and objective function is to be optimized. For example one may be interested to know the ratio of total cost to total time required for transportation. This ratio is an objective function which is fractional objective function. When there are several such fractional objectives to be optimized simultaneously then the problem becomes multi objective fractional programming problem (MOFLPP). Initially Hungarian mathematician BelaMartos constructed such type of problem and named it as hyperbolic programming problem. Same problem in general referred as Linear Fractional Programming Problem. Fractional programming problem can be converted into linear programming problem (LPP) by using variable transformation given by Charnes and Cooper. Then it can be solved by Simplex Method for Linear Programming Problem. . In this paper we propose to solve multi objective fractional transportation problem. Initially will solve each of the transportation problem as single objective and then using Taylor series approach expand each of the problem about its optimal solution and ignoring second and higher order error terms each of the objective is converted into linear one. Then the problem reduces to MOLTPP. Evaluate each of the objectives at every optimal solution and obtain evaluation matrix. Define hyperbolic membership function using best and worst values of objective function with reference to evaluation matrix. These membership functions are fuzzy functions Compromise solution is obtained using weighted a.m. of hyperbolic membership functions and also weights quadratic mean of hyperbolic membership functions. Propose o solve problem at the end to explain the procedure. Keywords: Multi objective, compromise solution, hyperbolic membership function. --------------------------------------------------------------------------------------------------------------------------------------- Date of Submission: 19 -01-2018 Date of acceptance: 33-01-2018 --------------------------------------------------------------------------------------------------------------------------- I. INTRODUCTION It is well known fact that the transportation problem is special case of linear programming problem. In same way multi objective fractional transportation programming problem is special case of multi objective fractional programming problem. In this paper we will deal with multi objective fractional transportation programming problem. The problem is to transfer goods from different origins to several destinations such that many fractional objective functions attain their optimal values. Again optimizing several objectives simultaneously is not possible. Thus the golden mean is to find compromise solution. For compromise solution there are several methods which are proved to be efficient. In next section linear fractional transportation problem (LFTP) is introduced. 1. Formulation of Linear Fractional TP.(LFTP) In general a problem is specified as under i) There are m supply points from which goods are to be transported. Supply available at 𝑖𝑑𝑕point is at most π‘Žπ‘–π‘“π‘œπ‘Ÿπ‘– = 1,2, … , π‘š ii) There are n demand centres where good are required. Minimum requirement of 𝑗𝑑𝑕 demand centre is 𝑏𝑗 π‘“π‘œπ‘Ÿπ‘— = 1,2, … , 𝑛. iii) Profit matrix is 𝑃 = 𝑝𝑖𝑗 π‘–π‘ π‘š Γ— 𝑛 matrix where 𝑝𝑖𝑗 is profit of transporting one unit from 𝑖𝑑𝑕 origin to 𝑗𝑑𝑕 destination. iv) Cost matrix is 𝐷 = 𝑑𝑖𝑗 π‘–π‘ π‘š Γ— 𝑛, matrix where 𝑑𝑖𝑗 is cost of transporting one unit from 𝑖𝑑𝑕 origin to 𝑗𝑑𝑕 destination v) 𝑝0 and 𝑑0 be the fixed profit and cost respectively vi) Suppose variableπ‘₯𝑖𝑗 denotes number units to be transported from 𝑖𝑑𝑕 origin to 𝑗𝑑𝑕 destination. The objective function is, π‘€π‘Žπ‘₯π‘–π‘šπ‘–π‘§π‘’ π‘œπ‘Ÿ π‘€π‘–π‘›π‘–π‘šπ‘–π‘§π‘’π‘„ π‘₯ = 𝑃(π‘₯) 𝐷(π‘₯) = 𝑝𝑖𝑗 𝑛 𝑗=1 π‘š 𝑖=1 π‘₯𝑖𝑗 + 𝑝0 𝑑𝑖𝑗 𝑛 𝑗 =1 π‘š 𝑖=1 π‘₯𝑖𝑗 + 𝑑0 (1) 𝑆𝑒𝑏𝑗𝑒𝑐𝑑 π‘‘π‘œ π‘π‘œπ‘›π‘ π‘‘π‘Ÿπ‘Žπ‘–π‘›π‘‘π‘ , π‘₯𝑖𝑗 𝑛 𝑗 =1 ≀ π‘Žπ‘–π‘“π‘œπ‘Ÿπ‘– = 1,2, … , π‘š (2) π‘₯𝑖𝑗 π‘š 𝑖=1 ≀ 𝑏𝑗 π‘“π‘œπ‘Ÿπ‘— = 1,2, … , 𝑛 (3) π‘₯𝑖𝑗 β‰₯ 0 π‘“π‘œπ‘Ÿπ‘– = 1,2, … , π‘šπ‘Žπ‘›π‘‘π‘— = 1,2, … . , 𝑛 (4)
  • 2. A Solution Procedure to Solve Multi objective Fractional Transportation Problem www.irjes.com 68 | Page 𝑄 π‘₯ is called objective function which is fractional. Note that 𝑃(π‘₯) and 𝐷(π‘₯) are linear and (2) ,(3) and (4) are also linear. Hence the name of the problem is linear fractional transportation Programming problem (LFTPP). Here 𝐷 π‘₯ > 0 , for every 𝑋 = π‘₯𝑖𝑗 π‘€π‘•π‘’π‘Ÿπ‘’π‘‹ ∈ 𝑆, Where S is feasible set defined by constraint (2),(3) and (4). Lastly we assume thatπ‘Žπ‘– > 0 π‘Žπ‘›π‘‘ 𝑏𝑗 > 0 π‘“π‘œπ‘Ÿ 𝑖 = 1,2, … , π‘š π‘Žπ‘›π‘‘ 𝑗 = 1,2, … . , 𝑛 Total supply is not less than total demand i.e. π‘Žπ‘– β‰₯ π‘š 𝑖=1 𝑏𝑗 𝑛 𝑗 =1 (5) The problem is to find𝑋 = π‘₯𝑖𝑗 π‘€π‘•π‘’π‘Ÿπ‘’π‘‹ ∈ π‘†π‘Žπ‘›π‘‘ satisfying (2-4) and having optimal value of (1). This LFTPP has following properties, 1. The problem has a feasible solution, i.e. feasible set 𝑆 β‰  βˆ….It means that solution set is non empty. 2. The set of feasible solutions is bounded. 3. The problem is always solvable. 2. Definitions. i) If total demand equals to total supply, i.e. π‘Žπ‘– = π‘š 𝑖=1 𝑏𝑗 𝑛 𝑗 =1 (6) Then LFTP is said to be balanced transportation problem. Non negativity condition (4) and demand and supply conditions (2-3) at the most gives following bound to decision variables. 0 ≀ π‘₯𝑖𝑗 ≀ min𝑖,𝑗 π‘Žπ‘–, 𝑏𝑗 π‘“π‘œπ‘Ÿ 𝑖 = 1,2, … , π‘š π‘Žπ‘›π‘‘ 𝑗 = 1,2, … , 𝑛. ii) LFTP 𝑄 π‘₯ = 𝑃(π‘₯) 𝐷(π‘₯) = 𝑝𝑖𝑗 𝑛 𝑗=1 π‘š 𝑖=1 π‘₯𝑖𝑗 +𝑝0 𝑑𝑖𝑗 𝑛 𝑗=1 π‘š 𝑖=1 π‘₯𝑖𝑗 +𝑑0 (7) is said to be in canonical form if π‘₯𝑖𝑗 = π‘Žπ‘–π‘“π‘œπ‘Ÿπ‘– = 1,2, … , π‘š 𝑛 𝑗 =1 (8) π‘₯𝑖𝑗 = 𝑏𝑗 π‘“π‘œπ‘Ÿπ‘— = 1,2, …, (9) π‘š 𝑖=1 π‘₯𝑖𝑗 β‰₯ 0 π‘“π‘œπ‘Ÿπ‘– = 1,2, … , π‘šπ‘Žπ‘›π‘‘π‘— = 1,2, … . , 𝑛 (10) iii) There is exactly one equality redundant constraint in (8) and (9). When any one of the constraint in (8) and (9) are dropped, what remains is exactly π‘š + 𝑛 βˆ’ 1 linearly independent equations. iv) A solution of LFTPP is said to be basic solution if it satisfies conditions (8) and (9).In basic solution there are π‘š + 𝑛 βˆ’ 1 non zero values of variables in basis. v) A basic solution of the LFTPP is said to basic feasible (BFS) if all values in basis are non-negative i.e. it satisfies condition (10). vi) The basic solution is degenerate if at least one of its basic variable equal to zero. Otherwise it is said to be non- degenerate. 3. Theorems i) The linear fractional transportation problem is solvable if and only if itis balanced LFTPP. The problem is balanced means π‘Žπ‘– = π‘š 𝑖=1 𝑏𝑗 𝑛 𝑗=1 ii) If all π‘Žπ‘– π‘Žπ‘›π‘‘ 𝑏𝑗 in LFTPP are positive integers, then every basic solution of LFTPP is integer vector. Hence if all π‘Žπ‘–π‘Žπ‘›π‘‘π‘π‘— of LFTPP are positive integers and the problem is in the canonical form then LFTPP has an optimal solution x* with all elements as positive integers. 4. Multi Objective Linear Fractional Transportation Programming Problem. Suppose 𝑄1 π‘₯ = 𝑃1 π‘₯ 𝐷1 π‘₯ , 𝑄2 π‘₯ = 𝑃2 π‘₯ 𝐷2 π‘₯ , … . . , π‘„π‘˜ π‘₯ = π‘ƒπ‘˜ π‘₯ π·π‘˜ π‘₯ arek linear fractional transportation problems such that all objective functions to be optimised simultaneously subject to constraint (2) ,(3),(4) and (5) and π·π‘˜ π‘₯ β‰₯ 0 for every k then the problem is called Multi Objective Linear Fractional Transportation Programming Problem (MOLFTPP). Where 𝑄𝑙 π‘₯ = 𝑝𝑖𝑗 𝑙 π‘₯𝑖𝑗 𝑛 𝑗=1 π‘š 𝑖=1 𝑑𝑖𝑗 β€² π‘₯𝑖𝑗 𝑛 𝑗=1 π‘š 𝑖=1 π‘“π‘œπ‘Ÿ 𝑙 = 1,2, … π‘˜ 𝑝𝑖𝑗 𝑙 is profit of transporting one unit from 𝑖𝑑𝑕 origin to 𝑗𝑑𝑕 destination in case of 𝑙𝑑𝑕 objective function. 𝑑𝑖𝑗 𝑙 is cost of transporting one unit from 𝑖𝑑𝑕 origin to 𝑗𝑑𝑕 destinationin case of 𝑙𝑑𝑕 objective function. 5. Algorithm To Solve MOLFTPP
  • 3. A Solution Procedure to Solve Multi objective Fractional Transportation Problem www.irjes.com 69 | Page i) Consider MOLFTPP,π‘€π‘Žπ‘₯π‘–π‘šπ‘–π‘§π‘’ { 𝑄1 π‘₯ , 𝑄2 π‘₯ , … , π‘„π‘˜ π‘₯ } subject to constraint (8-10). ii) Find optimal solution of each of the linear fractional transportation problem as single objective function subject to constraint. LINGO software can be used to find optimal solution of each of the fractional transportation problem. iii) Suppose 𝑋𝑙 βˆ— is optimal solution of 𝑄𝑙 π‘₯ π‘“π‘œπ‘Ÿπ‘™ = 1,2, … , π‘˜ iv) Expand objective function 𝑄𝑙 π‘₯ about𝑋𝑙 βˆ— = π‘₯𝑖𝑗 using Taylor’s theorem and ignoring second and higher order terms convert 𝑄𝑙 π‘₯ into linear function. Consider𝑄𝑙(π‘₯) = 𝑃𝑙(π‘₯) 𝐷𝑙(π‘₯) and 𝑋𝑙 βˆ— be the optimal solution of 𝑄𝑙(π‘₯) ,then using Taylor Series approach differentiate𝑄𝑙 π‘₯ with respect to each of the variable partially. 𝑄𝑙(π‘₯) β‰… 𝑄𝑙 𝑋𝑙 βˆ— + π‘₯11 βˆ’ π‘₯11𝑙 πœ•π‘„π‘™ 𝑋𝑙 πœ•π‘₯11 π‘Žπ‘‘π‘‹π‘– βˆ— + π‘₯12 βˆ’ π‘₯12𝑙 πœ•π‘„π‘™ 𝑋𝑙 πœ•π‘₯12 π‘Žπ‘‘π‘‹π‘– βˆ— + β‹― + π‘₯π‘šπ‘› βˆ’ π‘₯π‘šπ‘›π‘™ πœ•π‘„π‘™ 𝑋𝑙 πœ•π‘₯π‘šπ‘› π‘Žπ‘‘π‘‹π‘– βˆ— + 𝑂(𝑕2) π‘Šπ‘•π‘’π‘Ÿπ‘’π‘‚ 𝑕2 Represents second and higher order terms of the expansion which we will ignore. Using this expansion each of the objective function becomes linear function. To avoid complexity of notations we write,𝑄𝑙(π‘₯) = 𝑍𝑙 π‘₯ π‘“π‘œπ‘Ÿπ‘™ = 1,2, … , π‘˜ The problem is to π‘€π‘Žπ‘₯π‘–π‘šπ‘–π‘§π‘’ {𝑍1 π‘₯ , 𝑍2 π‘₯ , … . , π‘π‘˜ π‘₯ } subject to (7-10) i.e.Multi Objective Linear Transportation Programming Problem. (MOLTPP).It can be solved by using fuzzy compromise approach as stated in next section. v) Fuzzy Compromise approach for MOLTPP. Consider MOLTPP π‘€π‘Žπ‘₯π‘–π‘šπ‘–π‘§π‘’ {𝑍1 π‘₯ , 𝑍2 π‘₯ , … . , π‘π‘˜ π‘₯ } ---------------- (11) Subject to (7-10) and 𝑋 ∈ 𝑆, where𝑆is set of feasible solutions. Solution to (11) is often conflicting as several objectives cannot be optimized simultaneously. To find compromise solutions first solve each of the objective function as marginal or single objective function. Here we have converted Multi- objective Linear Fractional Transportations Programming problem to Multi-objective Linear Programming problem using Taylor series approach. Thus each of the MOLTPP can be solved using any one of the techniques of LPP. Once we solve each of the problems individually then evaluate each of the objective function at optimal solutions of all the objectives. Suppose 𝑋𝑙 βˆ— is optimal solution of 𝑙𝑑𝑕 objective function. Find values of each objective at optimal solution of 𝑙𝑑𝑕 objective function for all 𝑙 = 1,2, … , π‘˜.Thus we have evaluation matrix of order π‘˜ Γ— π‘˜ as given below. 𝑍1 π‘₯1 βˆ— 𝑍1 π‘₯2 βˆ— … … … . . 𝑍1 π‘₯π‘˜ βˆ— . 𝑍2 π‘₯1 βˆ— 𝑍2 π‘₯2 βˆ— … … … 𝑍2 π‘₯π‘˜ βˆ— : : π‘π‘˜ π‘₯1 βˆ— π‘π‘˜ π‘₯2 βˆ— … … . … π‘π‘˜ ( π‘₯π‘˜ βˆ— ). 6. Fuzzy Programming Approach For Compromise Solution Of MOLTPP Define Hyperbolic Membership function for each of the linearized objective function as under,. Consider multi objective linear transportation problem. π‘€π‘Žπ‘₯π‘–π‘šπ‘–π‘§π‘’ 𝑍 π‘₯ = 𝑍1 π‘₯ , 𝑍2 π‘₯ , … , π‘π‘˜ π‘₯ β€² 𝑖. 𝑒. π‘€π‘Žπ‘₯π‘–π‘šπ‘–π‘§π‘’ π‘π‘˜ π‘₯ = cij k xij n j=1 π‘š 𝑖=1 , π‘˜ = 1,2, … , 𝐾 𝑆𝑒𝑏𝑗𝑒𝑐𝑑 π‘‘π‘œ π‘₯𝑖𝑗 = 𝑛 𝑗 =1 π‘Žπ‘– , 𝑖 = 1,2, … . , π‘š , π‘₯𝑖𝑗 π‘š 𝑖=1 = 𝑏𝑗 , 𝑗 = 1,2, … . , 𝑛 π‘Žπ‘– = 𝑏𝑗 n j=1 π‘š 𝑖=1 And π‘₯𝑖𝑗 β‰₯ 0 π‘“π‘œπ‘Ÿ π‘Žπ‘™π‘™ 𝑖 π‘Žπ‘›π‘‘ 𝑗 Subject to x ∈ 𝑿 Where 𝑿 set of feasible solutions. Solve each of the objectives as single objective function and then find evaluation matrix. Find best possible value of each of the objective and worst possible value for each of the objective. Define these values as under, π‘ˆπ‘˜ = π‘€π‘Žπ‘₯ π‘π‘˜ π‘₯ , π‘˜ = 1,2, … , 𝐾 ,πΏπ‘˜ = 𝑀𝑖𝑛 π‘π‘˜ π‘₯ , π‘˜ = 1,2, … , 𝐾 Hyperbolic membership function for π‘˜π‘‘π‘• objective function is defined as under, πœ‘π‘˜ : 𝑋 β†’ 0,1 . As given below, πœ‘π‘˜ π‘₯ = 1 𝑖𝑓 π‘π‘˜ (π‘₯) ≀ πΏπ‘˜ 1 2 tanh⁑ ( π‘ˆπ‘˜ + πΏπ‘˜ 2 βˆ’ π‘π‘˜ π‘₯ ) π›Όπ‘˜ + 1 2 0 𝑖𝑓 π‘π‘˜ (π‘₯) β‰₯ π‘ˆπ‘˜ 𝑖𝑓 πΏπ‘˜ ≀ π‘π‘˜ (π‘₯) ≀ π‘ˆπ‘˜ Where π›Όπ‘˜ = 6 π‘ˆπ‘˜ βˆ’πΏπ‘˜ 7. Compromise Solution of MLOFTPP
  • 4. A Solution Procedure to Solve Multi objective Fractional Transportation Problem www.irjes.com 70 | Page a) Aggregation operator as weighted arithmetic mean of hyperbolic membership functions. Thus the MOLFPP becomes single objective nonlinear transportation problem. π‘€π‘Žπ‘₯π‘–π‘šπ‘–π‘§π‘’ πœ‡ π‘₯ = πœ‘π‘– π‘˜ 𝑖=1 𝑀𝑖 𝑆𝑒𝑏𝑗𝑒𝑐𝑑 π‘‘π‘œ 𝑔𝑖𝑣𝑒𝑛 𝑠𝑒𝑑 π‘œπ‘“ π‘π‘œπ‘›π‘ π‘‘π‘Ÿπ‘Žπ‘–π‘›π‘‘π‘  b) Aggregation operator as weighted quadratic mean of hyperbolic membership functions. Thus the MOLFPP becomes single objective nonlinear transportation problem. π‘€π‘Žπ‘₯π‘–π‘šπ‘–π‘§π‘’ πœ‡ ( π‘₯)= πœ‘π‘– 2 π‘˜ 𝑖=1 𝑀𝑖 1 2 = πœ‘π‘– 2 π‘˜ 𝑖=1 𝑀𝑖 𝑆𝑒𝑏𝑗𝑒𝑐𝑑 π‘‘π‘œ 𝑔𝑖𝑣𝑒𝑛 𝑠𝑒𝑑 π‘œπ‘“ π‘π‘œπ‘›π‘ π‘‘π‘Ÿπ‘Žπ‘–π‘›π‘‘π‘  Thus to find compromise solution is nothing but single objective nonlinear programming problem. In this method objective function is nonlinear and constraints are linear. Hence the problem is solved by LINGO techniques of nonlinear optimization. II. CONCLUSION Above method dives efficient solutions of multi objective fractional transportation problem using fuzzy programming approach. Example: Consider following two objective fractional transportation problem, π‘€π‘Žπ‘₯π‘–π‘šπ‘–π‘§π‘’ 𝑄1 π‘₯ = 10π‘₯11 + 14π‘₯12 + 8π‘₯13 + 12π‘₯14 + 8π‘₯21 + 12π‘₯22 + 14π‘₯23 + 8π‘₯24 + 9π‘₯31 + 6π‘₯32 + 15π‘₯33 + 9π‘₯34 15π‘₯11 + 12π‘₯12 + 16π‘₯13 + 8π‘₯14 + 10π‘₯21 + 6π‘₯22 + 13π‘₯23 + 12π‘₯24 + 13π‘₯31 + 15π‘₯32 + 12π‘₯33 + 10π‘₯34 π‘€π‘Žπ‘₯π‘–π‘šπ‘–π‘§π‘’ 𝑄2 π‘₯ = 14π‘₯11 + 9π‘₯12 + 11π‘₯13 + 9π‘₯14 + 12π‘₯21 + 9π‘₯22 + 6π‘₯23 + 15π‘₯24 + 6π‘₯31 + 9π‘₯32 + 12π‘₯33 + 10π‘₯34 12π‘₯11 + 14π‘₯12 + 7π‘₯13 + 17π‘₯14 + 6π‘₯21 + 11π‘₯22 + 13π‘₯23 + 10π‘₯24 + 9π‘₯31 + 15π‘₯32 + 12π‘₯33 + 16π‘₯34 π‘†π‘’π‘π‘—π‘’π‘π‘‘π‘‘π‘œ π‘₯11 + π‘₯12 + π‘₯13 + π‘₯14 = 15, π‘₯21 + π‘₯22 + π‘₯23 + π‘₯24 = 25 π‘₯31 + π‘₯32 + π‘₯33 + π‘₯34 = 20, π‘₯11 + π‘₯21 + π‘₯31 = 15 π‘₯12 + π‘₯22 + π‘₯32 = 25 , π‘₯13 + π‘₯23 + π‘₯33 = 5 , π‘₯14 + π‘₯24 + π‘₯34 = 15 , π‘₯𝑖𝑗 β‰₯ 0 π‘“π‘œπ‘Ÿπ‘– = 1,2,3 π‘Žπ‘›π‘‘π‘— = 1,2,3,4 a) Step1: A LINGO code to solve 𝑄1 π‘₯ is as under, MAX = (10*X11+14*X12+8*X13+12*X14+8*X21+12*X22+14*X23+8*X24+ 9*X31+6*X32+15*X33+9*X34)/(15*X11+12*X12+16*X13+8*X14+10*X21+6*X22+13*X23+12*X24+13*X31+15*X3 2+12*X33+10*X34); X11+X12+X13+X14=15; X21+X22+X23+X24=25; X31+X32+X33+X34=20; X11+X21+X31=15; X12+X22+X32=25; X13+X23+X33=5;X14+X24+X34=15; X11>=0; X12>=0;X13>=0;X14>=0;X21>=0; X22>=0;X23>=0;X24>=0; X31>=0;X32>=0;X33>=0;X34>=0; Optimal Solution of 𝑄1 π‘₯ is, 𝑋1 βˆ— = π‘₯14 = 15, π‘₯22 = 25 , π‘₯31 = 15, , π‘₯33 = 5, π‘Žπ‘›π‘‘π‘„1 𝑋1 βˆ— = 1.314286 Similarly Optimal Solution of 𝑄2 π‘₯ is, 𝑋2 βˆ— = π‘₯11 = 5, π‘₯12 = 5, π‘₯13 = 5, π‘₯21 = 10, π‘₯24 = 15, π‘₯32 = 20 π‘Žπ‘›π‘‘π‘„2 𝑋2 βˆ— = 1.02996 b) Following MATLAB program finds coefficients of xij’s to convert it into linear function using Taylor Series. % A program to find coefficients of linear objective function. P1 = [10;14;8;12;8;12;14;8;9;6;15;9];D1 = [15;12;16;8;10;6;13;12;13;15;12;10]; X1 = [0;0;0;15;0;25;0;0;15;0;5;0]; C1P = P1'*(D1'*X1);C1D = D1'*(P1'*X1);Z1 = (C1P-C1D)/((D1'*X1)^2); P2 = [14;9;11;9;12;9;6;15;6;9;12;10];D2 = [12;14;7;17;6;11;13;10;9;15;14;16]; X2 = [5;5;5;0;10;0;0;15;0;20;0;0]; C2P = P2'*(D2'*X2);C2D = D2'*(P2'*X2);Z2 = (C2P -C2D)/((D2'*X2)^2); U1 = (P1'*X1) /(D1'*X1); L1 = (P1'*X2)/(D1'*X2); U2 = (P2'*X2)/(D2'*X2); L2 = (P2'*X1)/(D2'*X1); c) LinearObjective Functions. π‘€π‘Žπ‘₯π‘–π‘šπ‘–π‘§π‘’ 𝑍1 π‘₯ π‘Žπ‘›π‘‘ 𝑍2 π‘₯ , π‘Šπ‘•π‘’π‘Ÿπ‘’, 𝑍1 π‘₯ = 1.3143 βˆ’ 0.185π‘₯11 βˆ’ 0.0034π‘₯12 βˆ’ 0.0248π‘₯13 + 0.0028π‘₯14 βˆ’ 0.0098π‘₯21 + 0.0078π‘₯22 βˆ’ 0.0059π‘₯23 βˆ’ 0.0148π‘₯24 βˆ’ 0.0154π‘₯31 βˆ’ 0.0261 π‘₯32 βˆ’ 0.0015π‘₯33 βˆ’ 0.00079π‘₯34 𝑍2 π‘₯ = 1.0296 + 0.0024π‘₯11 βˆ’ 0.0080π‘₯12 + 0.0056π‘₯13 βˆ’ 0.0126π‘₯14 + 0.0086π‘₯21 βˆ’ 0.0034π‘₯22 βˆ’ 0.0109π‘₯23 + 0.0070π‘₯24 βˆ’ 0.0048π‘₯31 βˆ’ 0.0095 π‘₯32 βˆ’ 0.0036π‘₯33 βˆ’ 0.0096π‘₯34 𝑆𝑒𝑏𝑗𝑒𝑐𝑑 π‘‘π‘œ π‘₯11 + π‘₯12 + π‘₯13 + π‘₯14 = 15,π‘₯21 + π‘₯22 + π‘₯23 + π‘₯24 = 25 π‘₯31 + π‘₯32 + π‘₯33 + π‘₯34 = 20,π‘₯11 + π‘₯21 + π‘₯31 = 15, π‘₯12 + π‘₯22 + π‘₯32 = 25 , π‘₯13 + π‘₯23 + π‘₯33 = 5 ,π‘₯14 + π‘₯24 + π‘₯34 = 15, ,π‘₯𝑖𝑗 β‰₯ 0 π‘“π‘œπ‘Ÿ 𝑖 = 1,2,3 π‘Žπ‘›π‘‘ 𝑗 = 1,2,3,4 c) Evaluation Matrix:
  • 5. A Solution Procedure to Solve Multi objective Fractional Transportation Problem www.irjes.com 71 | Page π’πŸ π‘ΏπŸ βˆ— π’πŸ π‘ΏπŸ βˆ— π’πŸ π‘ΏπŸ βˆ— π’πŸ π‘ΏπŸ βˆ— = 1.3143 0.6038 0.6939 1.0296 Thus π‘ˆ1 = 1.3143 , 𝐿1 = 0.6038 ,π‘ˆ2 = 1.0296 , 𝐿2 = 0.6939 d) Hyperbolic Membership Function: πœ‘π‘˜ π‘₯ = 1 2 tanh⁑ ( π‘ˆπ‘˜ + πΏπ‘˜ 2 βˆ’ π‘π‘˜ π‘₯ ) π›Όπ‘˜ + 1 2 Whereπ›Όπ‘˜ = 6 π‘ˆπ‘˜ βˆ’πΏπ‘˜ , for k=1,2 π‘ˆ1+𝐿1 2 = 0.9590, 𝛼1 = 6 π‘ˆ1βˆ’πΏ1 = 8.44475 π‘ˆ2+𝐿2 2 = 0.86175,𝛼2 = 6 π‘ˆ2βˆ’πΏ2 = 17.8731 πœ‘1 π‘₯ = 1 2 tanh⁑ π‘ˆ1+𝐿1 2 βˆ’ 𝑍1 π‘₯ ) 𝛼1 + 1 2 = 1 2 tanh⁑0.9590 βˆ’ 8.4475 𝑍1 π‘₯ + 1 2 πœ‘2 π‘₯ = 1 2 tanh⁑ π‘ˆ2+𝐿2 2 βˆ’ 𝑍2 π‘₯ 𝛼2 + 1 2 = 1 2 tanh⁑0.86175 βˆ’ 17.8731 𝑍2 π‘₯ + 1 2 e) Compromise Solution i) Weighted A.M. mean of hyperbolic membership functions. π‘€π‘Žπ‘₯π‘–π‘šπ‘–π‘§π‘’ πœ‡ π‘₯ = πœ‘π‘– π‘˜ 𝑖=1 𝑀𝑖𝑆𝑒𝑏𝑗𝑒𝑐𝑑 π‘‘π‘œ 𝑔𝑖𝑣𝑒𝑛 𝑠𝑒𝑑 π‘œπ‘“ π‘π‘œπ‘›π‘ π‘‘π‘Ÿπ‘Žπ‘–π‘›π‘‘π‘  MAX =(0.5*@TANH(0.9590 -8.44475*(1.3143-0.185*X11-0.0034*X12 -0.0248*X13+0.0028*X14-0.0098*X21+0.0078*X22-0.0059*X23 -0.0148*X24-0.0154*X31-0.0261*X32-0.0015*X33-0.0079*X34))+0.5)*0.1+ (0.5*@TANH(0.86175-17.8731*(1.0296+0.0024*X11-0.0080*X12+0.0056*X13- .0126*X14+0.0086*X21-0.0034*X22-0.0109*X23+0.007*X24-0.0048*X31 -0.0095*X32-0.0036*X33-0.0096*X34))+0.5)*0.9; ! ENTER DEMAND AND SUPPLY CONSTRAINTS; X11+X12+X13+X14=15;X21+X22+X23+X24=25;X31+X32+X33+X34=20; X11+X21+X31=15; X12+X22+X32=25;X13+X23+X33=5; X14+X24+X34=15; ! ENTER NON NEGATIVITY CONSTRAINTS; X11>=0; X12>=0; X13>=0; X14>=0;X21>=0; X22>=0; X23>=0; X24>=0; X31>=0; X32>=0; X33>=0; X34>=0; @GIN(X11);@GIN(X12);@GIN(X13);@GIN(X14); @GIN(X21);@GIN(X22);@GIN(X23);@GIN(X24); @GIN(X31);@GIN(X32);@GIN(X33);@GIN(X34); For different values of weights we have following solutions. X1* (0.2,0.6) (0.3,0.7) 0.6,0.4) (0.8,0.2) (0.9,0.1) X2* X11 0 0 15 15 11 14 5 X12 0 0 0 0 0 0 5 X13 0 1 0 0 4 0 5 X14 15 14 0 0 0 1 0 X21 0 0 0 0 0 1 10 X23 25 23 5 6 10 5 0 X33 0 2 5 4 0 5 0 X24 0 0 15 15 15 14 15 X31 15 15 0 0 4 0 0 X32 0 2 20 19 15 20 20 X33 5 2 0 1 1 0 0 X34 0 1 0 0 0 0 0 Q1 1.3143 1.20871 0.65 0.66709 0.68997 0.65992 0.60377 Q2 0.70345 0.6831 0.92 0.93423 0.98701 0.90812 1.0296 ii) Weighted Quadratic Mean of hyperbolic membership functions. π‘€π‘Žπ‘₯π‘–π‘šπ‘–π‘§π‘’ πœ‡ ( π‘₯)= πœ‘π‘– 2 π‘˜ 𝑖=1 𝑀𝑖 1 2 = πœ‘π‘– 2 π‘˜ 𝑖=1 𝑀𝑖 𝑆𝑒𝑏𝑗𝑒𝑐𝑑 π‘‘π‘œ 𝑔𝑖𝑣𝑒𝑛 𝑠𝑒𝑑 π‘œπ‘“ π‘π‘œπ‘›π‘ π‘‘π‘Ÿπ‘Žπ‘–π‘›π‘‘π‘  MAX =@SQRT(((0.5*@TANH(0.9590 -8.44475*(1.3143-0.185*X11-0.0034*X12 -0.0248*X13+0.0028*X14-0.0098*X21+0.0078*X22-0.0059*X23 -0.0148*X24-0.0154*X31-0.0261*X32-0.0015*X33-0.0079*X34))+0.5)^2)*0.1+ ((0.5*@TANH(0.86175-17.8731*(1.0296+0.0024*X11-0.0080*X12+0.0056*X13- .0126*X14+0.0086*X21-0.0034*X22-0.0109*X23+0.007*X24-0.0048*X31 -0.0095*X32-0.0036*X33-0.0096*X34))+0.5)^2)*0.9); ! ENTER DEMAND AND SUPPLY CONSTRAINTS; X11+X12+X13+X14=15;X21+X22+X23+X24=25;X31+X32+X33+X34=20; X11+X21+X31=15; X12+X22+X32=25;X13+X23+X33=5; X14+X24+X34=15; ! ENTER NON NEGATIVITY CONSTRAINTS; X11>=0; X12>=0; X13>=0; X14>=0;X21>=0; X22>=0; X23>=0; X24>=0; X31>=0; X32>=0; X33>=0; X34>=0; @GIN(X11);@GIN(X12);@GIN(X13);@GIN(X14); @GIN(X21);@GIN(X22);@GIN(X23);@GIN(X24);
  • 6. A Solution Procedure to Solve Multi objective Fractional Transportation Problem www.irjes.com 72 | Page @GIN(X31);@GIN(X32);@GIN(X33);@GIN(X34); For different values of weights we have following solutions. X1* (0.1,0.9) (0.2,0.8) (0.4,0.6) (0.6,0.4) (0.9,0.1) X2* X11 0 0 15 12 15 14 5 X12 0 0 0 0 0 0 5 X13 0 2 0 3 0 0 5 X14 15 13 0 0 0 1 0 X21 0 0 0 0 0 1 10 X23 25 21 6 19 5 5 0 X33 0 2 4 2 5 5 0 X24 0 2 15 4 15 14 15 X31 15 15 0 3 0 0 0 X32 0 4 19 6 20 20 20 X33 5 1 1 0 0 0 0 X34 0 0 0 11 0 0 0 Q1 1.3143 1.1088 0.6671 0.9069 0.6500 0.6599 0.60377 Q2 0.70345 0.7065 0.9342 0.8540 0.9200 0.9081 1.0296 REFERENCES 1 Alexandra I. Tkacenkoβ€œThe generalized algorithm for solving the fractional multi objective transportation problem.” ROMAI J.,1(2006),197-202. 2 Alexandra I. Tkacenkoβ€œThe Multiple criteria transportation model” . (Special case ) Recent advances in applied mathematical and computational science Volume 1 3 Aneja YP, Nair KPK .”Bicriteria Transportation Problems.” Management Science, 1979; 25:73-8. 5 Charnes,A., Cooper W.W. β€œProgramming with linear fractional”. Naval Res. Logistics Quart. Vol. 9, No.3 and No.4, 1962, pp, 181-186. 8 Diaz JA . Solving multi objective transportation problem..EconomickoMathematickyObzor . 1978;14:273-74. 9 Diaz JA Finding a complete description of all efficient solutions to a multi objective transdportation. EconomickoMathematicky Obzor1979;15;62-73. 10 Doke and Jadhav ,’ A fuzzy approach to solve multi objective fractional linear programming problem” International Journal of Mathematics and Computer Research., Volume 4 ,Issue 5 ,pp 1379-13862016 11 Doke and Jadhav ,”A Solution to three objective transportation problems using fuzzy compromise programming approach.”, International Journal of Modern Sciences and Engineering Technology, Vol. 2 Issue 1, pp 1-5 , 2015 12 Doke D.M. andJadhav V.A. β€œ A Fuzzy Approach to solve multi objective linear fractional transportation programming problem”, International Journal of Statistika and MathematikaVol.18,issue 1 ,pp21-26,2016 13 Dr.V.A.Jadhav and Doke D.M. β€œ Solution procedure to solve Fractional Transportation problem with fuzzy cost and profit coefficients”, International Journal of Mathematics and Computer Research., Volume 4 ,Issue 7 ,pp 1554-1562,2016 14 E. Bajalinov , Linear Fractional Programming ,Theory, Methods, Applications and Software, Kluwer Academic Publishers, (2003) 15 Hale GonceKocken,MehmetAhlatcioglu , A compensatory approach to multi objective linear transportation problem with fuzzy cost coefficients. Research Article. 16 H.J. Zimmermann, β€œ Fuzzy programming and linear programming with several objective functions”, Fuzzy Sets and Systems, 85,pp 45-48,1997. 17 H.J. Zimmermann, "Fuzzy Set Theory and Its Applications, ", Kluwer Academic Publishers" 18 Lushu Li ,K.K.lai ,”A Fuzzy approach to multi objective transportation problem”, Computers and Operations’ Research (27) (2000) 43-57 19 M. Chakraborty and Gupta β€œ Fuzzy mathematical programming for multi objective fractional programming problem,” Fuzzy Sets and System,Vol.125,no.3,pp,335-342,2002. 21 PitramSingh ,Shiv Dutta Kumar and R.K.Singh, β€œ An approach for multi objective linear plus fractional programming problem.”, International electronic Journal of Pure and applied Mathematics, volume 2 No. 3 ,2010,pp 103-110. 22 Ringuest J-L ,Rinks DB . Interactive solution for multi objective transportation problem. European Journal of Operations Reaserch. 1987; 32: 96-106. 23 Singh et.al. β€œ Fuzzy multi objective linear plus linear fractional programming problem approximation and goal programming approach,” International Journal of Mathematics and Computers in simulation, vol .5 no. 5,pp. 395-404,2011 24 StefenChanas and DorotaKutcha ,”A concept of the optimal solution of the transportation problem with fuzzy cost coefficients”. Fuzzy Sets and Systems, 82, Issue 3, pp 40-48,2008. 25 SurapatiPramanik and Durga Banerjee β€œChance constrained multi objective linear plus linear fractional programming problem based on Taylor’s series approximation”, International Journal of Engineering Research and Development, Vol 1, Issue 3, 26 Singh et.al. β€œ Fuzzy multi objective linear plus linear fractional programming problem approximation and goal programming approach,” International Journal of Mathematics and Computers in simulation, vol .5 no. 5,pp. 395-404,2011 27 Tokasari D.M. , β€œTaylor series approach to fuzzy multi objective linear fractional programming”, Information Science ,178(2008),pp 1189-1204. 28 V.J.Sudhakar and V.NavaneethaKumar . A different approach for solving two stage fuzzy transportation problem. Int.J. Contemp. Math.Sciences, Vol. 6 ,2011,no. 11,517-526. 29 W.Ritha and J.MerlineVinotha .Multi objective two stage fuzzy transportation problem. Journal of Physical Sciences, Vol.13,2009,107-120. 30 Zadeh LA .Fuzzy Sets .Information control. 1965; 8, 338:353. Dr. Doke Dnyaneshwar Maruti. β€œA Solution Procedure to Solve Multi objective Fractional Transportation Problem.” International Refereed Journal of Engineering and Science (IRJES), vol. 07, no. 01, 2018, pp. 67–72.