Regional Diagnostic Assessment Basic calculus (1).docx

module

Page 1 of 8
Republic of the Philippines
Department of Education
REGION III-CENTRAL LUZON
REGIONAL DIAGNOSTIC ASSESSMENT
BASIC CALCULUS
Name: _________________________________ Score: _________________
Date: ____________
Direction: Write the letter of the correct answer on the blank before each number.
For items 1 and 2. Given the function 𝑥2
− 5𝑥 + 6 and the table of values below
𝑥−
2.5 2.7 2.99 2.9999 𝑥+
3.3 3.1 3.01 3.0001
𝑓(𝑥) 𝑓(𝑥)
_____1. Which of the following statements is TRUE?
A. The 𝑓(𝑥) does not exist. C. The 𝑓(𝑥) is indeterminate.
B. The 𝑓(𝑥) is ∞. D. The 𝑓(𝑥) is zero.
_____2. What is the value of f(x) if 3.01?
A. 0.01 C. 0.010101
B. 0.0101 D. 0.01010101
_____3. Based on the graph below, what is the limit of 𝑓(𝑥) ?
A. 1 C. 5
B. 2 D. DNE
For items 4 and 5, evaluate the following limits.
_____4. (6𝑥3
+ 5𝑥2
+ 4𝑥 − 5)
A. −71 C. 41
B. −41 D. 71
_____5. 𝑙𝑜𝑔 𝑙𝑜𝑔 𝑥
A. 0 C. 10
B. 1 D. 100
Page 2 of 8
For items 6 and 7, consider the graph of the cosine function 𝑓(𝑥) =𝑐𝑜𝑠 𝑐𝑜𝑠 𝑥 below.
_____6. Determine 𝑐𝑜𝑠𝑐𝑜𝑠 𝑥
A. 𝐷𝑁𝐸 C. 0
B. −1 D. 1
_____7. Determine 𝑐𝑜𝑠𝑐𝑜𝑠 𝑥
A. 𝐷𝑁𝐸 C. 0
B. −1 D. 1
For items 8 and 9, consider the function 𝑓(𝑥) =
𝑥2
−49
𝑥−7
_____8. Determine (
𝑥2−49
𝑥−7
) ?
A. 𝐷𝑁𝐸 C. 0
B. Indeterminate D. 14
_____9. Which of the following is the correct conclusion regarding the continuity of the
given at 𝑥 = 7?
A. The function is discontinuous at 𝑥 = 7 since the limit of the given function does
not exist.
B. The function is discontinuous at 𝑥 = 7 since one or more of the conditions were
not satisfied.
C. The function is continuous at 𝑥 = 7 the limit of the given function exists.
D. The function is continuous at 𝑥 = 7 all conditions were satisfied.
For items 10 and 11, consider the problem: A rectangular garden is to be closed with 980
meters of fencing material. If we let 𝑥 be the length of the field, express its area in square
meters in terms of 𝑥. Identify the domain of the function representing the area and show
that it is continuous on its domain.
_____10. Which of the following is the equation representing the area of the rectangular
garden?
A. 𝐴 = (𝑥2
+ 490) 𝑚2
C. 𝐴 = (490− 𝑥2
) 𝑚2
B. 𝐴 = (490 + 𝑥2
) 𝑚2
D. 𝐴 = (𝑥2
− 490) 𝑚2
_____11. What conclusion can be made regarding the problem?
A. Since the function representing the area is a polynomial function, it is continuous
on its domain [0,490]
B. Since the function representing the area is a polynomial function, it is
discontinuous on its domain [0,490]
C. Since the function representing the area is a rational function, it is continuous on
its domain [0, 490]
D. Since the function representing the area is a rational function, it is continuous on
its domain [0, 490]
For items 12 to 14, consider 𝑦 = 5 − 9𝑥 − 4𝑥2
and the point (−2,4).
Page 3 of 8
_____12. Which of the following represents the derivative of the function?
A.
𝑑𝑦
𝑑𝑥
= −4𝑥 C.
𝑑𝑦
𝑑𝑥
= −9 − 4𝑥
B.
𝑑𝑦
𝑑𝑥
= −8𝑥 D.
𝑑𝑦
𝑑𝑥
= −9 − 8𝑥
_____13. Find the slope of the line tangent to the graph of the given function at the given
point.
A. 𝑚 = −25 C. 𝑚 = 7
B. 𝑚 = −7 D. 𝑚 = 25
_____14. Determine the equation of the line tangent to the graph of the given function.
A. 𝑦 = 25𝑥 + 54 C. 𝑦 = −7𝑥 − 10
B. 𝑦 = 7𝑥 + 18 D. 𝑦 = −25𝑥 − 46
15. Compute the derivatives of 𝑦 =𝑐𝑜𝑠 𝑐𝑜𝑠 (2𝑥3
) − 5𝑐𝑜𝑡(4𝑥2
).
A. 𝑦′
= −6𝑥2
𝑠𝑖𝑛 𝑠𝑖𝑛 (2𝑥3) − 40𝑥𝑐𝑠𝑐2
(4𝑥2
) C. 𝑦′
= 𝑐𝑜𝑠(3𝑥2)− 𝑐𝑜𝑡(4𝑥2
)
B. 𝑦′
= 6𝑥2
𝑠𝑖𝑛 𝑠𝑖𝑛 (2𝑥3) + 40𝑥𝑐𝑠𝑐2
(4𝑥2
) D. 𝑦′
= −𝑐𝑜𝑠(3𝑥2) + 𝑐𝑜𝑡(4𝑥2
)
For items 16 to 18 consider the problem: Dino wants to construct a rectangular garden.
He wants it to be built next to his room. There are 90 meters of fencing materials available
for the three sides.
_____16. Formulate the optimization equation.
A. 𝐴 = 𝑥𝑦 C. 𝐴 = 2𝑥 + 𝑦
B. 𝐴 = 𝑥2
D. 𝐴 = 2𝑥 + 2𝑦
_____17. Which of the following represents the constraint equation?
A. 𝑃 = 𝑥𝑦 C. 𝑃 = 2𝑥 + 𝑦
B. 𝑃 = 𝑥2
D. 𝑃 = 2𝑥 + 2𝑦
_____18. What should the dimensions of the rectangular garden be to maximize the
area?
A. 22.5 𝑚 & 45 𝑚 C. 45 𝑚 & 45 𝑚
B. 22.5 𝑚 & 22.5 𝑚 D. 45 𝑚 & 90 𝑚
For items 19 and 20, consider the equation 3𝑥2
+ 𝑦2
= 81.
_____19. Which of the following must be used to obtain the derivative of the given
equation?
A. Chain Rule of Differentiation C. Implicit Differentiation
B. Explicit Differentiation D. Partial Differentiation
_____20. Determine 𝑦′
.
A. 𝑦′
= −
3𝑥
𝑦
C. 𝑦′
=
3𝑥
𝑦
B. 𝑦′
= −
𝑦
3𝑥
D. 𝑦′
=
𝑦
3𝑥
_____21. Given 𝑦 =𝑙𝑛 𝑙𝑛 (5𝑥2) determine 𝑦′.
A. 𝑦′
=
𝑥
2
C. 𝑦′
=
2
5𝑥2
𝑙𝑛𝑙𝑛 𝑒
Page 4 of 8
B. 𝑦′
=
2
𝑥
D. 𝑦′
=
𝑒
2𝑙𝑛𝑙𝑛 5𝑥2
For items 22 to 25, consider the problem: A spherical balloon is being inflated at the rate
of 300 𝑐𝑚3
/𝑚𝑖𝑛. At what rate is the radius increasing when the diameter is 12 𝑐𝑚?
_____22. Which of the following represents the radius of the spherical balloon?
A. 𝑟 = 6 𝑐𝑚 C. 𝑟 = 225 𝑐𝑚
B. 𝑟 = 12 𝑐𝑚 D. 𝑟 = 450 𝑐𝑚
_____23. Which rate of change is being asked?
A.
𝑑ℎ
𝑑𝑡
C.
𝑑𝑉
𝑑𝑡
B.
𝑑𝑟
𝑑𝑡
D.
𝑑𝑦
𝑑𝑥
_____24. Which of the following equation will show the relationship of all the variables
involved in the problem?
A. 𝑉 = 𝜋𝑟2
ℎ C.
𝑑𝑉
𝑑𝑡
=
4𝜋𝑟3
3
B. 𝑉 = 𝜋𝑟3ℎ D. 𝑉 =
𝜋𝑟2
ℎ
3
_____25. Which of the following represents the conclusion for the problem?
A. The rate at which the radius of the of the balloon increases is 0.66 𝑐𝑚/𝑚𝑖𝑛.
B. The rate at which the radius of the of the balloon increases is −0.66 𝑐𝑚/𝑚𝑖𝑛.
C. The rate at which the radius of the of the balloon increases is 0.17 𝑐𝑚3
/𝑚𝑖𝑛.
The rate at which the radius of the of the balloon decreases is −0.17 𝑐𝑚3
/𝑚𝑖𝑛
For items 26 to 28, evaluate the following indefinite integrals.
_______26. ∫ (7𝑥6
− 2𝑥4
+ 5𝑥2
− 6)𝑑𝑥
A. 7𝑥7 −
2𝑥5
5
+
5𝑥3
3
− 6𝑥 + 𝑐 C.
42𝑥5
5
−
8𝑥3
3
+ 10𝑥 + 𝑐
B. 𝑥7 −
2𝑥5
5
+
5𝑥3
3
− 6𝑥 + 𝑐 D. 42𝑥5 − 8𝑥3 + 10𝑥
_______27.∫ (7𝑠𝑒𝑐2
𝑥− 5𝑠𝑒𝑐𝑥𝑡𝑎𝑛𝑥)𝑑𝑥
A. 7 𝑡𝑎𝑛 𝑡𝑎𝑛 𝑥 + 5 𝑠𝑒𝑐 𝑠𝑒𝑐 𝑥 + 𝑐 C. 14 𝑠𝑒𝑐 𝑠𝑒𝑐 𝑥 + 5
𝑠𝑒𝑐 𝑠𝑒𝑐 𝑥 + 𝑐
B. 7 𝑡𝑎𝑛 𝑡𝑎𝑛 𝑥 − 5 𝑠𝑒𝑐 𝑠𝑒𝑐 𝑥 + 𝑐 D. 14 𝑠𝑒𝑐 𝑠𝑒𝑐 𝑥 − 5
𝑠𝑒𝑐 𝑠𝑒𝑐 𝑥 + 𝑐
_______28. ∫ 53𝑥
𝑑𝑥
A. 3 ∙ 53𝑥
+ 𝑐 C.−
53𝑥
5𝑙𝑛𝑙𝑛 5
+ 𝑐
B.
1
3
53𝑥
+ 𝑐 D.
53𝑥
3𝑙𝑛𝑙𝑛 5
+ 𝑐
For items 29 to 31, evaluate the following integrals using Substitution Rule.
Page 5 of 8
_______29.∫ (2𝑥3
− 5)
1
2 ∙ 2𝑥2
𝑑𝑥
A.
2√(2𝑥3
−5)3
9
+ 𝑐 C.
3(2𝑥3
−5)
3
2
2
+ 𝑐
B.
√(2𝑥3
−5)3
3
+ 𝑐 D.
(2𝑥3
−5)
3
2
9
+ 𝑐
_______30.∫
5
(4𝑥 + 3)4
𝑑𝑥
A.
−5
12(4𝑥+3)3 + 𝑐 C.
(4𝑥+3)5
5
+ 𝑐
B.
−5
12(4𝑥+3)3 + 𝑐 D.
(4𝑥+3)5
12
+ 𝑐
_______31.∫ (4𝑥2
− 6𝑥 − 7)5(4𝑥− 3)𝑑𝑥
A.
(4𝑥−3)6
6
+ 𝑐 C.
(4𝑥−3)6
12
+ 𝑐
B.
(4𝑥2
−6𝑥−7)
6
6
+ 𝑐 D.
(4𝑥2
−6𝑥−7)
6
12
+ 𝑐
_____32. Consider the differential equation
𝑑𝑦
𝑑𝑥
= (𝑥 − 5)(2𝑥 − 3), which of the following
represents the particular solution of given if 𝑦 = 5 𝑎𝑛𝑑 𝑥 = 0?
A. 𝑦 =
2𝑥3
3
−
13𝑥2
2
+ 15𝑥 + 5 C. 𝑦 =
2𝑥3
3
−
13𝑥2
2
− 15𝑥 − 5
B. 𝑦 =
2𝑥3
3
+
13𝑥2
2
+ 15𝑥 + 15 D. 𝑦 =
2𝑥3
3
+
13𝑥2
2
− 15𝑥 − 15
For items 33 to 35, consider the problem: Certain bacteria cells are being observed in
an experiment. The population doubles every 5 hours. How many bacteria cells will
there be after 12 hours if at the beginning there were 900?
______33. Which of the following represents 𝑦0 ?
A. 5 C. 900
B. 12 D. 1800
_____34. Determine the value of k.
A. 0.13862 C. −0.13862
B. 0.13863 D. −0.13863
_____35. Which the following is the conclusion for the problem?
A. There are approximately 6428 bacteria cells after 12 hours.
B. There are approximately 6427 bacteria cells after 12 hours.
C. There are approximately 4751 bacteria cells after 12 hours.
D. There are approximately 4750 bacteria cells after 12 hours.
For items 36 to 38, consider the problem: Substance H has a half-life of 80 years. If in
2022, 150 g of substance H was at hand, how much will be at hand in 2077?
_____36. Which of the following is true regarding the given on the problem?
A. 𝑦0 = 75 𝑔
B. 𝑦 = 75 𝑔 when 𝑡 = 160 𝑦𝑒𝑎𝑟𝑠
Page 6 of 8
C. 𝑦 = 150 𝑔 when 𝑡 = 40 𝑦𝑒𝑎𝑟𝑠
D. 𝑡 = 55 𝑦𝑒𝑎𝑟𝑠 will be used in computing the unknown.
_____37. Compute the value of k.
A. −0.00866 C. 0.00603
B. −0.00603 D. 0.00866
_____38. What can be inferred regarding the problem?
A. There is still 118.08 g of Substance H in 2077.
B. There is still 106.39 g of Substance H in 2077.
C. There is still 97.75 g of Substance H in 2077
D. There is still 93.16 g of Substance H in 2077
For items 39 – 43, evaluate the following definite integrals.
_______39.∫
5
5
(10𝑥10
− 9𝑥9
+ 8𝑥8
− 7𝑥7
+ 6𝑥6
− 5𝑥5
+ 4𝑥4
− 3𝑥3
+ 2𝑥2
− 𝑥)𝑑𝑥
A. indeterminate C. 0
B. undefined D. ∞
_______40.∫
1
0
(2𝑥2
− 3√𝑥)𝑑𝑥
A. −
4
3
C.
1
6
B. −
1
3
D.
5
6
_______41. ∫
2
−1
(9𝑥 − 5)3
∙ 3𝑑𝑥
A.
−28561
12
C.
3285
4
B.
−3285
4
D.
28561
12
_______42.∫
4
0
(4𝑥2
− 14𝑥 − 10)3
(4𝑥 − 7)𝑑𝑥
A. 1248 C. −1246
B. 1246 D. −1248
______43.∫
5
5
√5𝑥3 + 2 ∙ 15𝑥2
𝑑𝑥
A. DNE C. infinity
B. imaginary D. zero
For items 44 to 46, consider the problem: Find the area of the plane region bounded by
𝑦 = 2𝑥 + 5, 𝑥 = 1,𝑥 = 4 and the x-axis
_____44. The following are points that can be found on the graph EXCEPT _____.
A. (1,7) C. (3, 12)
B. (2,9) D. (4, 13)
_____45. Determine the values of the upper and lower limit.
A. 𝑎 = −1 & 𝑏 = 2 C. 𝑎 = 1 & 𝑏 = 4
B. 𝑎 = 0 & 𝑏 = 3 D. 𝑎 = 2 & 𝑏 = 5
_____46. What can be concluded about the problem?
Page 7 of 8
A. The area of the plane region bounded by 𝑦 = 2𝑥 + 5,𝑥 = 1, 𝑥 = 4 and the x-
axis is 28 square units.
B. The area of the plane region bounded by 𝑦 = 2𝑥 + 5,𝑥 = 1, 𝑥 = 4 and the x-
axis is 30 square units.
C. The area of the plane region bounded by 𝑦 = 2𝑥 + 5,𝑥 = 1, 𝑥 = 4 and the x-
axis is 32 square units.
D. The area of the plane region bounded by 𝑦 = 2𝑥 + 5,𝑥 = 1, 𝑥 = 4 and the x-
axis is 34 square units.
For items 47 to 50, consider the problem: Find the area of the plane region bounded by
𝑦 = 𝑥2
− 9 and 𝑦 = 𝑥 + 3.
_____47. Which of the following represents the points of intersection?
A. (4,7),(−3, 0) C. (4, −7),(−3, 0)
B. (4,7),(3, 0) D. (−4,7), (3,0)
_____48. Determine the values of the upper and lower limit.
A. 𝑎 = −3 & 𝑏 = 4 C. 𝑎 = 1 & 𝑏 = −3
B. 𝑎 = 0 & 𝑏 = 3 D. 𝑎 = 2 & 𝑏 = 7
______49. Which of the following is the upper function 𝑓(𝑥)?
A. 𝑦 = 𝑥2
+ 𝑥 + 12 C. 𝑦 = 𝑥 + 12
B. 𝑦 = 𝑥2
− 9 D. 𝑦 = 𝑥 + 3
_____50. What conclusion can be drawn on the problem?
A. The area of the plane region bounded by 𝑦 = 𝑥2
− 9 and 𝑦 = 𝑥 + 3 is 54.14
square units.
B. The area of the plane region bounded by 𝑦 = 𝑥2
− 9 and 𝑦 = 𝑥 + 3 is 55.15
square units.
C. The area of the plane region bounded by 𝑦 = 𝑥2
− 9 and 𝑦 = 𝑥 + 3 is 56.16
square units.
D. The area of the plane region bounded by 𝑦 = 𝑥2
− 9 and 𝑦 = 𝑥 + 3 is 57.17
square units.
For items 47 to 50, consider the problem: Find the area of the plane region bounded by
𝑦 = 𝑥2
− 9 and 𝑦 = 𝑥 +
Address: Matalino St. D.M. Government Center, Maimpis,City of San Fernando (P)
Telephone Number: (045) 598-8580 to 89; Email Address: region3@deped.gov.ph
Republic of the Philippines
Department of Education
REGION III-CENTRAL LUZON
DIAGNOSTIC TEST IN BASIC CALCULUS
KEY TO CORRECTION
1 D 26 B
2 B 27 B
3 C 28 D
4 B 29 A
5 B 30 B
6 B 31 D
7 C 32 A
8 D 33 C
9 B 34 B
10 C 35 C
11 A 36 D
12 D 37 A
13 C 38 D
14 B 39 C
15 B 40 A
16 A 41 B
17 C 42 D
18 A 43 D
19 C 44 C
20 A 45 C
21 B 46 B
22 A 47 A
23 B 48 A
24 C 49 B
25 A 50 D

Recomendados

Rational Functions, Equations, and Inequalities.pptx por
Rational Functions, Equations, and Inequalities.pptxRational Functions, Equations, and Inequalities.pptx
Rational Functions, Equations, and Inequalities.pptxJohnlery Guzman
1.9K visualizações16 slides
Summative Test on Measures of Position por
Summative Test on Measures of PositionSummative Test on Measures of Position
Summative Test on Measures of PositionJoey Valdriz
9.3K visualizações23 slides
Solving rational equations por
Solving rational equationsSolving rational equations
Solving rational equationschrystal_brinson
11.2K visualizações12 slides
Polynomial functions por
Polynomial functionsPolynomial functions
Polynomial functionsJessica Garcia
133.2K visualizações18 slides
INVERSE FUNCTION por
INVERSE FUNCTIONINVERSE FUNCTION
INVERSE FUNCTIONclari1998
6.3K visualizações4 slides
Probability distribution of a random variable module por
Probability distribution of a random variable moduleProbability distribution of a random variable module
Probability distribution of a random variable moduleMelody01082019
1K visualizações22 slides

Mais conteúdo relacionado

Mais procurados

Math 10 Curriculum Guide por
Math 10 Curriculum GuideMath 10 Curriculum Guide
Math 10 Curriculum Guideleybrigs
33.1K visualizações16 slides
Math10 q2 mod2of8_chords,arcs,central angles and incribe angles of circles_v2... por
Math10 q2 mod2of8_chords,arcs,central angles and incribe angles of circles_v2...Math10 q2 mod2of8_chords,arcs,central angles and incribe angles of circles_v2...
Math10 q2 mod2of8_chords,arcs,central angles and incribe angles of circles_v2...FahadOdin
3K visualizações26 slides
Rectangular Coordinate System Lesson Plan por
Rectangular Coordinate System Lesson PlanRectangular Coordinate System Lesson Plan
Rectangular Coordinate System Lesson PlanRealyn Magbanua
2.9K visualizações9 slides
Illustrating Rational Algebraic Expressions por
Illustrating Rational Algebraic ExpressionsIllustrating Rational Algebraic Expressions
Illustrating Rational Algebraic ExpressionsFree Math Powerpoints
6.3K visualizações11 slides
Parabola por
ParabolaParabola
Parabolaheiner gomez
42K visualizações92 slides
Grade 10 Math - Second Quarter Summative Test por
Grade 10 Math - Second Quarter Summative TestGrade 10 Math - Second Quarter Summative Test
Grade 10 Math - Second Quarter Summative Testrobengie monera
18.4K visualizações3 slides

Mais procurados(20)

Math 10 Curriculum Guide por leybrigs
Math 10 Curriculum GuideMath 10 Curriculum Guide
Math 10 Curriculum Guide
leybrigs33.1K visualizações
Math10 q2 mod2of8_chords,arcs,central angles and incribe angles of circles_v2... por FahadOdin
Math10 q2 mod2of8_chords,arcs,central angles and incribe angles of circles_v2...Math10 q2 mod2of8_chords,arcs,central angles and incribe angles of circles_v2...
Math10 q2 mod2of8_chords,arcs,central angles and incribe angles of circles_v2...
FahadOdin3K visualizações
Rectangular Coordinate System Lesson Plan por Realyn Magbanua
Rectangular Coordinate System Lesson PlanRectangular Coordinate System Lesson Plan
Rectangular Coordinate System Lesson Plan
Realyn Magbanua2.9K visualizações
Illustrating Rational Algebraic Expressions por Free Math Powerpoints
Illustrating Rational Algebraic ExpressionsIllustrating Rational Algebraic Expressions
Illustrating Rational Algebraic Expressions
Free Math Powerpoints6.3K visualizações
Parabola por heiner gomez
ParabolaParabola
Parabola
heiner gomez42K visualizações
Grade 10 Math - Second Quarter Summative Test por robengie monera
Grade 10 Math - Second Quarter Summative TestGrade 10 Math - Second Quarter Summative Test
Grade 10 Math - Second Quarter Summative Test
robengie monera18.4K visualizações
introduction to functions grade 11(General Math) por liza magalso
introduction to functions grade 11(General Math)introduction to functions grade 11(General Math)
introduction to functions grade 11(General Math)
liza magalso107.4K visualizações
PPT-Rational Functions, Equations and Inequalities.pptx por EvangelineEndozoBoco
PPT-Rational Functions, Equations and Inequalities.pptxPPT-Rational Functions, Equations and Inequalities.pptx
PPT-Rational Functions, Equations and Inequalities.pptx
EvangelineEndozoBoco175 visualizações
Distinguishing Exponential Functions, Equations, and Inequalities.pptx por MaricelPereaBerana
Distinguishing Exponential Functions, Equations, and Inequalities.pptxDistinguishing Exponential Functions, Equations, and Inequalities.pptx
Distinguishing Exponential Functions, Equations, and Inequalities.pptx
MaricelPereaBerana1.2K visualizações
HIGHSCHOOL MATH REVIEWER por John Labrador
HIGHSCHOOL MATH REVIEWERHIGHSCHOOL MATH REVIEWER
HIGHSCHOOL MATH REVIEWER
John Labrador6.8K visualizações
Rational functions por zozima
Rational functionsRational functions
Rational functions
zozima18.4K visualizações
Mathematics 10 Learning Modules Quarter 3 por Bobbie Tolentino
Mathematics 10 Learning Modules Quarter 3Mathematics 10 Learning Modules Quarter 3
Mathematics 10 Learning Modules Quarter 3
Bobbie Tolentino37K visualizações
Math 9 Curriculum Guide rev.2016 por Chuckry Maunes
Math 9 Curriculum Guide rev.2016Math 9 Curriculum Guide rev.2016
Math 9 Curriculum Guide rev.2016
Chuckry Maunes22.3K visualizações
Lp presentations fnctions por rodylie
Lp presentations fnctionsLp presentations fnctions
Lp presentations fnctions
rodylie1K visualizações
Final lesson plan in Math (4A's Approach) por Joseph Freo
Final lesson plan in Math (4A's Approach)Final lesson plan in Math (4A's Approach)
Final lesson plan in Math (4A's Approach)
Joseph Freo269.3K visualizações
A detailed lesson plan in permutation por Ruby Rose Ann Panganod
A detailed lesson plan in permutationA detailed lesson plan in permutation
A detailed lesson plan in permutation
Ruby Rose Ann Panganod39.6K visualizações
MEASURES OF POSITION FOR UNGROUPED DATA : QUARTILES , DECILES , & PERCENTILES por Chuckry Maunes
MEASURES OF POSITION FOR UNGROUPED DATA : QUARTILES , DECILES , & PERCENTILESMEASURES OF POSITION FOR UNGROUPED DATA : QUARTILES , DECILES , & PERCENTILES
MEASURES OF POSITION FOR UNGROUPED DATA : QUARTILES , DECILES , & PERCENTILES
Chuckry Maunes102K visualizações
Pre-Calculus 11 - Lesson no. 1: Conic Sections por Juan Miguel Palero
Pre-Calculus 11 - Lesson no. 1: Conic SectionsPre-Calculus 11 - Lesson no. 1: Conic Sections
Pre-Calculus 11 - Lesson no. 1: Conic Sections
Juan Miguel Palero12.1K visualizações
Sim(mathematics 10 polynomial functions) por ileen menes
Sim(mathematics 10 polynomial functions) Sim(mathematics 10 polynomial functions)
Sim(mathematics 10 polynomial functions)
ileen menes3K visualizações
Midline theorem - Mathematics - Geometry por Jimmy Magundayao
Midline theorem - Mathematics - GeometryMidline theorem - Mathematics - Geometry
Midline theorem - Mathematics - Geometry
Jimmy Magundayao42.2K visualizações

Similar a Regional Diagnostic Assessment Basic calculus (1).docx

ALGEBRA 1 - TAKE HOME PROBLEMS.pdf por
ALGEBRA 1 - TAKE HOME PROBLEMS.pdfALGEBRA 1 - TAKE HOME PROBLEMS.pdf
ALGEBRA 1 - TAKE HOME PROBLEMS.pdfGuirigayMarbenJohn
208 visualizações8 slides
Lesson 1 8 quiz review por
Lesson 1 8 quiz reviewLesson 1 8 quiz review
Lesson 1 8 quiz reviewmlabuski
1.5K visualizações11 slides
Ix class por
Ix classIx class
Ix classAmir Ali
29 visualizações6 slides
First-Periodical-Test-in-Math-10-23-24.docx por
First-Periodical-Test-in-Math-10-23-24.docxFirst-Periodical-Test-in-Math-10-23-24.docx
First-Periodical-Test-in-Math-10-23-24.docxmaceciliamarin1
3 visualizações3 slides
CE-2-Pre-test-3-Rationalization.pptx por
CE-2-Pre-test-3-Rationalization.pptxCE-2-Pre-test-3-Rationalization.pptx
CE-2-Pre-test-3-Rationalization.pptxRujhonNabablitBahall
449 visualizações35 slides
1 Week 2 Homework for MTH 125 Name_______________ por
1 Week 2 Homework for MTH 125  Name_______________1 Week 2 Homework for MTH 125  Name_______________
1 Week 2 Homework for MTH 125 Name_______________MartineMccracken314
6 visualizações41 slides

Similar a Regional Diagnostic Assessment Basic calculus (1).docx(20)

ALGEBRA 1 - TAKE HOME PROBLEMS.pdf por GuirigayMarbenJohn
ALGEBRA 1 - TAKE HOME PROBLEMS.pdfALGEBRA 1 - TAKE HOME PROBLEMS.pdf
ALGEBRA 1 - TAKE HOME PROBLEMS.pdf
GuirigayMarbenJohn208 visualizações
Lesson 1 8 quiz review por mlabuski
Lesson 1 8 quiz reviewLesson 1 8 quiz review
Lesson 1 8 quiz review
mlabuski1.5K visualizações
Ix class por Amir Ali
Ix classIx class
Ix class
Amir Ali29 visualizações
First-Periodical-Test-in-Math-10-23-24.docx por maceciliamarin1
First-Periodical-Test-in-Math-10-23-24.docxFirst-Periodical-Test-in-Math-10-23-24.docx
First-Periodical-Test-in-Math-10-23-24.docx
maceciliamarin13 visualizações
CE-2-Pre-test-3-Rationalization.pptx por RujhonNabablitBahall
CE-2-Pre-test-3-Rationalization.pptxCE-2-Pre-test-3-Rationalization.pptx
CE-2-Pre-test-3-Rationalization.pptx
RujhonNabablitBahall449 visualizações
1 Week 2 Homework for MTH 125 Name_______________ por MartineMccracken314
1 Week 2 Homework for MTH 125  Name_______________1 Week 2 Homework for MTH 125  Name_______________
1 Week 2 Homework for MTH 125 Name_______________
MartineMccracken3146 visualizações
1 Week 2 Homework for MTH 125 Name_______________ por AbbyWhyte974
1 Week 2 Homework for MTH 125  Name_______________1 Week 2 Homework for MTH 125  Name_______________
1 Week 2 Homework for MTH 125 Name_______________
AbbyWhyte9745 visualizações
Matematicas para ingenieria 4ta edicion - john bird por Allan Bernal Espinoza
Matematicas para ingenieria   4ta edicion - john birdMatematicas para ingenieria   4ta edicion - john bird
Matematicas para ingenieria 4ta edicion - john bird
Allan Bernal Espinoza1.3K visualizações
Indices por Shasha Wini
IndicesIndices
Indices
Shasha Wini738 visualizações
Exam of second semster g9 por zeinabze
Exam of second semster g9Exam of second semster g9
Exam of second semster g9
zeinabze241 visualizações
Final Exam GenMath.pdf por EllenMaeNasayao
Final Exam GenMath.pdfFinal Exam GenMath.pdf
Final Exam GenMath.pdf
EllenMaeNasayao10 visualizações
Algebra EOC Practice Test 1 por Daniel Wachtel
Algebra EOC Practice Test  1Algebra EOC Practice Test  1
Algebra EOC Practice Test 1
Daniel Wachtel11 visualizações
2010 assessment review_homework_1-4-done por jendailey
2010 assessment review_homework_1-4-done2010 assessment review_homework_1-4-done
2010 assessment review_homework_1-4-done
jendailey1.4K visualizações
Set 1 mawar por faazafauzana
Set 1 mawarSet 1 mawar
Set 1 mawar
faazafauzana408 visualizações
Write solution for these problems -Is targeting only mommy blo.docx por herbertwilson5999
Write solution for these problems -Is targeting only mommy blo.docxWrite solution for these problems -Is targeting only mommy blo.docx
Write solution for these problems -Is targeting only mommy blo.docx
herbertwilson59992 visualizações
Units 1 3 review por mlabuski
Units 1 3 reviewUnits 1 3 review
Units 1 3 review
mlabuski908 visualizações
Mdel Question 1 por shojan84
Mdel Question 1Mdel Question 1
Mdel Question 1
shojan84320 visualizações
Gr.-7math2nd summative.docx por JosePlasabas
Gr.-7math2nd summative.docxGr.-7math2nd summative.docx
Gr.-7math2nd summative.docx
JosePlasabas8 visualizações

Mais de JoseGulitiw

5.-Media-and-Information-Sources.pptx por
5.-Media-and-Information-Sources.pptx5.-Media-and-Information-Sources.pptx
5.-Media-and-Information-Sources.pptxJoseGulitiw
460 visualizações22 slides
NewMedia.ppt por
NewMedia.pptNewMedia.ppt
NewMedia.pptJoseGulitiw
4 visualizações50 slides
NewMedia (1).ppt por
NewMedia (1).pptNewMedia (1).ppt
NewMedia (1).pptJoseGulitiw
3 visualizações50 slides
Regional Diagnostic Assessment Basic calculus.docx por
Regional Diagnostic Assessment Basic calculus.docxRegional Diagnostic Assessment Basic calculus.docx
Regional Diagnostic Assessment Basic calculus.docxJoseGulitiw
64 visualizações8 slides
General-Physics-1-1 cg.pdf por
General-Physics-1-1  cg.pdfGeneral-Physics-1-1  cg.pdf
General-Physics-1-1 cg.pdfJoseGulitiw
30 visualizações15 slides
SHS-Core_Media-and-Information-Literacy-CG.pdf por
SHS-Core_Media-and-Information-Literacy-CG.pdfSHS-Core_Media-and-Information-Literacy-CG.pdf
SHS-Core_Media-and-Information-Literacy-CG.pdfJoseGulitiw
10 visualizações16 slides

Mais de JoseGulitiw(9)

5.-Media-and-Information-Sources.pptx por JoseGulitiw
5.-Media-and-Information-Sources.pptx5.-Media-and-Information-Sources.pptx
5.-Media-and-Information-Sources.pptx
JoseGulitiw460 visualizações
NewMedia.ppt por JoseGulitiw
NewMedia.pptNewMedia.ppt
NewMedia.ppt
JoseGulitiw4 visualizações
NewMedia (1).ppt por JoseGulitiw
NewMedia (1).pptNewMedia (1).ppt
NewMedia (1).ppt
JoseGulitiw3 visualizações
Regional Diagnostic Assessment Basic calculus.docx por JoseGulitiw
Regional Diagnostic Assessment Basic calculus.docxRegional Diagnostic Assessment Basic calculus.docx
Regional Diagnostic Assessment Basic calculus.docx
JoseGulitiw64 visualizações
General-Physics-1-1 cg.pdf por JoseGulitiw
General-Physics-1-1  cg.pdfGeneral-Physics-1-1  cg.pdf
General-Physics-1-1 cg.pdf
JoseGulitiw30 visualizações
SHS-Core_Media-and-Information-Literacy-CG.pdf por JoseGulitiw
SHS-Core_Media-and-Information-Literacy-CG.pdfSHS-Core_Media-and-Information-Literacy-CG.pdf
SHS-Core_Media-and-Information-Literacy-CG.pdf
JoseGulitiw10 visualizações
PRE-CALCULUS-TOS-KEY.docx por JoseGulitiw
PRE-CALCULUS-TOS-KEY.docxPRE-CALCULUS-TOS-KEY.docx
PRE-CALCULUS-TOS-KEY.docx
JoseGulitiw453 visualizações
TQ_Physical Science.pdf por JoseGulitiw
TQ_Physical Science.pdfTQ_Physical Science.pdf
TQ_Physical Science.pdf
JoseGulitiw13 visualizações
TOS_PhysicalScience.pdf por JoseGulitiw
TOS_PhysicalScience.pdfTOS_PhysicalScience.pdf
TOS_PhysicalScience.pdf
JoseGulitiw15 visualizações

Último

Random-Slides-Template.pptx por
Random-Slides-Template.pptxRandom-Slides-Template.pptx
Random-Slides-Template.pptxadarshme05102002
5 visualizações18 slides
Waking dead por
Waking deadWaking dead
Waking deadMightyEmperorMagda
6 visualizações76 slides
eng.pdf por
eng.pdfeng.pdf
eng.pdfSAMRUDDHIWAKDE
5 visualizações2 slides
Working in the media industry b1.pptx por
Working in the media industry b1.pptxWorking in the media industry b1.pptx
Working in the media industry b1.pptxchloemeadows2000
7 visualizações34 slides
MSA-Sex sexuality and Gender_draft Lakshya Trust (1).ppt por
MSA-Sex sexuality and Gender_draft Lakshya Trust (1).pptMSA-Sex sexuality and Gender_draft Lakshya Trust (1).ppt
MSA-Sex sexuality and Gender_draft Lakshya Trust (1).pptlakshya4vadodara
5 visualizações36 slides
Algorithms are the New Historians por
Algorithms are the New HistoriansAlgorithms are the New Historians
Algorithms are the New HistoriansGeorge Oates
10 visualizações73 slides

Último(20)

Random-Slides-Template.pptx por adarshme05102002
Random-Slides-Template.pptxRandom-Slides-Template.pptx
Random-Slides-Template.pptx
adarshme051020025 visualizações
eng.pdf por SAMRUDDHIWAKDE
eng.pdfeng.pdf
eng.pdf
SAMRUDDHIWAKDE5 visualizações
Working in the media industry b1.pptx por chloemeadows2000
Working in the media industry b1.pptxWorking in the media industry b1.pptx
Working in the media industry b1.pptx
chloemeadows20007 visualizações
MSA-Sex sexuality and Gender_draft Lakshya Trust (1).ppt por lakshya4vadodara
MSA-Sex sexuality and Gender_draft Lakshya Trust (1).pptMSA-Sex sexuality and Gender_draft Lakshya Trust (1).ppt
MSA-Sex sexuality and Gender_draft Lakshya Trust (1).ppt
lakshya4vadodara5 visualizações
Algorithms are the New Historians por George Oates
Algorithms are the New HistoriansAlgorithms are the New Historians
Algorithms are the New Historians
George Oates10 visualizações
Resume Grigorii Malakhov Costume Production.pdf por Grigorii Malakhov
Resume Grigorii Malakhov Costume Production.pdfResume Grigorii Malakhov Costume Production.pdf
Resume Grigorii Malakhov Costume Production.pdf
Grigorii Malakhov16 visualizações
Black and White Simple Elegant Creative Design Portfolio Presentation.pptx por JasonRuiz27
Black and White Simple Elegant Creative Design Portfolio Presentation.pptxBlack and White Simple Elegant Creative Design Portfolio Presentation.pptx
Black and White Simple Elegant Creative Design Portfolio Presentation.pptx
JasonRuiz2723 visualizações
Interesting facts about painters por SofiNahapetyanNahape
Interesting facts about paintersInteresting facts about painters
Interesting facts about painters
SofiNahapetyanNahape38 visualizações
Cat & Art95 por michaelasanda *
Cat & Art95Cat & Art95
Cat & Art95
michaelasanda *7 visualizações
Free 3d Animation App por akashjainh56
Free 3d Animation AppFree 3d Animation App
Free 3d Animation App
akashjainh569 visualizações
witch fraud board sequence por LeahAbrams4
witch fraud board sequencewitch fraud board sequence
witch fraud board sequence
LeahAbrams425 visualizações
PITCH AND PROPOSAL (1).pptx por maxbailey13
PITCH AND PROPOSAL (1).pptxPITCH AND PROPOSAL (1).pptx
PITCH AND PROPOSAL (1).pptx
maxbailey1312 visualizações
Star Seeker por mattenro
Star SeekerStar Seeker
Star Seeker
mattenro25 visualizações
Studio Art in Athens 2023 por Caitlin Ingersoll
Studio Art in Athens 2023Studio Art in Athens 2023
Studio Art in Athens 2023
Caitlin Ingersoll5 visualizações
Cat & Art96 por michaelasanda *
Cat & Art96Cat & Art96
Cat & Art96
michaelasanda *11 visualizações
24시콜걸>>화천출장샵//라인wag58//화천모텔콜걸 화천폐이만남 화천애인대행 화천무한샷출장 por 08ac158741
24시콜걸>>화천출장샵//라인wag58//화천모텔콜걸 화천폐이만남 화천애인대행 화천무한샷출장24시콜걸>>화천출장샵//라인wag58//화천모텔콜걸 화천폐이만남 화천애인대행 화천무한샷출장
24시콜걸>>화천출장샵//라인wag58//화천모텔콜걸 화천폐이만남 화천애인대행 화천무한샷출장
08ac1587416 visualizações
Allois Art Portfolio 2023.pdf por HelenAllois1
Allois Art Portfolio 2023.pdfAllois Art Portfolio 2023.pdf
Allois Art Portfolio 2023.pdf
HelenAllois18 visualizações
Ultimo Viaje_Storyboard por FelixOrtega26
Ultimo Viaje_StoryboardUltimo Viaje_Storyboard
Ultimo Viaje_Storyboard
FelixOrtega2615 visualizações
Shed Viewpoint Series por ProfessorNordell
Shed Viewpoint SeriesShed Viewpoint Series
Shed Viewpoint Series
ProfessorNordell45 visualizações

Regional Diagnostic Assessment Basic calculus (1).docx

  • 1. Page 1 of 8 Republic of the Philippines Department of Education REGION III-CENTRAL LUZON REGIONAL DIAGNOSTIC ASSESSMENT BASIC CALCULUS Name: _________________________________ Score: _________________ Date: ____________ Direction: Write the letter of the correct answer on the blank before each number. For items 1 and 2. Given the function 𝑥2 − 5𝑥 + 6 and the table of values below 𝑥− 2.5 2.7 2.99 2.9999 𝑥+ 3.3 3.1 3.01 3.0001 𝑓(𝑥) 𝑓(𝑥) _____1. Which of the following statements is TRUE? A. The 𝑓(𝑥) does not exist. C. The 𝑓(𝑥) is indeterminate. B. The 𝑓(𝑥) is ∞. D. The 𝑓(𝑥) is zero. _____2. What is the value of f(x) if 3.01? A. 0.01 C. 0.010101 B. 0.0101 D. 0.01010101 _____3. Based on the graph below, what is the limit of 𝑓(𝑥) ? A. 1 C. 5 B. 2 D. DNE For items 4 and 5, evaluate the following limits. _____4. (6𝑥3 + 5𝑥2 + 4𝑥 − 5) A. −71 C. 41 B. −41 D. 71 _____5. 𝑙𝑜𝑔 𝑙𝑜𝑔 𝑥 A. 0 C. 10 B. 1 D. 100
  • 2. Page 2 of 8 For items 6 and 7, consider the graph of the cosine function 𝑓(𝑥) =𝑐𝑜𝑠 𝑐𝑜𝑠 𝑥 below. _____6. Determine 𝑐𝑜𝑠𝑐𝑜𝑠 𝑥 A. 𝐷𝑁𝐸 C. 0 B. −1 D. 1 _____7. Determine 𝑐𝑜𝑠𝑐𝑜𝑠 𝑥 A. 𝐷𝑁𝐸 C. 0 B. −1 D. 1 For items 8 and 9, consider the function 𝑓(𝑥) = 𝑥2 −49 𝑥−7 _____8. Determine ( 𝑥2−49 𝑥−7 ) ? A. 𝐷𝑁𝐸 C. 0 B. Indeterminate D. 14 _____9. Which of the following is the correct conclusion regarding the continuity of the given at 𝑥 = 7? A. The function is discontinuous at 𝑥 = 7 since the limit of the given function does not exist. B. The function is discontinuous at 𝑥 = 7 since one or more of the conditions were not satisfied. C. The function is continuous at 𝑥 = 7 the limit of the given function exists. D. The function is continuous at 𝑥 = 7 all conditions were satisfied. For items 10 and 11, consider the problem: A rectangular garden is to be closed with 980 meters of fencing material. If we let 𝑥 be the length of the field, express its area in square meters in terms of 𝑥. Identify the domain of the function representing the area and show that it is continuous on its domain. _____10. Which of the following is the equation representing the area of the rectangular garden? A. 𝐴 = (𝑥2 + 490) 𝑚2 C. 𝐴 = (490− 𝑥2 ) 𝑚2 B. 𝐴 = (490 + 𝑥2 ) 𝑚2 D. 𝐴 = (𝑥2 − 490) 𝑚2 _____11. What conclusion can be made regarding the problem? A. Since the function representing the area is a polynomial function, it is continuous on its domain [0,490] B. Since the function representing the area is a polynomial function, it is discontinuous on its domain [0,490] C. Since the function representing the area is a rational function, it is continuous on its domain [0, 490] D. Since the function representing the area is a rational function, it is continuous on its domain [0, 490] For items 12 to 14, consider 𝑦 = 5 − 9𝑥 − 4𝑥2 and the point (−2,4).
  • 3. Page 3 of 8 _____12. Which of the following represents the derivative of the function? A. 𝑑𝑦 𝑑𝑥 = −4𝑥 C. 𝑑𝑦 𝑑𝑥 = −9 − 4𝑥 B. 𝑑𝑦 𝑑𝑥 = −8𝑥 D. 𝑑𝑦 𝑑𝑥 = −9 − 8𝑥 _____13. Find the slope of the line tangent to the graph of the given function at the given point. A. 𝑚 = −25 C. 𝑚 = 7 B. 𝑚 = −7 D. 𝑚 = 25 _____14. Determine the equation of the line tangent to the graph of the given function. A. 𝑦 = 25𝑥 + 54 C. 𝑦 = −7𝑥 − 10 B. 𝑦 = 7𝑥 + 18 D. 𝑦 = −25𝑥 − 46 15. Compute the derivatives of 𝑦 =𝑐𝑜𝑠 𝑐𝑜𝑠 (2𝑥3 ) − 5𝑐𝑜𝑡(4𝑥2 ). A. 𝑦′ = −6𝑥2 𝑠𝑖𝑛 𝑠𝑖𝑛 (2𝑥3) − 40𝑥𝑐𝑠𝑐2 (4𝑥2 ) C. 𝑦′ = 𝑐𝑜𝑠(3𝑥2)− 𝑐𝑜𝑡(4𝑥2 ) B. 𝑦′ = 6𝑥2 𝑠𝑖𝑛 𝑠𝑖𝑛 (2𝑥3) + 40𝑥𝑐𝑠𝑐2 (4𝑥2 ) D. 𝑦′ = −𝑐𝑜𝑠(3𝑥2) + 𝑐𝑜𝑡(4𝑥2 ) For items 16 to 18 consider the problem: Dino wants to construct a rectangular garden. He wants it to be built next to his room. There are 90 meters of fencing materials available for the three sides. _____16. Formulate the optimization equation. A. 𝐴 = 𝑥𝑦 C. 𝐴 = 2𝑥 + 𝑦 B. 𝐴 = 𝑥2 D. 𝐴 = 2𝑥 + 2𝑦 _____17. Which of the following represents the constraint equation? A. 𝑃 = 𝑥𝑦 C. 𝑃 = 2𝑥 + 𝑦 B. 𝑃 = 𝑥2 D. 𝑃 = 2𝑥 + 2𝑦 _____18. What should the dimensions of the rectangular garden be to maximize the area? A. 22.5 𝑚 & 45 𝑚 C. 45 𝑚 & 45 𝑚 B. 22.5 𝑚 & 22.5 𝑚 D. 45 𝑚 & 90 𝑚 For items 19 and 20, consider the equation 3𝑥2 + 𝑦2 = 81. _____19. Which of the following must be used to obtain the derivative of the given equation? A. Chain Rule of Differentiation C. Implicit Differentiation B. Explicit Differentiation D. Partial Differentiation _____20. Determine 𝑦′ . A. 𝑦′ = − 3𝑥 𝑦 C. 𝑦′ = 3𝑥 𝑦 B. 𝑦′ = − 𝑦 3𝑥 D. 𝑦′ = 𝑦 3𝑥 _____21. Given 𝑦 =𝑙𝑛 𝑙𝑛 (5𝑥2) determine 𝑦′. A. 𝑦′ = 𝑥 2 C. 𝑦′ = 2 5𝑥2 𝑙𝑛𝑙𝑛 𝑒
  • 4. Page 4 of 8 B. 𝑦′ = 2 𝑥 D. 𝑦′ = 𝑒 2𝑙𝑛𝑙𝑛 5𝑥2 For items 22 to 25, consider the problem: A spherical balloon is being inflated at the rate of 300 𝑐𝑚3 /𝑚𝑖𝑛. At what rate is the radius increasing when the diameter is 12 𝑐𝑚? _____22. Which of the following represents the radius of the spherical balloon? A. 𝑟 = 6 𝑐𝑚 C. 𝑟 = 225 𝑐𝑚 B. 𝑟 = 12 𝑐𝑚 D. 𝑟 = 450 𝑐𝑚 _____23. Which rate of change is being asked? A. 𝑑ℎ 𝑑𝑡 C. 𝑑𝑉 𝑑𝑡 B. 𝑑𝑟 𝑑𝑡 D. 𝑑𝑦 𝑑𝑥 _____24. Which of the following equation will show the relationship of all the variables involved in the problem? A. 𝑉 = 𝜋𝑟2 ℎ C. 𝑑𝑉 𝑑𝑡 = 4𝜋𝑟3 3 B. 𝑉 = 𝜋𝑟3ℎ D. 𝑉 = 𝜋𝑟2 ℎ 3 _____25. Which of the following represents the conclusion for the problem? A. The rate at which the radius of the of the balloon increases is 0.66 𝑐𝑚/𝑚𝑖𝑛. B. The rate at which the radius of the of the balloon increases is −0.66 𝑐𝑚/𝑚𝑖𝑛. C. The rate at which the radius of the of the balloon increases is 0.17 𝑐𝑚3 /𝑚𝑖𝑛. The rate at which the radius of the of the balloon decreases is −0.17 𝑐𝑚3 /𝑚𝑖𝑛 For items 26 to 28, evaluate the following indefinite integrals. _______26. ∫ (7𝑥6 − 2𝑥4 + 5𝑥2 − 6)𝑑𝑥 A. 7𝑥7 − 2𝑥5 5 + 5𝑥3 3 − 6𝑥 + 𝑐 C. 42𝑥5 5 − 8𝑥3 3 + 10𝑥 + 𝑐 B. 𝑥7 − 2𝑥5 5 + 5𝑥3 3 − 6𝑥 + 𝑐 D. 42𝑥5 − 8𝑥3 + 10𝑥 _______27.∫ (7𝑠𝑒𝑐2 𝑥− 5𝑠𝑒𝑐𝑥𝑡𝑎𝑛𝑥)𝑑𝑥 A. 7 𝑡𝑎𝑛 𝑡𝑎𝑛 𝑥 + 5 𝑠𝑒𝑐 𝑠𝑒𝑐 𝑥 + 𝑐 C. 14 𝑠𝑒𝑐 𝑠𝑒𝑐 𝑥 + 5 𝑠𝑒𝑐 𝑠𝑒𝑐 𝑥 + 𝑐 B. 7 𝑡𝑎𝑛 𝑡𝑎𝑛 𝑥 − 5 𝑠𝑒𝑐 𝑠𝑒𝑐 𝑥 + 𝑐 D. 14 𝑠𝑒𝑐 𝑠𝑒𝑐 𝑥 − 5 𝑠𝑒𝑐 𝑠𝑒𝑐 𝑥 + 𝑐 _______28. ∫ 53𝑥 𝑑𝑥 A. 3 ∙ 53𝑥 + 𝑐 C.− 53𝑥 5𝑙𝑛𝑙𝑛 5 + 𝑐 B. 1 3 53𝑥 + 𝑐 D. 53𝑥 3𝑙𝑛𝑙𝑛 5 + 𝑐 For items 29 to 31, evaluate the following integrals using Substitution Rule.
  • 5. Page 5 of 8 _______29.∫ (2𝑥3 − 5) 1 2 ∙ 2𝑥2 𝑑𝑥 A. 2√(2𝑥3 −5)3 9 + 𝑐 C. 3(2𝑥3 −5) 3 2 2 + 𝑐 B. √(2𝑥3 −5)3 3 + 𝑐 D. (2𝑥3 −5) 3 2 9 + 𝑐 _______30.∫ 5 (4𝑥 + 3)4 𝑑𝑥 A. −5 12(4𝑥+3)3 + 𝑐 C. (4𝑥+3)5 5 + 𝑐 B. −5 12(4𝑥+3)3 + 𝑐 D. (4𝑥+3)5 12 + 𝑐 _______31.∫ (4𝑥2 − 6𝑥 − 7)5(4𝑥− 3)𝑑𝑥 A. (4𝑥−3)6 6 + 𝑐 C. (4𝑥−3)6 12 + 𝑐 B. (4𝑥2 −6𝑥−7) 6 6 + 𝑐 D. (4𝑥2 −6𝑥−7) 6 12 + 𝑐 _____32. Consider the differential equation 𝑑𝑦 𝑑𝑥 = (𝑥 − 5)(2𝑥 − 3), which of the following represents the particular solution of given if 𝑦 = 5 𝑎𝑛𝑑 𝑥 = 0? A. 𝑦 = 2𝑥3 3 − 13𝑥2 2 + 15𝑥 + 5 C. 𝑦 = 2𝑥3 3 − 13𝑥2 2 − 15𝑥 − 5 B. 𝑦 = 2𝑥3 3 + 13𝑥2 2 + 15𝑥 + 15 D. 𝑦 = 2𝑥3 3 + 13𝑥2 2 − 15𝑥 − 15 For items 33 to 35, consider the problem: Certain bacteria cells are being observed in an experiment. The population doubles every 5 hours. How many bacteria cells will there be after 12 hours if at the beginning there were 900? ______33. Which of the following represents 𝑦0 ? A. 5 C. 900 B. 12 D. 1800 _____34. Determine the value of k. A. 0.13862 C. −0.13862 B. 0.13863 D. −0.13863 _____35. Which the following is the conclusion for the problem? A. There are approximately 6428 bacteria cells after 12 hours. B. There are approximately 6427 bacteria cells after 12 hours. C. There are approximately 4751 bacteria cells after 12 hours. D. There are approximately 4750 bacteria cells after 12 hours. For items 36 to 38, consider the problem: Substance H has a half-life of 80 years. If in 2022, 150 g of substance H was at hand, how much will be at hand in 2077? _____36. Which of the following is true regarding the given on the problem? A. 𝑦0 = 75 𝑔 B. 𝑦 = 75 𝑔 when 𝑡 = 160 𝑦𝑒𝑎𝑟𝑠
  • 6. Page 6 of 8 C. 𝑦 = 150 𝑔 when 𝑡 = 40 𝑦𝑒𝑎𝑟𝑠 D. 𝑡 = 55 𝑦𝑒𝑎𝑟𝑠 will be used in computing the unknown. _____37. Compute the value of k. A. −0.00866 C. 0.00603 B. −0.00603 D. 0.00866 _____38. What can be inferred regarding the problem? A. There is still 118.08 g of Substance H in 2077. B. There is still 106.39 g of Substance H in 2077. C. There is still 97.75 g of Substance H in 2077 D. There is still 93.16 g of Substance H in 2077 For items 39 – 43, evaluate the following definite integrals. _______39.∫ 5 5 (10𝑥10 − 9𝑥9 + 8𝑥8 − 7𝑥7 + 6𝑥6 − 5𝑥5 + 4𝑥4 − 3𝑥3 + 2𝑥2 − 𝑥)𝑑𝑥 A. indeterminate C. 0 B. undefined D. ∞ _______40.∫ 1 0 (2𝑥2 − 3√𝑥)𝑑𝑥 A. − 4 3 C. 1 6 B. − 1 3 D. 5 6 _______41. ∫ 2 −1 (9𝑥 − 5)3 ∙ 3𝑑𝑥 A. −28561 12 C. 3285 4 B. −3285 4 D. 28561 12 _______42.∫ 4 0 (4𝑥2 − 14𝑥 − 10)3 (4𝑥 − 7)𝑑𝑥 A. 1248 C. −1246 B. 1246 D. −1248 ______43.∫ 5 5 √5𝑥3 + 2 ∙ 15𝑥2 𝑑𝑥 A. DNE C. infinity B. imaginary D. zero For items 44 to 46, consider the problem: Find the area of the plane region bounded by 𝑦 = 2𝑥 + 5, 𝑥 = 1,𝑥 = 4 and the x-axis _____44. The following are points that can be found on the graph EXCEPT _____. A. (1,7) C. (3, 12) B. (2,9) D. (4, 13) _____45. Determine the values of the upper and lower limit. A. 𝑎 = −1 & 𝑏 = 2 C. 𝑎 = 1 & 𝑏 = 4 B. 𝑎 = 0 & 𝑏 = 3 D. 𝑎 = 2 & 𝑏 = 5 _____46. What can be concluded about the problem?
  • 7. Page 7 of 8 A. The area of the plane region bounded by 𝑦 = 2𝑥 + 5,𝑥 = 1, 𝑥 = 4 and the x- axis is 28 square units. B. The area of the plane region bounded by 𝑦 = 2𝑥 + 5,𝑥 = 1, 𝑥 = 4 and the x- axis is 30 square units. C. The area of the plane region bounded by 𝑦 = 2𝑥 + 5,𝑥 = 1, 𝑥 = 4 and the x- axis is 32 square units. D. The area of the plane region bounded by 𝑦 = 2𝑥 + 5,𝑥 = 1, 𝑥 = 4 and the x- axis is 34 square units. For items 47 to 50, consider the problem: Find the area of the plane region bounded by 𝑦 = 𝑥2 − 9 and 𝑦 = 𝑥 + 3. _____47. Which of the following represents the points of intersection? A. (4,7),(−3, 0) C. (4, −7),(−3, 0) B. (4,7),(3, 0) D. (−4,7), (3,0) _____48. Determine the values of the upper and lower limit. A. 𝑎 = −3 & 𝑏 = 4 C. 𝑎 = 1 & 𝑏 = −3 B. 𝑎 = 0 & 𝑏 = 3 D. 𝑎 = 2 & 𝑏 = 7 ______49. Which of the following is the upper function 𝑓(𝑥)? A. 𝑦 = 𝑥2 + 𝑥 + 12 C. 𝑦 = 𝑥 + 12 B. 𝑦 = 𝑥2 − 9 D. 𝑦 = 𝑥 + 3 _____50. What conclusion can be drawn on the problem? A. The area of the plane region bounded by 𝑦 = 𝑥2 − 9 and 𝑦 = 𝑥 + 3 is 54.14 square units. B. The area of the plane region bounded by 𝑦 = 𝑥2 − 9 and 𝑦 = 𝑥 + 3 is 55.15 square units. C. The area of the plane region bounded by 𝑦 = 𝑥2 − 9 and 𝑦 = 𝑥 + 3 is 56.16 square units. D. The area of the plane region bounded by 𝑦 = 𝑥2 − 9 and 𝑦 = 𝑥 + 3 is 57.17 square units. For items 47 to 50, consider the problem: Find the area of the plane region bounded by 𝑦 = 𝑥2 − 9 and 𝑦 = 𝑥 +
  • 8. Address: Matalino St. D.M. Government Center, Maimpis,City of San Fernando (P) Telephone Number: (045) 598-8580 to 89; Email Address: region3@deped.gov.ph Republic of the Philippines Department of Education REGION III-CENTRAL LUZON DIAGNOSTIC TEST IN BASIC CALCULUS KEY TO CORRECTION 1 D 26 B 2 B 27 B 3 C 28 D 4 B 29 A 5 B 30 B 6 B 31 D 7 C 32 A 8 D 33 C 9 B 34 B 10 C 35 C 11 A 36 D 12 D 37 A 13 C 38 D 14 B 39 C 15 B 40 A 16 A 41 B 17 C 42 D 18 A 43 D 19 C 44 C 20 A 45 C 21 B 46 B 22 A 47 A 23 B 48 A 24 C 49 B 25 A 50 D