Anúncio
Anúncio

Mais conteúdo relacionado

Último(20)

Anúncio

Topic 4 Chapter 12.pdf

  1. Integrated Manufacturing Systems Topic 4. PP & Control - 12. Process Planning _____________________________________________________________________________________________________________________ _____________________________________________________________________________________________________________________ Sistemas Integrados de Fabricación. UJAEN Máster en Ingeniería Industrial 1 CHAPTER 12. Analysis of Manufacturing Systems Manufacturing Systems Definition, components and classification Cellular manufacturing Group technology Analysis of flexible manufacturing systems
  2. Integrated Manufacturing Systems Topic 4. PP & Control - 12. Process Planning _____________________________________________________________________________________________________________________ _____________________________________________________________________________________________________________________ Sistemas Integrados de Fabricación. UJAEN Máster en Ingeniería Industrial 2 Manufacturing System Definition: “a collection of integrated equipment and human resources that performs processing or assembly operations” Components Machines, tools, fixtures etc Workers Material Handling system Computer control
  3. Integrated Manufacturing Systems Topic 4. PP & Control - 12. Process Planning _____________________________________________________________________________________________________________________ _____________________________________________________________________________________________________________________ Sistemas Integrados de Fabricación. UJAEN Máster en Ingeniería Industrial 3 Manufacturing Systems Classification Classification parameters Number of workstations: Single station n=1 (I) or Multi-station systems n>1 (II) Station a place where an operation is performed System layout: Fixed or Variable routing Types of operations performed: Process or Assembly Automation level: Manual (M), semi-automated (H), fully automated systems (A) Manning level: proportion of time that a worker is at a station. High value  Manual operation Average System Manning level: M=(wu+∑ 𝑤𝑖 𝑛 𝑖 )/n, wu  utility workers manning level, wi  workers manning level at station i, n  Number of stations Product-Part variety: Single (identical products-parts), Batch (different products), Mixed model (Different models)
  4. Integrated Manufacturing Systems Topic 4. PP & Control - 12. Process Planning _____________________________________________________________________________________________________________________ _____________________________________________________________________________________________________________________ Sistemas Integrados de Fabricación. UJAEN Máster en Ingeniería Industrial 4 Fixed (a) and variable (b) routes Automation levels
  5. Integrated Manufacturing Systems Topic 4. PP & Control - 12. Process Planning _____________________________________________________________________________________________________________________ _____________________________________________________________________________________________________________________ Sistemas Integrados de Fabricación. UJAEN Máster en Ingeniería Industrial 5 Variety: Single (a), batch (b), mixed (c)
  6. Integrated Manufacturing Systems Topic 4. PP & Control - 12. Process Planning _____________________________________________________________________________________________________________________ _____________________________________________________________________________________________________________________ Sistemas Integrados de Fabricación. UJAEN Máster en Ingeniería Industrial 6 Operations n Route M Variety Single Station (I) 1 Manned workstation Process-Assembly Fixed >1 Single-Batch-Mixed Automated workstation Process-Assembly Variable <1 Single-Batch-Mixed Production Lines (II) >1 Fixed Manual Assembly Lines Assembly >1 Single-Batch-Mixed Automated Assembly Lines Assembly & process <1 Single-Mixed Transfer lines Process <1 Single Multi-station Cells (II) >1 Variable Group technology machine cell Process >1 Mixed Flexible Manufacturing Sys. Process <1 Mixed
  7. Integrated Manufacturing Systems Topic 4. PP & Control - 12. Process Planning _____________________________________________________________________________________________________________________ _____________________________________________________________________________________________________________________ Sistemas Integrados de Fabricación. UJAEN Máster en Ingeniería Industrial 7 Cellular Manufacturing: Layout definition by GT Traditional process Layout Cellular layout
  8. Integrated Manufacturing Systems Topic 4. PP & Control - 12. Process Planning _____________________________________________________________________________________________________________________ _____________________________________________________________________________________________________________________ Sistemas Integrados de Fabricación. UJAEN Máster en Ingeniería Industrial 8 Cellular Manufacturing: Manufacturing systems for mixed production where machines are grouped in cells that produce a family of parts Group Technology GT: “A manufacturing philosophy in which similar parts are identified and grouped together to take advantage of their similarities in design and production”  GT minimize batch production disadvantages: o Downtime for changeovers o High inventory costs  GT exploits the part similarities by utilizing similar processes and tooling to produce them.  Machines are grouped into cells, each cell specializing in the production of a part family called cellular manufacturing.  Cellular manufacturing can be implemented by manual or automated methods. When automated, the term flexible manufacturing system is often applied. GT main steps: 1. Identifying part families 2. Rearranging machines into cells.
  9. Integrated Manufacturing Systems Topic 4. PP & Control - 12. Process Planning _____________________________________________________________________________________________________________________ _____________________________________________________________________________________________________________________ Sistemas Integrados de Fabricación. UJAEN Máster en Ingeniería Industrial 9 Part family: “A collection of parts that possess similarities in geometric shape and size, or in the processing steps used in their manufacture” Method to identify part families Visual inspection Part classification and coding: “Identification of similarities among parts and relating the similarities by means of a numerical coding system”. Group parts with similar code Classification based on: design attributes, manufacturing attributes, both attributes; design and manufacturing Example of coding system: Optiz classification system  Digits 1 through 5 = form code – primary shape, design attributes, manufacturing features  Digits 6 through 9 = supplementary code – attributes that are useful in manufacturing  Digits 10 through 13 = secondary code – production operation type and sequence
  10. Integrated Manufacturing Systems Topic 4. PP & Control - 12. Process Planning _____________________________________________________________________________________________________________________ _____________________________________________________________________________________________________________________ Sistemas Integrados de Fabricación. UJAEN Máster en Ingeniería Industrial 10 Production flow analysis: “Method for identifying part families and associated machine groupings based on production route sheets rather than part design data”. Group parts with similar route sheet Advantages of using route sheet data  Parts with different geometries may nevertheless require the same or similar processing  Parts with nearly the same geometries may nevertheless require different processing Main steps:  Data collection – operation sequence and machine routing for each part (number)  Sortation of process routings – parts with same sequences and routings are arranged into “packs” by means of: o PFA (Production Flow Analysis) chart – each pack is displayed on a PFA chart. Part- machine incidence matrix o Cluster analysis – purpose is to collect packs with similar routings into groups
  11. Integrated Manufacturing Systems Topic 4. PP & Control - 12. Process Planning _____________________________________________________________________________________________________________________ _____________________________________________________________________________________________________________________ Sistemas Integrados de Fabricación. UJAEN Máster en Ingeniería Industrial 11 Grouping machines in cells that produce similar parts or similar part families Manual handling system Semi-integrated handling
  12. Integrated Manufacturing Systems Topic 4. PP & Control - 12. Process Planning _____________________________________________________________________________________________________________________ _____________________________________________________________________________________________________________________ Sistemas Integrados de Fabricación. UJAEN Máster en Ingeniería Industrial 12 Types of part movements in a production system
  13. Integrated Manufacturing Systems Topic 4. PP & Control - 12. Process Planning _____________________________________________________________________________________________________________________ _____________________________________________________________________________________________________________________ Sistemas Integrados de Fabricación. UJAEN Máster en Ingeniería Industrial 13 Method for grouping parts and machines: Rank Order Clustering Idea: reduce the part-machine incidence matrix to a set of diagonalized blocks that represent families or cells. Steps 1. In each row of the matrix read the series of 1’s and 0's from left to right as a binary number. Rank the rows in order of decreasing value. In case of a tie, rank the rows in the same order as they appear in the current matrix Step 2. Numbering from top to bottom, is the current order of rows the same as the rank order determined in the previous step? If yes, go to step 7, If no, go to the following step. Step 3. Reorder the rows in the part-machine incidence matrix by listing them in decreasing rank order, starting from the top Step 4. In each column of the matrix read the series of 1's and 0's from top to bottom as a binary number. Rank the columns in order of decreasing value, In case of a tie rank the columns in the same order as they appear in the current matrix. Step 5. Numbering from left to right, is the current order of columns the same as the rank order determined in the previous step? If yes go to step 7 If “no” go to the following step. Step 6. Reorder the columns in the part-machine incidence matrix by listing them in decreasing rank order, starting with the left column. Go to step 1. Step 7. Stop
  14. Integrated Manufacturing Systems Topic 4. PP & Control - 12. Process Planning _____________________________________________________________________________________________________________________ _____________________________________________________________________________________________________________________ Sistemas Integrados de Fabricación. UJAEN Máster en Ingeniería Industrial 14 It is not uncommon that one part needs to be processed in several groups. A way to overcome this  placing the same machine in different cells. Grouping efficiency Eg 𝐸𝑔 = 𝑛1 − 𝑛𝑒 𝑛1 + 𝑛0 n1  number of ones ne  number of exceptions n0  number of voids Example 1. Apply the rank order clustering technique to the part-machine incidence matrix in the following Table. Parts Machines A B C D E F G H I 1 1 1 1 2 1 1 3 1 1 1 4 1 1 5 1 1 6 1 1 7 1 1 1
  15. Integrated Manufacturing Systems Topic 4. PP & Control - 12. Process Planning _____________________________________________________________________________________________________________________ _____________________________________________________________________________________________________________________ Sistemas Integrados de Fabricación. UJAEN Máster en Ingeniería Industrial 15 Method for Arranging Machines in a Logical Sequence: Hollier Method Idea: maximize the proportion of in-sequence moves within the cell. Step 1. Develop a From-To chart Step 2. Determine From-To ratio Step 3. Arrange machines in order of decreasing From-To ratio Example 2. Determine the most logical machine sequence for the cell with a From-To chart described in the following Table. To From 1 2 3 4 1 0 5 0 25 2 30 0 0 15 3 10 40 0 0 4 10 0 0 0
  16. Integrated Manufacturing Systems Topic 4. PP & Control - 12. Process Planning _____________________________________________________________________________________________________________________ _____________________________________________________________________________________________________________________ Sistemas Integrados de Fabricación. UJAEN Máster en Ingeniería Industrial 16 Flexible Manufacturing Systems FMS Definition: “A highly automated GT machine cell, consisting of a group of processing stations (usually CNC machine tools), interconnected by an automated material handling and storage system, and controlled by an integrated computer system” FMS classification according to the number of machines Number of Machines > 3 Machine Cell Flexible Manufacturing Cell Flexible Manufacturing System
  17. Integrated Manufacturing Systems Topic 4. PP & Control - 12. Process Planning _____________________________________________________________________________________________________________________ _____________________________________________________________________________________________________________________ Sistemas Integrados de Fabricación. UJAEN Máster en Ingeniería Industrial 17 FMS Quantitative Analysis Techniques It is a complex task Parameters to estimate: production rate, capacity, utilization 1. Deterministic models: Bottleneck method is described in Groover (2014) 2. Queuing models 3. Discrete event simulation 4. Other approaches, including heuristics Bottleneck method. The production system has an upper limit (determined by the bottleneck station). This method can be applied to every system with a bottleneck. Notation: iStation (s stations), jpart-product (n parts), koperation (mi operations in station i), pjpart mix (proportion of j parts), si  number of servers in station i, tijk  processing time at ijk, fijk  frequency of operation k at ij
  18. Integrated Manufacturing Systems Topic 4. PP & Control - 12. Process Planning _____________________________________________________________________________________________________________________ _____________________________________________________________________________________________________________________ Sistemas Integrados de Fabricación. UJAEN Máster en Ingeniería Industrial 18 Work load of station I 𝑊𝐿𝑖 = ∑ ∑ 𝑡𝑖𝑗𝑘𝑓𝑖𝑗𝑘𝑝𝑗 𝑚𝑖 𝑘 𝑛 𝑗 Work load of transport system n+1 𝑊𝐿𝑛+1 = ((∑ ∑ ∑ 𝑓𝑖𝑗𝑘𝑝𝑗 𝑚𝑖 𝑘 𝑛 𝑗 𝑠 𝑖 ) − 1) 𝑡𝑛+1 tn+1 mean transport time between workstations Performance measures: Bottleneck station  Max {WLi/si} Production Rate Maximum production rate (production rate of the bottleneck station)  𝑅𝑝 ∗ =s*/WL* Production rate of part j  Rpj=pj𝑅𝑝 ∗ . Utilization Utilization of station i  Ui=𝑅𝑝 ∗ (WLi/si) Overall FMS utilization: 𝑈 ̅ = ∑ 𝑠𝑖𝑈𝑖 𝑛 𝑖=1 ∑ 𝑠𝑖 𝑛 𝑖=1 ⁄ Number of busy servers in station i  BSi=WLi𝑅𝑝 ∗
  19. Integrated Manufacturing Systems Topic 4. PP & Control - 12. Process Planning _____________________________________________________________________________________________________________________ _____________________________________________________________________________________________________________________ Sistemas Integrados de Fabricación. UJAEN Máster en Ingeniería Industrial 19 Example 3. An FMS consists of four stations. The stations are connected by a part handling system that has two work carriers and whose mean transport time = 3.5 min. The FMS produces four parts A, B, C, and D. The part mix fractions and process routings for the four parts are presented in the table below. Station servers: s1=1, s2=3, s3=2, s4=1. Determine: (a) maximum production rate of the FMS, (b) corresponding production rate of each part, (e) utilization of each station in the system, and (d) the overall FMS utilization. Part j pj k Description i tijk fijk Part j pj k Description i tijk fijk A 0,1 1 Load 1 4 1 C 0,3 1 Load 1 4 1 2 Mill 2 20 1 2 Drill 3 23 1 3 Drill 3 15 1 3 Inspect 4 8 0,5 4 Inspect 4 12 0,5 4 Unload 1 2 1 5 Unload 1 2 1 D 0,4 1 Load 1 4 1 B 0,2 1 Load 1 4 1 2 Mill 2 30 1 2 Drill 3 16 1 3 Inspect 4 12 0,333 3 Mill 2 25 1 4 Unload 1 2 1 4 Drill 3 14 1 5 Inspect 4 15 0,2 6 Unload 1 2 1
  20. Integrated Manufacturing Systems Topic 4. PP & Control - 12. Process Planning _____________________________________________________________________________________________________________________ _____________________________________________________________________________________________________________________ Sistemas Integrados de Fabricación. UJAEN Máster en Ingeniería Industrial 20 Problems Problem 1. Use GT to arrange the machines of the following table in 2 cells of 3 elements with at least Eg > 30%. Parts Machines A B C D E F 1 1 1 2 1 3 1 1 1 4 1 1 1 1 5 1 1 1 6 1 1 1
  21. Integrated Manufacturing Systems Topic 4. PP & Control - 12. Process Planning _____________________________________________________________________________________________________________________ _____________________________________________________________________________________________________________________ Sistemas Integrados de Fabricación. UJAEN Máster en Ingeniería Industrial 21 Part j pj k Description i tijk A 0,2 1 Load 1 3 2 Mill 2 20 3 Drill 3 12 4 Unload 1 2 B 0,3 1 Load 1 3 2 Mill 2 15 3 Drill 3 30 4 Unload 1 2 C 0,5 1 Load 1 3 2 Drill 3 14 3 Mill 2 22 4 Unload 1 2 Problem 2. A flexible manufacturing cell consists of 2 machining workstations plus a load/unload station. The load/unload station is Station 1. Station 2 performs milling operations and consists of one CNC milling machine. Station3 has one server that performs drilling (one CNC drill press). The three stations are connected by a part handling system that has one work carrier. The mean transport time is 2.5 min. The FMC produces three parts: A, B, and C. The part-mix fractions and process routings for the three parts arc presented in the table. The operation frequency ,fijk = 1.0 for all operations. Determine: (a) maximum production rate of the FMC, (b) corresponding production rates of each product, (c) utilization of each machine in the system, & (d) number of busy servers at each station.
  22. Integrated Manufacturing Systems Topic 4. PP & Control - 12. Process Planning _____________________________________________________________________________________________________________________ _____________________________________________________________________________________________________________________ Sistemas Integrados de Fabricación. UJAEN Máster en Ingeniería Industrial 22 Problem 3. Apply the Rank Order Clustering technique to identify logical families and cells from the following table. Parts Machines A B C D E F 1 1 1 2 1 1 3 1 1 4 1 1 5 1 1 6 1 1 1
  23. Integrated Manufacturing Systems Topic 4. PP & Control - 12. Process Planning _____________________________________________________________________________________________________________________ _____________________________________________________________________________________________________________________ Sistemas Integrados de Fabricación. UJAEN Máster en Ingeniería Industrial 23 Problem 4. Four machines used to produce a family of parts are to be arranged into a GT cell. The From-To data for the parts processed by the machines are shown in the table below. (a) Determine the most logical sequence of machines for this data using Hollier Method. To From 1 2 3 4 1 0 10 0 40 2 0 0 0 0 3 50 0 0 20 4 0 50 0 0
Anúncio