First_Order_Differential_Equations_PPT.ppt

First-Order Differential
Equations
By
Dr. Summiya Parveen
Department of Mathematics
COLLOGE OF ENGINEERING ROORKE (COER)
ROORKEE 247667, INDIA
Page 2
Outline
 Basic Concepts
 Separable Differential Equations
 substitution Methods
 Exact Differential Equations
 Integrating Factors
 Linear Differential Equations
 Bernoulli Equations
Page 3
Basic Concepts
 Differentiation
x
e
x
x
x
a
a
a
e
e
nx
x
a
a
x
x
x
x
n
n
log
)
(log
1
)
(ln
ln
)
(
)
(
)
( 1









 
x
x
x
x
x
x
x
x
x
x
x
x
x
x
cot
csc
)
(csc
tan
sec
)
(sec
csc
)
(cot
sec
)
(tan
sin
)
(cos
cos
)
(sin
2
2















Page 4
Basic Concepts
 Differentiation
x
x
x
x
sinh
)
(cosh
cosh
)
(sinh




2
1
2
1
2
1
2
1
1
1
)
(cot
1
1
)
(tan
1
1
)
(cos
1
1
)
(sin
x
x
x
x
x
x
x
x


















Page 5
Basic Concepts
 Integration
c
a
a
dx
a
c
e
dx
e
c
x
dx
x
dx
x
c
n
x
dx
x
x
x
x
x
n
n

















ln
ln
1
1
1
1



















vdx
u
uv
dx
v
u
vdu
uv
udv
udx
c
cudx
vdx
udx
dx
v
u )
(
Page 6
Basic Concepts
 Integration
c
x
x
xdx
c
x
x
xdx
c
x
xdx
c
x
xdx
c
x
xdx
c
x
xdx






















cot
csc
ln
csc
tan
sec
ln
sec
sin
ln
cot
cos
ln
tan
sin
cos
cos
sin
Page 7
Basic Concepts
 Integration
c
a
x
dx
a
x
c
a
x
dx
a
x
c
a
x
dx
x
a
c
a
x
a
dx
a
x




















1
2
2
1
2
2
1
2
2
1
2
2
cosh
1
sinh
1
sin
1
tan
1
1
Page 8
Basic Concepts
 ODE vs. PDE
 Dependent Variables vs. Independent
Variables
 Order
 Linear vs. Nonlinear
 Solutions
Page 9
Basic Concepts
 Ordinary Differential Equations
 An unknown function (dependent variable) y
of one independent variable x
x
dx
dy
y cos



0
4 


 y
y
2
2
2
)
2
(
2 y
x
y
e
y
y
x x









Page 10
Basic Concepts
 Partial Differential Equations
 An unknown function (dependent variable)
z of two or more independent variables
(e.g. x and y)
y
x
x
z
4
6 



y
x
y
x
z





2
2
Page 11
Basic Concepts
 The order of a differential equation is
the order of the highest derivative that
appears in the equation.
0
)
( 2
2
3






 y
n
x
y
x
y
x Order 2
2
2
1
y
x
dx
dy

 Order 1
1
)
( 4
3
2
2

 y
dx
y
d
Order 2
Page 12
Basic Concept
 The first-order differential equation contain only y’
and may contain y and given function of x.
 A solution of a given first-order differential equation
(*) on some open interval a<x<b is a function
y=h(x) that has a derivative y’=h(x) and satisfies
(*) for all x in that interval.
)
,
(
'
0
)
'
,
,
(
y
x
F
y
y
y
x
F


or (*)
Page 13
Basic Concept
 Example : Verify the solution
x
2
y
2y
xy'


Page 14
Basic Concepts
 Explicit Solution
 Implicit Solution
)
(x
h
y 
0
)
,
( 
y
x
H
Page 15
Basic Concept
 General solution vs. Particular solution
 General solution
 arbitrary constant c
 Particular solution
 choose a specific c
,....
2
,
3
'






c
c
sinx
y
cosx
y
Page 16
Basic Concept
 Singular solutions
 Def : A differential equation may sometimes have an
additional solution that cannot be obtained from the
general solution and is then called a singular
solution.
 Example
The general solution : y=cx-c2
A singular solution : y=x2/4
0
' 

 y
xy
y'
2
Page 17
Basic Concepts
 General Solution
 Particular Solution for y(0)=2 (initial condition)
kt
ce
t
y 
)
(
kt
e
t
y 2
)
( 
ky
y 

Page 18
Basic Concept
 Def: A differential equation together
with an initial condition is called an
initial value problem
0
0)
(
),
,
(
' y
x
y
y
x
f
y 

Page 19
Separable Differential Equations
 Def: A first-order differential equation of
the form
is called a separable differential
equation
dx
x
f
dy
y
g
f(x)
g(y)y
)
(
)
(
'


Page 20
Separable Differential Equations
 Example :
Sol:
0
4
9 

 x
y
y
Page 21
Separable Differential Equations
 Example :
Sol:
2
1 y
y 


Page 22
Separable Differential Equations
 Example :
Sol:
ky
y 

Page 23
Separable Differential Equations
 Example :
Sol:
1
)
0
(
,
2 


 y
xy
y
Page 24
Separable Differential Equations
 Substitution Method:
A differential equation of the form
can be transformed into a separable
differential equation
)
(
x
y
g
y 

Page 25
Separable Differential Equations
 Substitution Method:
ux
y  u
x
u
y 



x
dx
u
u
g
du
u
u
g
x
u
u
g
u
x
u










)
(
)
(
)
(
Page 26
Separable Differential Equations
 Example :
Sol:
2
2
2 x
y
y
xy 


cx
y
x
x
c
x
y
x
c
u
c
x
c
x
u
x
dx
u
udu
u
u
u
x
u
y
x
x
y
xy
x
xy
y
y
x
y
y
xy








































2
2
2
2
1
1
2
2
2
2
2
2
1
1
1
ln
ln
)
1
ln(
1
2
)
1
(
2
1
)
(
2
1
2
2
2
Page 27
Separable Differential Equations
 Exercise 1
2
01
.
0
1 y
y 


2
/
xy
y 

y
y
y
x 

 2
2
)
2
(
,
0
' 


 y
y
xy
Page 28
Exact Differential Equations
 Def: A first-order differential equation of
the form
is said to be exact if
0
)
,
(
)
,
( 
 dy
y
x
N
dx
y
x
M
x
y
x
N
y
y
x
M



)
,
(
)
,
(
Page 29
Exact Differential Equations
 Proof:
0
)
,
(
)
,
(
0
)
,
(









dy
y
x
N
dx
y
x
M
dy
y
u
dx
x
u
y
x
du
x
y
x
N
y
y
x
M
y
x
y
x
u






 )
,
(
)
,
(
)
,
(
Page 30
Exact Differential Equations
 Example :
Sol:
0
)
3
(
)
3
( 3
2
2
3



 dy
y
y
x
dx
xy
x
Exact
xy
x
N
y
M
xy
x
y
y
x
xy
y
xy
x
,
6
6
3
6
3
3
2
2
3













Page 31
Exact Differential Equations
Sol:
)
(
2
3
4
1
)
(
)
3
(
)
(
2
2
4
2
3
y
k
y
x
x
y
k
dx
xy
x
y
k
Mdx
u










1
4
3
2
2
4
)
(
3
)
(
3
c
y
y
k
y
y
x
N
dy
y
dk
y
x
y
u










Page 32
Exact Differential Equations
Sol:
c
y
y
x
x
y
x
u 


 )
6
(
4
1
)
,
( 4
2
2
4
Page 33
Exact Differential Equations
 Example
3
)
0
(
0
)
sinh
(cos
)
cosh
(sin



y
dy
y
x
dx
y
x
Page 34
Non-Exactness
 Example : 0


 xdy
ydx
Page 35
Integrating Factor
 Def: A first-order differential equation of the form
is not exact, but it will be exact if multiplied by
F(x, y)
then F(x,y) is called an integrating factor of this
equation
0
)
,
(
)
,
( 
 dy
y
x
Q
dx
y
x
P
0
)
,
(
)
,
(
)
,
(
)
,
( 
 dy
y
x
Q
y
x
F
dx
y
x
P
y
x
F
Page 36
Exact Differential Equations
 How to find integrating factor
 Golden Rule
x
x
y
y FQ
Q
F
FP
P
F
Exact
x
FQ
y
FP
FQdy
FPdx












,
0
)
(
1
1
0
Let
x
y
x
y
Q
P
Q
dx
dF
F
FQ
Q
dx
dF
FP
P
F(x)
F








Page 37
Exact Differential Equations
 Example :
Sol:
0


 xdy
ydx
Exact
x
N
x
y
M
dy
x
dx
x
y
x
xdy
ydx
x
F
,
1
1
1
2
2
2
2













Page 38
Exact Differential Equations
Sol:
cx
y
c
x
y
x
y
d
dy
x
dx
x
y







 0
)
(
1
2
Page 39
Exact Differential Equations
 Example :
2
)
2
(
0
)
cos(
)
sin(
2 2
2




y
dy
y
xy
dx
y
Page 40
Exact Differential Equations
 Exercise 2
0
2 2

 dy
x
xydx 0
)
( 2
2





d
r
rdr
e
x
e
F
ydy
ydx 

 ,
0
cos
sin
b
a
y
x
F
xdy
b
ydx
a 



 ,
0
)
1
(
)
1
(
0
)
1
(
)
1
( 


 dy
x
dx
y
Page 41
Linear Differential Equations
 Def: A first-order differential equation is
said to be linear if it can be written
 If r(x) = 0, this equation is said to be
homogeneous
)
(
)
( x
r
y
x
p
y 


Page 42
Linear Differential Equations
 How to solve first-order linear homogeneous
ODE ?
Sol:
0
)
( 

 y
x
p
y




 















dx
x
p
c
dx
x
p
c
dx
x
p
ce
e
e
e
y
c
dx
x
p
y
dx
x
p
y
dy
y
x
p
dx
dy
)
(
)
(
)
(
1
1
1
)
(
ln
)
(
0
)
(
Page 43
Linear Differential Equations
 Example :
Sol:
0


 y
y
x
c
x
c
x
dx
dx
x
p
e
c
e
ce
ce
ce
ce
x
y
2
)
1
(
)
(
1
1
)
(











Page 44
Linear Differential Equations
 How to solve first-order linear nonhomogeneous
ODE ?
Sol:
)
(
)
( x
r
y
x
p
y 


)
(
))
(
)
(
(
)
(
1
1
0
))
(
)
(
(
)
(
)
(
x
p
x
r
y
x
p
y
Q
P
Q
dx
dF
F
dy
dx
x
r
y
x
p
x
r
y
x
p
dx
dy
x
y 













Page 45
Linear Differential Equations
Sol:


dx
x
p
e
x
F
)
(
)
(





 




















c
dx
r
e
e
x
y
c
dx
r
e
y
e
r
e
y
e
py
y
e
dx
x
p
dx
x
p
dx
x
p
dx
x
p
dx
x
p
dx
x
p
dx
x
p
)
(
)
(
)
(
)
(
)
(
)
(
)
(
)
(
)
(
)
(
Page 46
Linear Differential Equations
 Example :
Sol:
x
e
y
y 2



 
 
x
x
x
x
x
x
x
x
dx
dx
dx
x
p
dx
x
p
e
ce
c
e
e
c
dx
e
e
e
c
dx
e
e
e
c
dx
r
e
e
x
y
2
2
2
)
1
(
)
1
(
)
(
)
(
)
(











 








 











Page 47
Linear Differential Equations
 Example :
)
2
cos
2
2
sin
3
(
2 x
x
e
y
y x
'



Page 48
Linear Differential Equations
 Def: Bernoulli equations
 If a = 0, Bernoulli Eq. => First Order
Linear Eq.
 If a <> 0, let u = y1-a
a
y
x
g
y
x
p
y )
(
)
( 


g
a
pu
a
u )
1
(
)
1
( 




Page 49
Linear Differential Equations
 Example :
Sol:
2
By
Ay
y 



 
A
B
ce
u
y
A
B
ce
c
dx
e
A
B
e
c
dx
Be
e
u
B
Au
u
Ay
B
Ay
By
y
y
y
u
y
y
y
u
Ax
Ax
Ax
Ax
Ax
Ax
a














































1
1
)
( 1
2
2
2
1
2
1
1
Page 50
Linear Differential Equations
 Exercise 3
4


 y
y kx
e
ky
y 



2
2 y
y
y 


1



 xy
xy
y
)
2
(
,
sin
3 
y
x
y
y 


Page 51
Summary
Separable
Substitution
Exact
Integrating Factor
Linear
dx
x
f
dy
y
g )
(
)
( 
dx
x
f
du
u
g )
(
)
( 
0
)
,
(
)
,
( 
 dy
y
x
N
dx
y
x
M
0

 FQdy
FPdx
)
(
)
( x
r
y
x
p
y 


Page 52
Orthogonal Trajectories of
Curves
 Angle of intersection of two curves is
defined to be the angle between the
tangents of the curves at the point of
intersection
 How to use differential equations for
finding curves that intersect given
curves at right angles ?
Page 53
How to find Orthogonal Trajectories
 1st Step: find a differential equation
for a given cure
 2nd Step: the differential equation of the
orthogonal trajectories to be found
 3rd step: solve the differential equation
as above ( in 2nd step)
)
,
( y
x
f
y 
)
,
( y
x
f
y' 
)
,
(
1
y
x
f
y' 

Page 54
Orthogonal Trajectories of Curves
 Example: given a curve y=cx2, where c
is arbitrary. Find their orthogonal
trajectories.
Sol:
Page 55
Existance and Uniqueness of Solution
 An initial value problem may have no
solutions, precisely one solution, or
more than one solution.
 Example
1
)
0
(
,
0
' 

 y
y
y
1
)
0
(
,
' 
 y
x
y
1
)
0
(
,
1
' 

 y
y
xy
No solutions
Precisely one solutions
More than one solutions
Page 56
Existence and uniqueness theorems
 Problem of existence
 Under what conditions does an initial
value problem have at least one
solution ?
 Existence theorem, see page 53
 Problem of uniqueness
 Under what conditions does that the
problem have at most one solution ?
 Uniqueness theorem, see page54
Thank You
Page 57
1 de 57

Recomendados

fode1.ppt por
fode1.pptfode1.ppt
fode1.pptsuleiman70
10 visualizações57 slides
First order differential equations por
First order differential equationsFirst order differential equations
First order differential equationsDr.Summiya Parveen
714 visualizações57 slides
First Order Differential Equations por
First Order Differential EquationsFirst Order Differential Equations
First Order Differential Equationssuleiman70
37 visualizações35 slides
differentiol equation.pptx por
differentiol equation.pptxdifferentiol equation.pptx
differentiol equation.pptxPlanningHCEGC
52 visualizações125 slides
Amity university sem ii applied mathematics ii lecturer notes por
Amity university sem ii applied mathematics ii lecturer notesAmity university sem ii applied mathematics ii lecturer notes
Amity university sem ii applied mathematics ii lecturer notesAlbert Jose
813 visualizações164 slides
Second order homogeneous linear differential equations por
Second order homogeneous linear differential equations Second order homogeneous linear differential equations
Second order homogeneous linear differential equations Viraj Patel
18.6K visualizações12 slides

Mais conteúdo relacionado

Similar a First_Order_Differential_Equations_PPT.ppt

K12105 sharukh... por
K12105 sharukh...K12105 sharukh...
K12105 sharukh...shahrukh0222
143 visualizações13 slides
Engineering Mathematics 2 questions & answers por
Engineering Mathematics 2 questions & answersEngineering Mathematics 2 questions & answers
Engineering Mathematics 2 questions & answersMzr Zia
17.2K visualizações8 slides
Engineering Mathematics 2 questions & answers(2) por
Engineering Mathematics 2 questions & answers(2)Engineering Mathematics 2 questions & answers(2)
Engineering Mathematics 2 questions & answers(2)Mzr Zia
628 visualizações8 slides
Iq3514961502 por
Iq3514961502Iq3514961502
Iq3514961502IJERA Editor
279 visualizações7 slides
MRS EMMAH.pdf por
MRS EMMAH.pdfMRS EMMAH.pdf
MRS EMMAH.pdfKasungwa
17 visualizações67 slides
160280102031 c2 aem por
160280102031 c2 aem160280102031 c2 aem
160280102031 c2 aemL.D. COLLEGE OF ENGINEERING
96 visualizações27 slides

Similar a First_Order_Differential_Equations_PPT.ppt(20)

K12105 sharukh... por shahrukh0222
K12105 sharukh...K12105 sharukh...
K12105 sharukh...
shahrukh0222143 visualizações
Engineering Mathematics 2 questions & answers por Mzr Zia
Engineering Mathematics 2 questions & answersEngineering Mathematics 2 questions & answers
Engineering Mathematics 2 questions & answers
Mzr Zia17.2K visualizações
Engineering Mathematics 2 questions & answers(2) por Mzr Zia
Engineering Mathematics 2 questions & answers(2)Engineering Mathematics 2 questions & answers(2)
Engineering Mathematics 2 questions & answers(2)
Mzr Zia628 visualizações
Iq3514961502 por IJERA Editor
Iq3514961502Iq3514961502
Iq3514961502
IJERA Editor279 visualizações
MRS EMMAH.pdf por Kasungwa
MRS EMMAH.pdfMRS EMMAH.pdf
MRS EMMAH.pdf
Kasungwa17 visualizações
UNIT-III.pdf por Rupesh383474
UNIT-III.pdfUNIT-III.pdf
UNIT-III.pdf
Rupesh38347426 visualizações
Ordinary differential equations por Ahmed Haider
Ordinary differential equationsOrdinary differential equations
Ordinary differential equations
Ahmed Haider34K visualizações
Automobile 3rd sem aem ppt.2016 por kalpeshvaghdodiya
Automobile 3rd sem aem ppt.2016Automobile 3rd sem aem ppt.2016
Automobile 3rd sem aem ppt.2016
kalpeshvaghdodiya610 visualizações
ORDINARY DIFFERENTIAL EQUATION por LANKESH S S
ORDINARY DIFFERENTIAL EQUATION ORDINARY DIFFERENTIAL EQUATION
ORDINARY DIFFERENTIAL EQUATION
LANKESH S S947 visualizações
Differential equations por Dawood Aqlan
Differential equationsDifferential equations
Differential equations
Dawood Aqlan1.1K visualizações
Differential equations por Charan Kumar
Differential equationsDifferential equations
Differential equations
Charan Kumar4.6K visualizações
Unit 14 Differential Equation.docx por STUDY INNOVATIONS
Unit 14 Differential Equation.docxUnit 14 Differential Equation.docx
Unit 14 Differential Equation.docx
STUDY INNOVATIONS27 visualizações
Density theorems for anisotropic point configurations por VjekoslavKovac1
Density theorems for anisotropic point configurationsDensity theorems for anisotropic point configurations
Density theorems for anisotropic point configurations
VjekoslavKovac1109 visualizações
Top Schools in delhi NCR por Edhole.com
Top Schools in delhi NCRTop Schools in delhi NCR
Top Schools in delhi NCR
Edhole.com299 visualizações
Higher Differential Equation por Abdul Hannan
Higher Differential Equation Higher Differential Equation
Higher Differential Equation
Abdul Hannan5.1K visualizações
first order ode with its application por Krishna Peshivadiya
 first order ode with its application first order ode with its application
first order ode with its application
Krishna Peshivadiya6K visualizações
Persamaan Differensial Biasa 2014 por Rani Sulvianuri
Persamaan Differensial Biasa 2014 Persamaan Differensial Biasa 2014
Persamaan Differensial Biasa 2014
Rani Sulvianuri2.2K visualizações

Mais de JiaJunWang17

Cash flow model por
Cash flow modelCash flow model
Cash flow modelJiaJunWang17
2 visualizações10 slides
Business_Analysis_Decision_Analysis.ppt por
Business_Analysis_Decision_Analysis.pptBusiness_Analysis_Decision_Analysis.ppt
Business_Analysis_Decision_Analysis.pptJiaJunWang17
1 visão27 slides
Capacitacion_2016_pptx_pptx.pptx por
Capacitacion_2016_pptx_pptx.pptxCapacitacion_2016_pptx_pptx.pptx
Capacitacion_2016_pptx_pptx.pptxJiaJunWang17
1 visão29 slides
fontes_jud_rabinico_mestrado_jan_2014_pp.ppt por
fontes_jud_rabinico_mestrado_jan_2014_pp.pptfontes_jud_rabinico_mestrado_jan_2014_pp.ppt
fontes_jud_rabinico_mestrado_jan_2014_pp.pptJiaJunWang17
1 visão22 slides
Cybercrime_PPT.ppt por
Cybercrime_PPT.pptCybercrime_PPT.ppt
Cybercrime_PPT.pptJiaJunWang17
1 visão23 slides
PENGARATAN_PPT.pptx por
PENGARATAN_PPT.pptxPENGARATAN_PPT.pptx
PENGARATAN_PPT.pptxJiaJunWang17
0 visão20 slides

Mais de JiaJunWang17(20)

Cash flow model por JiaJunWang17
Cash flow modelCash flow model
Cash flow model
JiaJunWang172 visualizações
Business_Analysis_Decision_Analysis.ppt por JiaJunWang17
Business_Analysis_Decision_Analysis.pptBusiness_Analysis_Decision_Analysis.ppt
Business_Analysis_Decision_Analysis.ppt
JiaJunWang171 visão
Capacitacion_2016_pptx_pptx.pptx por JiaJunWang17
Capacitacion_2016_pptx_pptx.pptxCapacitacion_2016_pptx_pptx.pptx
Capacitacion_2016_pptx_pptx.pptx
JiaJunWang171 visão
fontes_jud_rabinico_mestrado_jan_2014_pp.ppt por JiaJunWang17
fontes_jud_rabinico_mestrado_jan_2014_pp.pptfontes_jud_rabinico_mestrado_jan_2014_pp.ppt
fontes_jud_rabinico_mestrado_jan_2014_pp.ppt
JiaJunWang171 visão
neuroaids_ppt.ppt por JiaJunWang17
neuroaids_ppt.pptneuroaids_ppt.ppt
neuroaids_ppt.ppt
JiaJunWang172 visualizações
PPT_presentation_PaperKISMIF2016_ppt.ppt por JiaJunWang17
PPT_presentation_PaperKISMIF2016_ppt.pptPPT_presentation_PaperKISMIF2016_ppt.ppt
PPT_presentation_PaperKISMIF2016_ppt.ppt
JiaJunWang171 visão
El ciclo del hábito.pptx por JiaJunWang17
El ciclo del hábito.pptxEl ciclo del hábito.pptx
El ciclo del hábito.pptx
JiaJunWang176 visualizações
Hatshepsut_PPT.pptx por JiaJunWang17
Hatshepsut_PPT.pptxHatshepsut_PPT.pptx
Hatshepsut_PPT.pptx
JiaJunWang173 visualizações
hho_acctg09GE_inppt05_ppt.ppt por JiaJunWang17
hho_acctg09GE_inppt05_ppt.ppthho_acctg09GE_inppt05_ppt.ppt
hho_acctg09GE_inppt05_ppt.ppt
JiaJunWang171 visão
hho_acctg09GE_inppt05B_ppt.ppt por JiaJunWang17
hho_acctg09GE_inppt05B_ppt.ppthho_acctg09GE_inppt05B_ppt.ppt
hho_acctg09GE_inppt05B_ppt.ppt
JiaJunWang171 visão
hho_acctg09GE_inppt02_ppt (1).ppt por JiaJunWang17
hho_acctg09GE_inppt02_ppt (1).ppthho_acctg09GE_inppt02_ppt (1).ppt
hho_acctg09GE_inppt02_ppt (1).ppt
JiaJunWang173 visualizações
hho_acctg09GE_inppt06_ppt.ppt por JiaJunWang17
hho_acctg09GE_inppt06_ppt.ppthho_acctg09GE_inppt06_ppt.ppt
hho_acctg09GE_inppt06_ppt.ppt
JiaJunWang170 visão
Worksheet for a Merchandising Business.ppt por JiaJunWang17
Worksheet for a Merchandising Business.pptWorksheet for a Merchandising Business.ppt
Worksheet for a Merchandising Business.ppt
JiaJunWang1745 visualizações
vakum_ppt.pptx por JiaJunWang17
vakum_ppt.pptxvakum_ppt.pptx
vakum_ppt.pptx
JiaJunWang1720 visualizações
Matrix_PPT.pptx por JiaJunWang17
Matrix_PPT.pptxMatrix_PPT.pptx
Matrix_PPT.pptx
JiaJunWang178 visualizações

Último

Psychology KS4 por
Psychology KS4Psychology KS4
Psychology KS4WestHatch
76 visualizações4 slides
Computer Introduction-Lecture06 por
Computer Introduction-Lecture06Computer Introduction-Lecture06
Computer Introduction-Lecture06Dr. Mazin Mohamed alkathiri
82 visualizações12 slides
REPRESENTATION - GAUNTLET.pptx por
REPRESENTATION - GAUNTLET.pptxREPRESENTATION - GAUNTLET.pptx
REPRESENTATION - GAUNTLET.pptxiammrhaywood
91 visualizações26 slides
The Open Access Community Framework (OACF) 2023 (1).pptx por
The Open Access Community Framework (OACF) 2023 (1).pptxThe Open Access Community Framework (OACF) 2023 (1).pptx
The Open Access Community Framework (OACF) 2023 (1).pptxJisc
107 visualizações7 slides
231112 (WR) v1 ChatGPT OEB 2023.pdf por
231112 (WR) v1  ChatGPT OEB 2023.pdf231112 (WR) v1  ChatGPT OEB 2023.pdf
231112 (WR) v1 ChatGPT OEB 2023.pdfWilfredRubens.com
151 visualizações21 slides
Solar System and Galaxies.pptx por
Solar System and Galaxies.pptxSolar System and Galaxies.pptx
Solar System and Galaxies.pptxDrHafizKosar
89 visualizações26 slides

Último(20)

Psychology KS4 por WestHatch
Psychology KS4Psychology KS4
Psychology KS4
WestHatch76 visualizações
REPRESENTATION - GAUNTLET.pptx por iammrhaywood
REPRESENTATION - GAUNTLET.pptxREPRESENTATION - GAUNTLET.pptx
REPRESENTATION - GAUNTLET.pptx
iammrhaywood91 visualizações
The Open Access Community Framework (OACF) 2023 (1).pptx por Jisc
The Open Access Community Framework (OACF) 2023 (1).pptxThe Open Access Community Framework (OACF) 2023 (1).pptx
The Open Access Community Framework (OACF) 2023 (1).pptx
Jisc107 visualizações
231112 (WR) v1 ChatGPT OEB 2023.pdf por WilfredRubens.com
231112 (WR) v1  ChatGPT OEB 2023.pdf231112 (WR) v1  ChatGPT OEB 2023.pdf
231112 (WR) v1 ChatGPT OEB 2023.pdf
WilfredRubens.com151 visualizações
Solar System and Galaxies.pptx por DrHafizKosar
Solar System and Galaxies.pptxSolar System and Galaxies.pptx
Solar System and Galaxies.pptx
DrHafizKosar89 visualizações
Education and Diversity.pptx por DrHafizKosar
Education and Diversity.pptxEducation and Diversity.pptx
Education and Diversity.pptx
DrHafizKosar135 visualizações
Drama KS5 Breakdown por WestHatch
Drama KS5 BreakdownDrama KS5 Breakdown
Drama KS5 Breakdown
WestHatch73 visualizações
AUDIENCE - BANDURA.pptx por iammrhaywood
AUDIENCE - BANDURA.pptxAUDIENCE - BANDURA.pptx
AUDIENCE - BANDURA.pptx
iammrhaywood77 visualizações
Sociology KS5 por WestHatch
Sociology KS5Sociology KS5
Sociology KS5
WestHatch65 visualizações
AI Tools for Business and Startups por Svetlin Nakov
AI Tools for Business and StartupsAI Tools for Business and Startups
AI Tools for Business and Startups
Svetlin Nakov105 visualizações
Scope of Biochemistry.pptx por shoba shoba
Scope of Biochemistry.pptxScope of Biochemistry.pptx
Scope of Biochemistry.pptx
shoba shoba126 visualizações
Are we onboard yet University of Sussex.pptx por Jisc
Are we onboard yet University of Sussex.pptxAre we onboard yet University of Sussex.pptx
Are we onboard yet University of Sussex.pptx
Jisc93 visualizações
UWP OA Week Presentation (1).pptx por Jisc
UWP OA Week Presentation (1).pptxUWP OA Week Presentation (1).pptx
UWP OA Week Presentation (1).pptx
Jisc87 visualizações
PLASMA PROTEIN (2).pptx por MEGHANA C
PLASMA PROTEIN (2).pptxPLASMA PROTEIN (2).pptx
PLASMA PROTEIN (2).pptx
MEGHANA C66 visualizações
Structure and Functions of Cell.pdf por Nithya Murugan
Structure and Functions of Cell.pdfStructure and Functions of Cell.pdf
Structure and Functions of Cell.pdf
Nithya Murugan455 visualizações
ACTIVITY BOOK key water sports.pptx por Mar Caston Palacio
ACTIVITY BOOK key water sports.pptxACTIVITY BOOK key water sports.pptx
ACTIVITY BOOK key water sports.pptx
Mar Caston Palacio511 visualizações
Gopal Chakraborty Memorial Quiz 2.0 Prelims.pptx por Debapriya Chakraborty
Gopal Chakraborty Memorial Quiz 2.0 Prelims.pptxGopal Chakraborty Memorial Quiz 2.0 Prelims.pptx
Gopal Chakraborty Memorial Quiz 2.0 Prelims.pptx
Debapriya Chakraborty625 visualizações

First_Order_Differential_Equations_PPT.ppt

  • 1. First-Order Differential Equations By Dr. Summiya Parveen Department of Mathematics COLLOGE OF ENGINEERING ROORKE (COER) ROORKEE 247667, INDIA
  • 2. Page 2 Outline  Basic Concepts  Separable Differential Equations  substitution Methods  Exact Differential Equations  Integrating Factors  Linear Differential Equations  Bernoulli Equations
  • 3. Page 3 Basic Concepts  Differentiation x e x x x a a a e e nx x a a x x x x n n log ) (log 1 ) (ln ln ) ( ) ( ) ( 1            x x x x x x x x x x x x x x cot csc ) (csc tan sec ) (sec csc ) (cot sec ) (tan sin ) (cos cos ) (sin 2 2               
  • 4. Page 4 Basic Concepts  Differentiation x x x x sinh ) (cosh cosh ) (sinh     2 1 2 1 2 1 2 1 1 1 ) (cot 1 1 ) (tan 1 1 ) (cos 1 1 ) (sin x x x x x x x x                  
  • 5. Page 5 Basic Concepts  Integration c a a dx a c e dx e c x dx x dx x c n x dx x x x x x n n                  ln ln 1 1 1 1                    vdx u uv dx v u vdu uv udv udx c cudx vdx udx dx v u ) (
  • 6. Page 6 Basic Concepts  Integration c x x xdx c x x xdx c x xdx c x xdx c x xdx c x xdx                       cot csc ln csc tan sec ln sec sin ln cot cos ln tan sin cos cos sin
  • 7. Page 7 Basic Concepts  Integration c a x dx a x c a x dx a x c a x dx x a c a x a dx a x                     1 2 2 1 2 2 1 2 2 1 2 2 cosh 1 sinh 1 sin 1 tan 1 1
  • 8. Page 8 Basic Concepts  ODE vs. PDE  Dependent Variables vs. Independent Variables  Order  Linear vs. Nonlinear  Solutions
  • 9. Page 9 Basic Concepts  Ordinary Differential Equations  An unknown function (dependent variable) y of one independent variable x x dx dy y cos    0 4     y y 2 2 2 ) 2 ( 2 y x y e y y x x         
  • 10. Page 10 Basic Concepts  Partial Differential Equations  An unknown function (dependent variable) z of two or more independent variables (e.g. x and y) y x x z 4 6     y x y x z      2 2
  • 11. Page 11 Basic Concepts  The order of a differential equation is the order of the highest derivative that appears in the equation. 0 ) ( 2 2 3        y n x y x y x Order 2 2 2 1 y x dx dy   Order 1 1 ) ( 4 3 2 2   y dx y d Order 2
  • 12. Page 12 Basic Concept  The first-order differential equation contain only y’ and may contain y and given function of x.  A solution of a given first-order differential equation (*) on some open interval a<x<b is a function y=h(x) that has a derivative y’=h(x) and satisfies (*) for all x in that interval. ) , ( ' 0 ) ' , , ( y x F y y y x F   or (*)
  • 13. Page 13 Basic Concept  Example : Verify the solution x 2 y 2y xy'  
  • 14. Page 14 Basic Concepts  Explicit Solution  Implicit Solution ) (x h y  0 ) , (  y x H
  • 15. Page 15 Basic Concept  General solution vs. Particular solution  General solution  arbitrary constant c  Particular solution  choose a specific c ,.... 2 , 3 '       c c sinx y cosx y
  • 16. Page 16 Basic Concept  Singular solutions  Def : A differential equation may sometimes have an additional solution that cannot be obtained from the general solution and is then called a singular solution.  Example The general solution : y=cx-c2 A singular solution : y=x2/4 0 '    y xy y' 2
  • 17. Page 17 Basic Concepts  General Solution  Particular Solution for y(0)=2 (initial condition) kt ce t y  ) ( kt e t y 2 ) (  ky y  
  • 18. Page 18 Basic Concept  Def: A differential equation together with an initial condition is called an initial value problem 0 0) ( ), , ( ' y x y y x f y  
  • 19. Page 19 Separable Differential Equations  Def: A first-order differential equation of the form is called a separable differential equation dx x f dy y g f(x) g(y)y ) ( ) ( '  
  • 20. Page 20 Separable Differential Equations  Example : Sol: 0 4 9    x y y
  • 21. Page 21 Separable Differential Equations  Example : Sol: 2 1 y y   
  • 22. Page 22 Separable Differential Equations  Example : Sol: ky y  
  • 23. Page 23 Separable Differential Equations  Example : Sol: 1 ) 0 ( , 2     y xy y
  • 24. Page 24 Separable Differential Equations  Substitution Method: A differential equation of the form can be transformed into a separable differential equation ) ( x y g y  
  • 25. Page 25 Separable Differential Equations  Substitution Method: ux y  u x u y     x dx u u g du u u g x u u g u x u           ) ( ) ( ) (
  • 26. Page 26 Separable Differential Equations  Example : Sol: 2 2 2 x y y xy    cx y x x c x y x c u c x c x u x dx u udu u u u x u y x x y xy x xy y y x y y xy                                         2 2 2 2 1 1 2 2 2 2 2 2 1 1 1 ln ln ) 1 ln( 1 2 ) 1 ( 2 1 ) ( 2 1 2 2 2
  • 27. Page 27 Separable Differential Equations  Exercise 1 2 01 . 0 1 y y    2 / xy y   y y y x    2 2 ) 2 ( , 0 '     y y xy
  • 28. Page 28 Exact Differential Equations  Def: A first-order differential equation of the form is said to be exact if 0 ) , ( ) , (   dy y x N dx y x M x y x N y y x M    ) , ( ) , (
  • 29. Page 29 Exact Differential Equations  Proof: 0 ) , ( ) , ( 0 ) , (          dy y x N dx y x M dy y u dx x u y x du x y x N y y x M y x y x u        ) , ( ) , ( ) , (
  • 30. Page 30 Exact Differential Equations  Example : Sol: 0 ) 3 ( ) 3 ( 3 2 2 3     dy y y x dx xy x Exact xy x N y M xy x y y x xy y xy x , 6 6 3 6 3 3 2 2 3             
  • 31. Page 31 Exact Differential Equations Sol: ) ( 2 3 4 1 ) ( ) 3 ( ) ( 2 2 4 2 3 y k y x x y k dx xy x y k Mdx u           1 4 3 2 2 4 ) ( 3 ) ( 3 c y y k y y x N dy y dk y x y u          
  • 32. Page 32 Exact Differential Equations Sol: c y y x x y x u     ) 6 ( 4 1 ) , ( 4 2 2 4
  • 33. Page 33 Exact Differential Equations  Example 3 ) 0 ( 0 ) sinh (cos ) cosh (sin    y dy y x dx y x
  • 34. Page 34 Non-Exactness  Example : 0    xdy ydx
  • 35. Page 35 Integrating Factor  Def: A first-order differential equation of the form is not exact, but it will be exact if multiplied by F(x, y) then F(x,y) is called an integrating factor of this equation 0 ) , ( ) , (   dy y x Q dx y x P 0 ) , ( ) , ( ) , ( ) , (   dy y x Q y x F dx y x P y x F
  • 36. Page 36 Exact Differential Equations  How to find integrating factor  Golden Rule x x y y FQ Q F FP P F Exact x FQ y FP FQdy FPdx             , 0 ) ( 1 1 0 Let x y x y Q P Q dx dF F FQ Q dx dF FP P F(x) F        
  • 37. Page 37 Exact Differential Equations  Example : Sol: 0    xdy ydx Exact x N x y M dy x dx x y x xdy ydx x F , 1 1 1 2 2 2 2             
  • 38. Page 38 Exact Differential Equations Sol: cx y c x y x y d dy x dx x y         0 ) ( 1 2
  • 39. Page 39 Exact Differential Equations  Example : 2 ) 2 ( 0 ) cos( ) sin( 2 2 2     y dy y xy dx y
  • 40. Page 40 Exact Differential Equations  Exercise 2 0 2 2   dy x xydx 0 ) ( 2 2      d r rdr e x e F ydy ydx    , 0 cos sin b a y x F xdy b ydx a      , 0 ) 1 ( ) 1 ( 0 ) 1 ( ) 1 (     dy x dx y
  • 41. Page 41 Linear Differential Equations  Def: A first-order differential equation is said to be linear if it can be written  If r(x) = 0, this equation is said to be homogeneous ) ( ) ( x r y x p y   
  • 42. Page 42 Linear Differential Equations  How to solve first-order linear homogeneous ODE ? Sol: 0 ) (    y x p y                      dx x p c dx x p c dx x p ce e e e y c dx x p y dx x p y dy y x p dx dy ) ( ) ( ) ( 1 1 1 ) ( ln ) ( 0 ) (
  • 43. Page 43 Linear Differential Equations  Example : Sol: 0    y y x c x c x dx dx x p e c e ce ce ce ce x y 2 ) 1 ( ) ( 1 1 ) (           
  • 44. Page 44 Linear Differential Equations  How to solve first-order linear nonhomogeneous ODE ? Sol: ) ( ) ( x r y x p y    ) ( )) ( ) ( ( ) ( 1 1 0 )) ( ) ( ( ) ( ) ( x p x r y x p y Q P Q dx dF F dy dx x r y x p x r y x p dx dy x y              
  • 45. Page 45 Linear Differential Equations Sol:   dx x p e x F ) ( ) (                            c dx r e e x y c dx r e y e r e y e py y e dx x p dx x p dx x p dx x p dx x p dx x p dx x p ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) (
  • 46. Page 46 Linear Differential Equations  Example : Sol: x e y y 2        x x x x x x x x dx dx dx x p dx x p e ce c e e c dx e e e c dx e e e c dx r e e x y 2 2 2 ) 1 ( ) 1 ( ) ( ) ( ) (                                  
  • 47. Page 47 Linear Differential Equations  Example : ) 2 cos 2 2 sin 3 ( 2 x x e y y x '   
  • 48. Page 48 Linear Differential Equations  Def: Bernoulli equations  If a = 0, Bernoulli Eq. => First Order Linear Eq.  If a <> 0, let u = y1-a a y x g y x p y ) ( ) (    g a pu a u ) 1 ( ) 1 (     
  • 49. Page 49 Linear Differential Equations  Example : Sol: 2 By Ay y       A B ce u y A B ce c dx e A B e c dx Be e u B Au u Ay B Ay By y y y u y y y u Ax Ax Ax Ax Ax Ax a                                               1 1 ) ( 1 2 2 2 1 2 1 1
  • 50. Page 50 Linear Differential Equations  Exercise 3 4    y y kx e ky y     2 2 y y y    1     xy xy y ) 2 ( , sin 3  y x y y   
  • 51. Page 51 Summary Separable Substitution Exact Integrating Factor Linear dx x f dy y g ) ( ) (  dx x f du u g ) ( ) (  0 ) , ( ) , (   dy y x N dx y x M 0   FQdy FPdx ) ( ) ( x r y x p y   
  • 52. Page 52 Orthogonal Trajectories of Curves  Angle of intersection of two curves is defined to be the angle between the tangents of the curves at the point of intersection  How to use differential equations for finding curves that intersect given curves at right angles ?
  • 53. Page 53 How to find Orthogonal Trajectories  1st Step: find a differential equation for a given cure  2nd Step: the differential equation of the orthogonal trajectories to be found  3rd step: solve the differential equation as above ( in 2nd step) ) , ( y x f y  ) , ( y x f y'  ) , ( 1 y x f y'  
  • 54. Page 54 Orthogonal Trajectories of Curves  Example: given a curve y=cx2, where c is arbitrary. Find their orthogonal trajectories. Sol:
  • 55. Page 55 Existance and Uniqueness of Solution  An initial value problem may have no solutions, precisely one solution, or more than one solution.  Example 1 ) 0 ( , 0 '    y y y 1 ) 0 ( , '   y x y 1 ) 0 ( , 1 '    y y xy No solutions Precisely one solutions More than one solutions
  • 56. Page 56 Existence and uniqueness theorems  Problem of existence  Under what conditions does an initial value problem have at least one solution ?  Existence theorem, see page 53  Problem of uniqueness  Under what conditions does that the problem have at most one solution ?  Uniqueness theorem, see page54