SlideShare a Scribd company logo
1 of 22
Download to read offline
Wind Energy I




                power losses at the
                   rotor blade


Michael Hölling, WS 2010/2011   slide 1
Wind Energy I                              Class content
                                                            5 Wind turbines in
                                                                                        6 Wind - blades
                                                              general
                                2 Wind measurements                                       interaction

                                                                                 8 Power losses at
                                                                                 the rotor blade

                                                                        9 Π-theorem and Wind
                                  3 Wind field                          turbine characterization
                                    characterization
    4 Wind power                                                     10 Generator

                                                                     11 Electrics / grid




Michael Hölling, WS 2010/2011                     slide 2
Wind Energy I                       Power coefficient

   Optimized design of blades - why is the power coefficient not
           cp = 16/27 for the whole wind speed range ?


                                                               cp = Betz limit
                 0.6


                 0.4
         cp(!)




                 0.2


                 0.0
                    0           5     10             15   20
                                      !

Michael Hölling, WS 2010/2011              slide 3
Wind Energy I                   Power coefficient

                Real cp values change over the tip speed ratio !




Michael Hölling, WS 2010/2011         slide 4
Wind Energy I                               Power losses

       Losses at the rotor will lead to rotor power coefficient cpr
                                                                          u2
     losses at the profile due to drag forces
                                                               urot
                                       plane of rotation
                                                                      β   ures
                                       Fl
                                             β
                                Fres                              α
                                                           .
                                                    Fd
                                                                          ω
                                                      β




Michael Hölling, WS 2010/2011                    slide 5
Wind Energy I                      Power losses

       Losses at the rotor will lead to rotor power coefficient cpr
    losses at the tip of the blades creates by tip vortices




Michael Hölling, WS 2010/2011           slide 6
Wind Energy I                             Power losses

 Determine rotor power coefficient cpr by including losses in
 addition to Betz limit - cprdrag and cprtip additional factors:

                                             dProt
                                cprdrag   =
                                            dProtideal

 Calculations lead to:

                                               1  3 λ·r
                                cprdrag   =1−    · ·
                                              (α) 2 R




Michael Hölling, WS 2010/2011                 slide 7
Wind Energy I                                   Power losses

   Possible behavior of cprdrag over blade radius r for different ε
   and λ:

       70                                                                 1.0
                                                 !(r)                                                   !=4
                                                                                                        !=7
       60                                                                                               ! = 10
                                                                          0.9




                                                             cprdrag(r)
!(r)




       50


       40                                                                 0.8

       30                                                                   0   10   20           30   40    50
         0      10        20           30   40      50
                               r [m]                                                      r [m]




  Michael Hölling, WS 2010/2011                         slide 8
Wind Energy I                   Power losses
                                For a ring-segment:
                                          16 1
                                dPBetz =     · · ρ · u1 · (2 · π · r · dr)
                                                      3
                                          27 2
                                                                  dA


                       r
                                For just the circumference of a circle:
                                           16 1
                                dPBetz =      · · ρ · u1 · (2 · π · r · dr)
                                                       3
                                           27 2
                                                                  dA




Michael Hölling, WS 2010/2011       slide 10
Wind Energy I                            Power losses

 For a constant ε over the whole blade cprdrag is given by:
                                                        λ
                                     cprdrag = 1 −

                              1.0
                                                             "(#)=20
                              0.8                            "(#)=40
                                                             "(#)=60
                 cprdrag(!)




                              0.6

                              0.4

                              0.2

                              0.0
                                 0   5       10             15         20
                                              !

Michael Hölling, WS 2010/2011                slide 11
Wind Energy I                            Power losses

 Power coefficient cprtip due to tip losses are caused by
 balancing pressure differences at tip of the blade.



                                cl (r)

                 ures




Michael Hölling, WS 2010/2011                slide 12
Wind Energy I                                Power losses

 Estimating tip losses cprtip by means of reduced diameter D’:

                                     D = D − 0.44 · b
 Projection of distance “a” between rotor blades into a plane
 perpendicular to the resulting velocity ures gives “b”.
                                      u2
                          urot

                                 β    ures                                           
                                                                          0.92
                                                        D = D 1 −                    
                        a
                  .                                                  z·    λ2 +   4
                                                                                  9
                  b


Michael Hölling, WS 2010/2011                    slide 13
Wind Energy I                             Power losses
                                                                       2
                                                      0.92
                               cprtip = 1 −                            
                                               z·         λ2   +    4
                                                                    9

                             1.0

                             0.8
                 cprtip(!)




                             0.6

                             0.4                                        z=1
                                                                        z=2
                             0.2                                        z=3

                             0.0
                                0     5        10              15             20

                                               !
Michael Hölling, WS 2010/2011                  slide 14
Wind Energy I                       Rotor power coefficient

 The total rotor power coefficient is a result from the Betz limit,
 losses due to drag and tip losses:
                   cpr = cpBetz · cprdrag · cprtip

    Betz limit 0.6                                                 z=1,"(#)=40
                                                                   z=2,"(#)=40
                                                                   z=3,"(#)=40
                     0.4
            cpr(!)




                     0.2


                     0.0
                        0       5        10              15   20

                                          !

Michael Hölling, WS 2010/2011                 slide 15
Wind Energy I                       Rotor power coefficient

 The total rotor power coefficient is a result from the Betz limit,
 losses due to drag and tip losses:
                   cpr = cpBetz · cprdrag · cprtip

    Betz limit 0.6                                                 z=1,"(#)=40
                                                                   z=2,"(#)=40
                                                                   z=3,"(#)=40
                     0.4
                                                                   z=1,"(#)=60
                                                                   z=2,"(#)=60
            cpr(!)




                                                                   z=3,"(#)=60
                     0.2


                     0.0
                        0       5        10              15   20

                                          !

Michael Hölling, WS 2010/2011                 slide 15
Wind Energy I                        Rotor power coefficient
 Maximum convertible power from wind based on Schmitz (and
 Gaulert) including conservation angular momentum:
 “Based on the conservation of angular momentum, if the rotor gains angular momentum from the linear wind
 stream, then there must be some compensation, which is in the form of an opposite rotating wake, so that the
 overall angular momentum does not change.  ”




Michael Hölling, WS 2010/2011                       slide 16
Wind Energy I                              Rotor power coefficient

 Just to be complete, the maximum convertible power from
 wind based on Schmitz including angular momentum is given
 by:
                1                                1
                                                          r        2       sin3    2
                                                                                       · arctan      R
                                                                                                             r
 PSchmitz      = · ρ · π · R 2 · u3                  4·λ·              ·           3                λ·r
                                                                                                          ·d
                2                 1
                                             0            R                     sin2 arctan        R
                                                                                                  λ·r
                                                                                                             R
                                                                                cpSchmitz

                                    0.6

                                                                           cpSchmitz
                                    0.4
                        cpSchmitz




                                    0.2


                                    0.0
                                       0      5         10                 15          20
                                                         !

Michael Hölling, WS 2010/2011                           slide 17
Wind Energy I                   Rotor power coefficient
 The total rotor power coefficient is a result from the Schmitz
 limit (losses due to conservation of angular momentum), losses
 due to drag and tip losses: cpr = cpSchmitz · cprdrag · cprtip


       0.6                                               cpSchmitz
                                                         cpSchmitz, z=1,"(#)=60
                                                         cpSchmitz, z=2,"(#)=60
       0.4
                                                         cpSchmitz, z=3,"(#)=60
cpr




       0.2


       0.0
          0               5     10      15          20
                                !

Michael Hölling, WS 2010/2011            slide 18
Wind Energy I                   Rotor power coefficient
 The total rotor power coefficient is a result from the Schmitz
 limit (losses due to conservation of angular momentum), losses
 due to drag and tip losses: cpr = cpSchmitz · cprdrag · cprtip


       0.6                                               cpSchmitz
                                                         cpSchmitz, z=1,"(#)=60
                                                         cpSchmitz, z=2,"(#)=60
       0.4
                                                         cpSchmitz, z=3,"(#)=60
cpr




                                                         cpBetz, z=1,"(#)=60
       0.2
                                                         cpBetz, z=2,"(#)=60
                                                         cpBetz, z=3,"(#)=60
       0.0
          0               5     10      15          20
                                !

Michael Hölling, WS 2010/2011            slide 18
Wind Energy I                   Rotor power coefficient
 Even with all used approximations the calculated curves show
 the characteristics of real cpr curves:
 - number of blades effects maximum
 - number of blades effect λopt for maximum cpr

                                                0.6


                                                0.4
                                                             cpSchmitz
                                         cpr                 cpSchmitz, z=1,"(#)=60
                                                0.2
                                                             cpSchmitz, z=2,"(#)=60
                                                             cpSchmitz, z=3,"(#)=60
                                                0.0
                                                   0     5      10       15       20
                                                                !

Michael Hölling, WS 2010/2011            slide 19
Wind Energy I                   Blade optimization - Schmitz
 Chord length optimization based on Schmitz limit in
 comparison to Betz limit:




Michael Hölling, WS 2010/2011               slide 20
Wind Energy I                   Blade optimization - Schmitz
 blade twist optimization based on Schmitz limit in comparison
 to Betz limit::




Michael Hölling, WS 2010/2011               slide 21

More Related Content

Viewers also liked

Wind Power Point Presentation
Wind Power Point PresentationWind Power Point Presentation
Wind Power Point Presentation
Kurt Kublbeck
 
Alternative Energy for Permaculturists. Choosing the right alternative energy...
Alternative Energy for Permaculturists. Choosing the right alternative energy...Alternative Energy for Permaculturists. Choosing the right alternative energy...
Alternative Energy for Permaculturists. Choosing the right alternative energy...
DiegoFooter
 
What is alternative energy
What is alternative energyWhat is alternative energy
What is alternative energy
Ken Glen
 
Advances in Wind Assessment Technology: Industry Pursuit of Higher Resource M...
Advances in Wind Assessment Technology: Industry Pursuit of Higher Resource M...Advances in Wind Assessment Technology: Industry Pursuit of Higher Resource M...
Advances in Wind Assessment Technology: Industry Pursuit of Higher Resource M...
Renewable NRG Systems
 
VAWT Thesis Poster
VAWT Thesis PosterVAWT Thesis Poster
VAWT Thesis Poster
Rene Serrano
 
Computational flow optimization of Wind turbine blades
Computational flow optimization of Wind turbine bladesComputational flow optimization of Wind turbine blades
Computational flow optimization of Wind turbine blades
Sarath Pagadala
 

Viewers also liked (20)

Control Scheme for a Stand-Alone Wind Energy Conversion System
Control Scheme for a Stand-Alone Wind Energy Conversion SystemControl Scheme for a Stand-Alone Wind Energy Conversion System
Control Scheme for a Stand-Alone Wind Energy Conversion System
 
Wind Power Point Presentation
Wind Power Point PresentationWind Power Point Presentation
Wind Power Point Presentation
 
Wind turbine types
Wind turbine typesWind turbine types
Wind turbine types
 
Introduction to copper rotor induction motors
Introduction to copper rotor induction motorsIntroduction to copper rotor induction motors
Introduction to copper rotor induction motors
 
Alternative Energy for Permaculturists. Choosing the right alternative energy...
Alternative Energy for Permaculturists. Choosing the right alternative energy...Alternative Energy for Permaculturists. Choosing the right alternative energy...
Alternative Energy for Permaculturists. Choosing the right alternative energy...
 
What is alternative energy
What is alternative energyWhat is alternative energy
What is alternative energy
 
Suncor wind power
Suncor wind powerSuncor wind power
Suncor wind power
 
Sikkema brian[1]
Sikkema brian[1]Sikkema brian[1]
Sikkema brian[1]
 
Enhancing Power Coefficient of a Wind turbine Using Diffuser Augmentation in ...
Enhancing Power Coefficient of a Wind turbine Using Diffuser Augmentation in ...Enhancing Power Coefficient of a Wind turbine Using Diffuser Augmentation in ...
Enhancing Power Coefficient of a Wind turbine Using Diffuser Augmentation in ...
 
Wind energy I. Lesson 6. Wind turbines in general P2
Wind energy I. Lesson 6. Wind turbines in general P2Wind energy I. Lesson 6. Wind turbines in general P2
Wind energy I. Lesson 6. Wind turbines in general P2
 
Wind energy technology
Wind energy technologyWind energy technology
Wind energy technology
 
Loss of Tail Rotor Effectiveness -English-
Loss of Tail Rotor Effectiveness -English-Loss of Tail Rotor Effectiveness -English-
Loss of Tail Rotor Effectiveness -English-
 
Advances in Wind Assessment Technology: Industry Pursuit of Higher Resource M...
Advances in Wind Assessment Technology: Industry Pursuit of Higher Resource M...Advances in Wind Assessment Technology: Industry Pursuit of Higher Resource M...
Advances in Wind Assessment Technology: Industry Pursuit of Higher Resource M...
 
VAWT Thesis Poster
VAWT Thesis PosterVAWT Thesis Poster
VAWT Thesis Poster
 
Wind Turbines_Brief
Wind Turbines_BriefWind Turbines_Brief
Wind Turbines_Brief
 
Computational flow optimization of Wind turbine blades
Computational flow optimization of Wind turbine bladesComputational flow optimization of Wind turbine blades
Computational flow optimization of Wind turbine blades
 
Wind energy advantages maya
Wind energy advantages mayaWind energy advantages maya
Wind energy advantages maya
 
254 ishwri
254 ishwri254 ishwri
254 ishwri
 
3-Fazlı Kafes Rotorlu Asenkron Motor Tasarımı(Bitirme Tezi)
3-Fazlı Kafes Rotorlu Asenkron Motor Tasarımı(Bitirme Tezi)3-Fazlı Kafes Rotorlu Asenkron Motor Tasarımı(Bitirme Tezi)
3-Fazlı Kafes Rotorlu Asenkron Motor Tasarımı(Bitirme Tezi)
 
Wind turbine blade efficiency
Wind turbine blade efficiencyWind turbine blade efficiency
Wind turbine blade efficiency
 

Similar to Wind energy I. Lesson 8. Power losses at rotor blade

Synchronous Rectification for Forward Converters_SMappus_June 4 2010
Synchronous Rectification for Forward Converters_SMappus_June 4 2010Synchronous Rectification for Forward Converters_SMappus_June 4 2010
Synchronous Rectification for Forward Converters_SMappus_June 4 2010
Steve Mappus
 
Ferrite Specifications and ACME Ferrites (4)
Ferrite Specifications and ACME Ferrites (4)Ferrite Specifications and ACME Ferrites (4)
Ferrite Specifications and ACME Ferrites (4)
Ray Lai
 
Uniten iccbt 08 a serviceability approach to the design of scc beams
Uniten iccbt 08 a serviceability approach to the design of scc beamsUniten iccbt 08 a serviceability approach to the design of scc beams
Uniten iccbt 08 a serviceability approach to the design of scc beams
Yf Chong
 

Similar to Wind energy I. Lesson 8. Power losses at rotor blade (20)

Correlation of power_consumption_for_several_kinds
Correlation of power_consumption_for_several_kindsCorrelation of power_consumption_for_several_kinds
Correlation of power_consumption_for_several_kinds
 
Fq2410291035
Fq2410291035Fq2410291035
Fq2410291035
 
10 e-ren-1691
10 e-ren-169110 e-ren-1691
10 e-ren-1691
 
14.00 o1 c sutton
14.00 o1 c sutton14.00 o1 c sutton
14.00 o1 c sutton
 
5630731
56307315630731
5630731
 
Nwtc seminar overview of the impact of turbulence on turbine dynamics and t...
Nwtc seminar   overview of the impact of turbulence on turbine dynamics and t...Nwtc seminar   overview of the impact of turbulence on turbine dynamics and t...
Nwtc seminar overview of the impact of turbulence on turbine dynamics and t...
 
Synchronous Rectification for Forward Converters_SMappus_June 4 2010
Synchronous Rectification for Forward Converters_SMappus_June 4 2010Synchronous Rectification for Forward Converters_SMappus_June 4 2010
Synchronous Rectification for Forward Converters_SMappus_June 4 2010
 
Presentation1.pptx
Presentation1.pptxPresentation1.pptx
Presentation1.pptx
 
219118530 day-1-part-2-c ts-and-vts
219118530 day-1-part-2-c ts-and-vts219118530 day-1-part-2-c ts-and-vts
219118530 day-1-part-2-c ts-and-vts
 
Vl wind energy_meteorology_ss11_-_09_-_wind_farm_modeling_gerald
Vl wind energy_meteorology_ss11_-_09_-_wind_farm_modeling_geraldVl wind energy_meteorology_ss11_-_09_-_wind_farm_modeling_gerald
Vl wind energy_meteorology_ss11_-_09_-_wind_farm_modeling_gerald
 
IFFCO - PHULPUR UNIT
IFFCO - PHULPUR UNITIFFCO - PHULPUR UNIT
IFFCO - PHULPUR UNIT
 
On-Shell Mediators
On-Shell MediatorsOn-Shell Mediators
On-Shell Mediators
 
Extreme Rheology- Cardiff- 2009
Extreme Rheology- Cardiff- 2009Extreme Rheology- Cardiff- 2009
Extreme Rheology- Cardiff- 2009
 
Ferrite Specifications and ACME Ferrites (4)
Ferrite Specifications and ACME Ferrites (4)Ferrite Specifications and ACME Ferrites (4)
Ferrite Specifications and ACME Ferrites (4)
 
Simple Model of Transformer using LTspice
Simple Model of Transformer using LTspiceSimple Model of Transformer using LTspice
Simple Model of Transformer using LTspice
 
Chapter 5
Chapter 5Chapter 5
Chapter 5
 
Spectroscopy XRD
Spectroscopy XRDSpectroscopy XRD
Spectroscopy XRD
 
Towards An Accurate Modeling of Frequency-dependent Wind Farm Components Unde...
Towards An Accurate Modeling of Frequency-dependent Wind Farm Components Unde...Towards An Accurate Modeling of Frequency-dependent Wind Farm Components Unde...
Towards An Accurate Modeling of Frequency-dependent Wind Farm Components Unde...
 
Uniten iccbt 08 a serviceability approach to the design of scc beams
Uniten iccbt 08 a serviceability approach to the design of scc beamsUniten iccbt 08 a serviceability approach to the design of scc beams
Uniten iccbt 08 a serviceability approach to the design of scc beams
 
Tanabe sugano diagram
Tanabe sugano diagramTanabe sugano diagram
Tanabe sugano diagram
 

More from Tuong Do

Giz2013 en-identification-of-biomass-market-opportunities-in-vietnam 2
Giz2013 en-identification-of-biomass-market-opportunities-in-vietnam 2Giz2013 en-identification-of-biomass-market-opportunities-in-vietnam 2
Giz2013 en-identification-of-biomass-market-opportunities-in-vietnam 2
Tuong Do
 
Giz2013 en-exploring-biogas-market-opportunities-vietnam
Giz2013 en-exploring-biogas-market-opportunities-vietnamGiz2013 en-exploring-biogas-market-opportunities-vietnam
Giz2013 en-exploring-biogas-market-opportunities-vietnam
Tuong Do
 
04 giz doris_beck_presentation_vietnam_september_2013
04 giz doris_beck_presentation_vietnam_september_201304 giz doris_beck_presentation_vietnam_september_2013
04 giz doris_beck_presentation_vietnam_september_2013
Tuong Do
 
Giz2013 Policies and regulatory framework promoting the application of biomas...
Giz2013 Policies and regulatory framework promoting the application of biomas...Giz2013 Policies and regulatory framework promoting the application of biomas...
Giz2013 Policies and regulatory framework promoting the application of biomas...
Tuong Do
 

More from Tuong Do (20)

Tiềm năng và xu hướng công nghệ phát triển điện mặt trời ở Việt Nam
Tiềm năng và xu hướng công nghệ phát triển điện mặt trời ở Việt NamTiềm năng và xu hướng công nghệ phát triển điện mặt trời ở Việt Nam
Tiềm năng và xu hướng công nghệ phát triển điện mặt trời ở Việt Nam
 
Tổng quan Công nghệ Khí sinh học
Tổng quan Công nghệ Khí sinh họcTổng quan Công nghệ Khí sinh học
Tổng quan Công nghệ Khí sinh học
 
Điện mặt trời và cơ chế thanh toán bù trừ net-metering tại Thailand
Điện mặt trời và cơ chế thanh toán bù trừ net-metering tại ThailandĐiện mặt trời và cơ chế thanh toán bù trừ net-metering tại Thailand
Điện mặt trời và cơ chế thanh toán bù trừ net-metering tại Thailand
 
Solar PV development in singapore and SERIS introduction
Solar PV development in singapore and SERIS introductionSolar PV development in singapore and SERIS introduction
Solar PV development in singapore and SERIS introduction
 
Vietnam the new powerhouse for cell manufacturing in Southeast Asia
Vietnam the new powerhouse for cell manufacturing in Southeast AsiaVietnam the new powerhouse for cell manufacturing in Southeast Asia
Vietnam the new powerhouse for cell manufacturing in Southeast Asia
 
Solar technology and market trend 2017 - Tuong Do
Solar technology and market trend 2017 - Tuong DoSolar technology and market trend 2017 - Tuong Do
Solar technology and market trend 2017 - Tuong Do
 
Xu hướng công nghệ thị trường - Điện mặt trời và Điện gió
Xu hướng công nghệ thị trường - Điện mặt trời và Điện gióXu hướng công nghệ thị trường - Điện mặt trời và Điện gió
Xu hướng công nghệ thị trường - Điện mặt trời và Điện gió
 
STATE OF THE INDUSTRY KEYNOTE BNEF SUMMIT 2016
STATE OF THE INDUSTRY KEYNOTE BNEF SUMMIT 2016STATE OF THE INDUSTRY KEYNOTE BNEF SUMMIT 2016
STATE OF THE INDUSTRY KEYNOTE BNEF SUMMIT 2016
 
Renewable energy models for rice residues - SNV Vietnam
Renewable energy models for rice residues - SNV VietnamRenewable energy models for rice residues - SNV Vietnam
Renewable energy models for rice residues - SNV Vietnam
 
GIZ support mechanism for RE development in Vietnam
GIZ support mechanism for RE development in VietnamGIZ support mechanism for RE development in Vietnam
GIZ support mechanism for RE development in Vietnam
 
Giz2013 en-identification-of-biomass-market-opportunities-in-vietnam 2
Giz2013 en-identification-of-biomass-market-opportunities-in-vietnam 2Giz2013 en-identification-of-biomass-market-opportunities-in-vietnam 2
Giz2013 en-identification-of-biomass-market-opportunities-in-vietnam 2
 
Giz2013 en-exploring-biogas-market-opportunities-vietnam
Giz2013 en-exploring-biogas-market-opportunities-vietnamGiz2013 en-exploring-biogas-market-opportunities-vietnam
Giz2013 en-exploring-biogas-market-opportunities-vietnam
 
Module 1: Technical options and international best practices for on-grid powe...
Module 1: Technical options and international best practices for on-grid powe...Module 1: Technical options and international best practices for on-grid powe...
Module 1: Technical options and international best practices for on-grid powe...
 
Module 2: Assessment of international good practices in the fields of biomass...
Module 2: Assessment of international good practices in the fields of biomass...Module 2: Assessment of international good practices in the fields of biomass...
Module 2: Assessment of international good practices in the fields of biomass...
 
Module 3: Criteria for the siting and systems integration
Module 3: Criteria for the siting and systems integrationModule 3: Criteria for the siting and systems integration
Module 3: Criteria for the siting and systems integration
 
Module 7: Assessment of framework conditions and necessary adaptations
Module 7: Assessment of framework conditions and necessary adaptationsModule 7: Assessment of framework conditions and necessary adaptations
Module 7: Assessment of framework conditions and necessary adaptations
 
Module 4: Basic design parameters (technical and economic) for commercially v...
Module 4: Basic design parameters (technical and economic) for commercially v...Module 4: Basic design parameters (technical and economic) for commercially v...
Module 4: Basic design parameters (technical and economic) for commercially v...
 
04 giz doris_beck_presentation_vietnam_september_2013
04 giz doris_beck_presentation_vietnam_september_201304 giz doris_beck_presentation_vietnam_september_2013
04 giz doris_beck_presentation_vietnam_september_2013
 
Module 6 Basic design parameters for commercially viable on-grid biomass gasi...
Module 6 Basic design parameters for commercially viable on-grid biomass gasi...Module 6 Basic design parameters for commercially viable on-grid biomass gasi...
Module 6 Basic design parameters for commercially viable on-grid biomass gasi...
 
Giz2013 Policies and regulatory framework promoting the application of biomas...
Giz2013 Policies and regulatory framework promoting the application of biomas...Giz2013 Policies and regulatory framework promoting the application of biomas...
Giz2013 Policies and regulatory framework promoting the application of biomas...
 

Recently uploaded

The basics of sentences session 3pptx.pptx
The basics of sentences session 3pptx.pptxThe basics of sentences session 3pptx.pptx
The basics of sentences session 3pptx.pptx
heathfieldcps1
 

Recently uploaded (20)

80 ĐỀ THI THỬ TUYỂN SINH TIẾNG ANH VÀO 10 SỞ GD – ĐT THÀNH PHỐ HỒ CHÍ MINH NĂ...
80 ĐỀ THI THỬ TUYỂN SINH TIẾNG ANH VÀO 10 SỞ GD – ĐT THÀNH PHỐ HỒ CHÍ MINH NĂ...80 ĐỀ THI THỬ TUYỂN SINH TIẾNG ANH VÀO 10 SỞ GD – ĐT THÀNH PHỐ HỒ CHÍ MINH NĂ...
80 ĐỀ THI THỬ TUYỂN SINH TIẾNG ANH VÀO 10 SỞ GD – ĐT THÀNH PHỐ HỒ CHÍ MINH NĂ...
 
General Principles of Intellectual Property: Concepts of Intellectual Proper...
General Principles of Intellectual Property: Concepts of Intellectual  Proper...General Principles of Intellectual Property: Concepts of Intellectual  Proper...
General Principles of Intellectual Property: Concepts of Intellectual Proper...
 
Plant propagation: Sexual and Asexual propapagation.pptx
Plant propagation: Sexual and Asexual propapagation.pptxPlant propagation: Sexual and Asexual propapagation.pptx
Plant propagation: Sexual and Asexual propapagation.pptx
 
Holdier Curriculum Vitae (April 2024).pdf
Holdier Curriculum Vitae (April 2024).pdfHoldier Curriculum Vitae (April 2024).pdf
Holdier Curriculum Vitae (April 2024).pdf
 
Kodo Millet PPT made by Ghanshyam bairwa college of Agriculture kumher bhara...
Kodo Millet  PPT made by Ghanshyam bairwa college of Agriculture kumher bhara...Kodo Millet  PPT made by Ghanshyam bairwa college of Agriculture kumher bhara...
Kodo Millet PPT made by Ghanshyam bairwa college of Agriculture kumher bhara...
 
Understanding Accommodations and Modifications
Understanding  Accommodations and ModificationsUnderstanding  Accommodations and Modifications
Understanding Accommodations and Modifications
 
ICT Role in 21st Century Education & its Challenges.pptx
ICT Role in 21st Century Education & its Challenges.pptxICT Role in 21st Century Education & its Challenges.pptx
ICT Role in 21st Century Education & its Challenges.pptx
 
How to Manage Global Discount in Odoo 17 POS
How to Manage Global Discount in Odoo 17 POSHow to Manage Global Discount in Odoo 17 POS
How to Manage Global Discount in Odoo 17 POS
 
The basics of sentences session 3pptx.pptx
The basics of sentences session 3pptx.pptxThe basics of sentences session 3pptx.pptx
The basics of sentences session 3pptx.pptx
 
How to Add New Custom Addons Path in Odoo 17
How to Add New Custom Addons Path in Odoo 17How to Add New Custom Addons Path in Odoo 17
How to Add New Custom Addons Path in Odoo 17
 
Exploring_the_Narrative_Style_of_Amitav_Ghoshs_Gun_Island.pptx
Exploring_the_Narrative_Style_of_Amitav_Ghoshs_Gun_Island.pptxExploring_the_Narrative_Style_of_Amitav_Ghoshs_Gun_Island.pptx
Exploring_the_Narrative_Style_of_Amitav_Ghoshs_Gun_Island.pptx
 
Unit 3 Emotional Intelligence and Spiritual Intelligence.pdf
Unit 3 Emotional Intelligence and Spiritual Intelligence.pdfUnit 3 Emotional Intelligence and Spiritual Intelligence.pdf
Unit 3 Emotional Intelligence and Spiritual Intelligence.pdf
 
Beyond_Borders_Understanding_Anime_and_Manga_Fandom_A_Comprehensive_Audience_...
Beyond_Borders_Understanding_Anime_and_Manga_Fandom_A_Comprehensive_Audience_...Beyond_Borders_Understanding_Anime_and_Manga_Fandom_A_Comprehensive_Audience_...
Beyond_Borders_Understanding_Anime_and_Manga_Fandom_A_Comprehensive_Audience_...
 
REMIFENTANIL: An Ultra short acting opioid.pptx
REMIFENTANIL: An Ultra short acting opioid.pptxREMIFENTANIL: An Ultra short acting opioid.pptx
REMIFENTANIL: An Ultra short acting opioid.pptx
 
Micro-Scholarship, What it is, How can it help me.pdf
Micro-Scholarship, What it is, How can it help me.pdfMicro-Scholarship, What it is, How can it help me.pdf
Micro-Scholarship, What it is, How can it help me.pdf
 
Accessible Digital Futures project (20/03/2024)
Accessible Digital Futures project (20/03/2024)Accessible Digital Futures project (20/03/2024)
Accessible Digital Futures project (20/03/2024)
 
NO1 Top Black Magic Specialist In Lahore Black magic In Pakistan Kala Ilam Ex...
NO1 Top Black Magic Specialist In Lahore Black magic In Pakistan Kala Ilam Ex...NO1 Top Black Magic Specialist In Lahore Black magic In Pakistan Kala Ilam Ex...
NO1 Top Black Magic Specialist In Lahore Black magic In Pakistan Kala Ilam Ex...
 
HMCS Vancouver Pre-Deployment Brief - May 2024 (Web Version).pptx
HMCS Vancouver Pre-Deployment Brief - May 2024 (Web Version).pptxHMCS Vancouver Pre-Deployment Brief - May 2024 (Web Version).pptx
HMCS Vancouver Pre-Deployment Brief - May 2024 (Web Version).pptx
 
Key note speaker Neum_Admir Softic_ENG.pdf
Key note speaker Neum_Admir Softic_ENG.pdfKey note speaker Neum_Admir Softic_ENG.pdf
Key note speaker Neum_Admir Softic_ENG.pdf
 
Jamworks pilot and AI at Jisc (20/03/2024)
Jamworks pilot and AI at Jisc (20/03/2024)Jamworks pilot and AI at Jisc (20/03/2024)
Jamworks pilot and AI at Jisc (20/03/2024)
 

Wind energy I. Lesson 8. Power losses at rotor blade

  • 1. Wind Energy I power losses at the rotor blade Michael Hölling, WS 2010/2011 slide 1
  • 2. Wind Energy I Class content 5 Wind turbines in 6 Wind - blades general 2 Wind measurements interaction 8 Power losses at the rotor blade 9 Π-theorem and Wind 3 Wind field turbine characterization characterization 4 Wind power 10 Generator 11 Electrics / grid Michael Hölling, WS 2010/2011 slide 2
  • 3. Wind Energy I Power coefficient Optimized design of blades - why is the power coefficient not cp = 16/27 for the whole wind speed range ? cp = Betz limit 0.6 0.4 cp(!) 0.2 0.0 0 5 10 15 20 ! Michael Hölling, WS 2010/2011 slide 3
  • 4. Wind Energy I Power coefficient Real cp values change over the tip speed ratio ! Michael Hölling, WS 2010/2011 slide 4
  • 5. Wind Energy I Power losses Losses at the rotor will lead to rotor power coefficient cpr u2 losses at the profile due to drag forces urot plane of rotation β ures Fl β Fres α . Fd ω β Michael Hölling, WS 2010/2011 slide 5
  • 6. Wind Energy I Power losses Losses at the rotor will lead to rotor power coefficient cpr losses at the tip of the blades creates by tip vortices Michael Hölling, WS 2010/2011 slide 6
  • 7. Wind Energy I Power losses Determine rotor power coefficient cpr by including losses in addition to Betz limit - cprdrag and cprtip additional factors: dProt cprdrag = dProtideal Calculations lead to: 1 3 λ·r cprdrag =1− · · (α) 2 R Michael Hölling, WS 2010/2011 slide 7
  • 8. Wind Energy I Power losses Possible behavior of cprdrag over blade radius r for different ε and λ: 70 1.0 !(r) !=4 !=7 60 ! = 10 0.9 cprdrag(r) !(r) 50 40 0.8 30 0 10 20 30 40 50 0 10 20 30 40 50 r [m] r [m] Michael Hölling, WS 2010/2011 slide 8
  • 9. Wind Energy I Power losses For a ring-segment: 16 1 dPBetz = · · ρ · u1 · (2 · π · r · dr) 3 27 2 dA r For just the circumference of a circle: 16 1 dPBetz = · · ρ · u1 · (2 · π · r · dr) 3 27 2 dA Michael Hölling, WS 2010/2011 slide 10
  • 10. Wind Energy I Power losses For a constant ε over the whole blade cprdrag is given by: λ cprdrag = 1 − 1.0 "(#)=20 0.8 "(#)=40 "(#)=60 cprdrag(!) 0.6 0.4 0.2 0.0 0 5 10 15 20 ! Michael Hölling, WS 2010/2011 slide 11
  • 11. Wind Energy I Power losses Power coefficient cprtip due to tip losses are caused by balancing pressure differences at tip of the blade. cl (r) ures Michael Hölling, WS 2010/2011 slide 12
  • 12. Wind Energy I Power losses Estimating tip losses cprtip by means of reduced diameter D’: D = D − 0.44 · b Projection of distance “a” between rotor blades into a plane perpendicular to the resulting velocity ures gives “b”. u2 urot β ures   0.92 D = D 1 −  a . z· λ2 + 4 9 b Michael Hölling, WS 2010/2011 slide 13
  • 13. Wind Energy I Power losses  2 0.92 cprtip = 1 −  z· λ2 + 4 9 1.0 0.8 cprtip(!) 0.6 0.4 z=1 z=2 0.2 z=3 0.0 0 5 10 15 20 ! Michael Hölling, WS 2010/2011 slide 14
  • 14. Wind Energy I Rotor power coefficient The total rotor power coefficient is a result from the Betz limit, losses due to drag and tip losses: cpr = cpBetz · cprdrag · cprtip Betz limit 0.6 z=1,"(#)=40 z=2,"(#)=40 z=3,"(#)=40 0.4 cpr(!) 0.2 0.0 0 5 10 15 20 ! Michael Hölling, WS 2010/2011 slide 15
  • 15. Wind Energy I Rotor power coefficient The total rotor power coefficient is a result from the Betz limit, losses due to drag and tip losses: cpr = cpBetz · cprdrag · cprtip Betz limit 0.6 z=1,"(#)=40 z=2,"(#)=40 z=3,"(#)=40 0.4 z=1,"(#)=60 z=2,"(#)=60 cpr(!) z=3,"(#)=60 0.2 0.0 0 5 10 15 20 ! Michael Hölling, WS 2010/2011 slide 15
  • 16. Wind Energy I Rotor power coefficient Maximum convertible power from wind based on Schmitz (and Gaulert) including conservation angular momentum: “Based on the conservation of angular momentum, if the rotor gains angular momentum from the linear wind stream, then there must be some compensation, which is in the form of an opposite rotating wake, so that the overall angular momentum does not change. ” Michael Hölling, WS 2010/2011 slide 16
  • 17. Wind Energy I Rotor power coefficient Just to be complete, the maximum convertible power from wind based on Schmitz including angular momentum is given by: 1 1 r 2 sin3 2 · arctan R r PSchmitz = · ρ · π · R 2 · u3 4·λ· · 3 λ·r ·d 2 1 0 R sin2 arctan R λ·r R cpSchmitz 0.6 cpSchmitz 0.4 cpSchmitz 0.2 0.0 0 5 10 15 20 ! Michael Hölling, WS 2010/2011 slide 17
  • 18. Wind Energy I Rotor power coefficient The total rotor power coefficient is a result from the Schmitz limit (losses due to conservation of angular momentum), losses due to drag and tip losses: cpr = cpSchmitz · cprdrag · cprtip 0.6 cpSchmitz cpSchmitz, z=1,"(#)=60 cpSchmitz, z=2,"(#)=60 0.4 cpSchmitz, z=3,"(#)=60 cpr 0.2 0.0 0 5 10 15 20 ! Michael Hölling, WS 2010/2011 slide 18
  • 19. Wind Energy I Rotor power coefficient The total rotor power coefficient is a result from the Schmitz limit (losses due to conservation of angular momentum), losses due to drag and tip losses: cpr = cpSchmitz · cprdrag · cprtip 0.6 cpSchmitz cpSchmitz, z=1,"(#)=60 cpSchmitz, z=2,"(#)=60 0.4 cpSchmitz, z=3,"(#)=60 cpr cpBetz, z=1,"(#)=60 0.2 cpBetz, z=2,"(#)=60 cpBetz, z=3,"(#)=60 0.0 0 5 10 15 20 ! Michael Hölling, WS 2010/2011 slide 18
  • 20. Wind Energy I Rotor power coefficient Even with all used approximations the calculated curves show the characteristics of real cpr curves: - number of blades effects maximum - number of blades effect λopt for maximum cpr 0.6 0.4 cpSchmitz cpr cpSchmitz, z=1,"(#)=60 0.2 cpSchmitz, z=2,"(#)=60 cpSchmitz, z=3,"(#)=60 0.0 0 5 10 15 20 ! Michael Hölling, WS 2010/2011 slide 19
  • 21. Wind Energy I Blade optimization - Schmitz Chord length optimization based on Schmitz limit in comparison to Betz limit: Michael Hölling, WS 2010/2011 slide 20
  • 22. Wind Energy I Blade optimization - Schmitz blade twist optimization based on Schmitz limit in comparison to Betz limit:: Michael Hölling, WS 2010/2011 slide 21