SlideShare uma empresa Scribd logo
1 de 20
Baixar para ler offline
February 3, 2014 
University of California, San Diego 
Department of NanoEngineering 
La Jolla, CA 92093 
 
To Whom It May Concern: 
As requested, this “Plate Heat Exchanger” report includes the overall heat transfer coefficient by 
varying hot and cold water flow rates in steady­state and batch operations. 
We hope this report will satisfy the desired expectations. If you have any questions or concerns, 
please contact us. 
 
Sincerely, 
Group B­4 
 
Brandon Sanchez  Janet Mok 
bobbyjoedik@gmail.com janet.mok14@gmail.com  
 
 
 
 
 
 
Liliana Busanez Saman Hadavand 
lilianabusanez@gmail.com hada4gold@gmail.com  
 
 
 
 
 
 
Department of NanoEngineering,  
Chemical Engineering 
   
1 
 
 
 
Plate Heat Exchangers 
 
Lab 1 Report 
 
 
 
 
 
 
 Presented to the 
University of California, San Diego 
Department of Nanoengineering 
CENG 176A 
3 February 2015 
 
 
 
 
 
 
Prepared by:   
Group B­4 
 
Lead Author  Section 
Janet Mok  Letter of Transmittal, Abstract, Intro, 
Conclusion 
Liliana Busanez  Theory and Background 
Brandon Sanchez  Results and Discussion 
Saman Hadavand  Tech Memo and Presentation 
2 
Abstract 
 
The goal of the experiment was to understand the characteristics and design of a plate 
heat exchanger, as well as to evaluate the effects of varying flow rates on the overall heat transfer 
coefficient. The steady­state operation involved moving cold water from a source tank to a 
receiving tank where the hot water stream exchanges heat with the cold water stream in the 
source tank. In the batch operation, the cold water was pumped into the same tank, with constant 
stirring, after exchanging heat with the hot water stream.  The data and results showed that in the 
steady­state operation, the overall heat transfer coefficient increased as the mass flow rates 
increased. However, it was seen that in the batch operation, the overall heat transfer coefficient 
decreased as the temperature difference decreased. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3 
Table of Contents
Introduction   
 
pp. 5 
Theory  Figure 1, Cocurrent Flow 
Figure 2. Countercurrent Flow 
pp. 6 
Methods    pp. 9 
Results   
Figure 3. Measured Flow Rate 
Figure 4. LMTD vs. time 
pp. 11 
Discussion    pp. 13 
Conclusion    pp. 16  
References    pp. 17 
Appendices  Table A1. Batch data 
Table A2. Steady­state data 
Table A3. Calibration Batch 
Table A4. Calibration Steady­state 
pp. 18 
 
 
 
 
 
 
 
   
4 
Introduction 
 
The Plate Heat Exchanger (PHE) Experiment uses common equipment found in heat 
exchange processes used in industries such as: power, air conditioning, and biomedical 
industries. The earliest development of PHEs was in response to increasingly strict requirements 
from foods, particularly dairy products in the late nineteenth century. The very first patent for a 
PHE was granted to the  german Albrecht Dracke, who proposed in 1878 the cooling of one 
liquid by another, with each flowing in a layer on opposite sides of a series of plates¹. The 
growing demand for energy conservation, while using sustainable technology and preserving the 
environment, has lead to high performance, compact heat exchangers with increased energy 
efficiency. The PHE design is decentralized in nature, and benefits include flexible sizing of 
various plates to meet batch­processing heat load demands for sustaining hygienic conditions 
common in food, and pharmaceutical product processing¹. 
The PHE consists of a pack of gasketed corrugated metal plates, pressed together in a 
frame, which allows fluid to flow through a series of parallel flow channels and exchange heat 
through the thin metal plates³. Plate heat exchangers are used for transferring heat for any 
combination of gas, liquid, and two­phase streams. The gaskets prevent leakage to the outside 
and directs the fluids as desired⁴. Heat is then transferred from the warm fluid via the dividing 
wall to the colder fluid in a pure counter­flow arrangement, which supplements the high 
effectiveness of the PHEs. 
The importance of the plate heat exchanger can be seen through the various structural 
advantages that it has to offer. The plate surface corrugations promotes enhanced heat transfer by 
means of promoting swirl or vortex flows and increased effective heat transfer area. The heat 
5 
transfer coefficients obtained are significantly higher than other heat exchangers for comparable 
fluid conditions, which leads to a much smaller thermal size¹. Because of their high heat transfer 
coefficients and true counter­flow arrangement, PHEs are able to operate under very close 
approach temperature conditions which results in up to 90% heat recovery¹. Another advantage 
of PHEs is due to the thin channels created between the two adjacent plates, where the volume of 
fluid contained in the heat exchanger is small. Therefore, it reacts to the process condition 
changes in a rather short time transient and is easier to control¹. Because plates with different 
surface patterns can be combined in a single PHE, different multi­pass arrangements can be 
configured which enables better optimization of operating conditions¹. 
In this experiment, in order to evaluate the overall heat transfer coefficient, we analyzed 
different transient heat operating conditions for plate heat exchangers at varying hot and cold 
flow rates. The heat exchanger transfer coefficient from batch heat operations, and under 
continuous operations was used to evaluate results that can be applied to scale­up calculations as 
in industry to transfer thermal energy in between mediums.  The Data logging VI was used to run 
the experiment, and the flow rates and approach temperature difference were adjusted to set 
operating conditions. 
 
Background & Theory   
 
Plate Heat Exchangers (PHE) promote well mixed flows along the plate with high 
convective heat transfer coefficients that result from the inter­corrugation flow path. The plates 
themselves confine fluid stream within the inter­plate flow channels. This enhances heat transfer 
6 
and the resultant heat transfer coefficient  is significantly higher for PHE than the traditional 
shell­and tube heat exchangers¹. 
The plate­pack in gasketed PHEs is easily disassembled and reassembled. The thin 
rectangular sheet metals plates are in between gaskets, assembled in a pack, and bolted in a 
frame. Heat is transferred from the hot fluid via the plate wall to the colder fluid in counter flow 
arrangement. The advantage of PHE compared to other highly compact exchangers include 
thermal flexible sizing of plates, easy cleaning necessary for the food industry as mentioned, and 
close approach temperature pure countercurrent­flow operations (~ ) that lead to highC1°
 
effectiveness of PHEs¹. 
For PHE, there are three primary design flow arrangements for hot and cold fluid 
arrangements that of parallel­flow, counter­flow, and multi­pass arrangement. Most common, is 
cocurrent and countercurrent configurations: 
 
     Figure 1:​ Cocurrent  Figure 2:​ Countercurrent 
Energy moves from hot fluid to a surface by convection, through the wall by thermal 
conduction, and then by convection from the surface to the cold fluid. Heat convection is forced 
within a heat exchanger and it is the convective transfer that governs its performances₅⁵. The 
7 
overall heat transfer (or rate) equation in heat exchangers is given by the energy balance across 
the separating wall: 
                   (1)C (T ) C (T ) AΔTQ = m c c h
out
− T c
in
= m h h h
in
− T c
out
= U LMTD  
 Q= Rate of heat transfer (duty), U= Overall heat transfer Coefficient, A= cross­sectionalhere,w  
Area for heat transfer,  = Log Mean Temperature DifferenceTΔ LMTD  
The Log Mean Temperature Difference (LMTD) is used to determine the temperature 
driving force for ​heat transfer​ in flow systems. LMTD is constant along the length, and used 
most notably with heat exchangers. 
     
        (2) 
 
,   are the bulk temperatures, or thehere, △T T )w 1 = ( h
out
− T c
in
T T )△ 2 = ( h
in
− T c
out
 
temperature difference for countercurrent as demonstrated in Figure 2. 
The overall heat transfer coefficient is determined for steady state and batch operations. 
Heat losses or gains of a whole exchanger with the environment can be neglected. The steady 
state operation equation to analyze the performance of the heat exchanger is 
                                                     (3)C dT dx AΔTm c / = U LMTD  
Overall Heat Transfer Coefficient can be estimated for different fluids as well as the type 
of heat exchanger system involved (PHE). Where the heat transfer coefficient, U, for water to 
water heat exchangers, can be a typical transfer coefficient of about 2000  ².W m K][ / 2
 
8 
For the Batch Heating balance equations, the heat balance in a well­mixed tank can be 
based on the cold side transfer, hot side transfer, heated by an external heat exchanger so the tank 
temperature is the cold side inlet,  . The process conditions and heat load are varyingT c
in
 
throughout the batch. 
In batch heating, the required duty is a function of the changing batch temperature 
 as a function of time. where   and   are result of hot and cold mass flowTΔ LMTD △T 1 △T 2  
rates, and differentiation of  , in consideration to the batch heat balance. Substituting in batchT c
in
 
heating,  , to Eq.(1), the temperature time derivative cancels out. The equation for batchTΔ LMTD  
as a function of time is given by: 
                                                  (4)n| | ]t− l
T −T (t)h
in
c
in
T −T (0)h
in
c
in = [
(K−1)ω ωc h
m(Kω −ω )h c
 
The constant, K, is graphed in a semi­log plot, where from the slope K can be determined to 
obtain the overall heat transfer coefficient using the following to determine U: 
                                                     (5)xp( ( ))K = e Cp
UA 1
mc
−
1
mh
 
 
Methods 
 
This experiment involved using a plate heat exchanger and the PHE99_MAIN.vi for both 
steady­state and batch operations. Three water tanks were used to test the plate heat exchanger in 
order to determine the overall heat transfer coefficient. Two cold water tanks were filled with tap 
water at about near room temperature. The lengths and widths were measured for both the cold 
water tanks as well as the initial water level. Both operations involved cycling hot and cold water 
throughout the system until a stable temperature has been reached. The Labview program 
9 
PHE99_MAIN.vi was used to automatically turn on the pumps and record the Hot­in, Cold­in, 
Hot­out, and Cold­out temperatures measured by the thermocouples positioned in the pipes. 
While the procedure to execute the experiment for each operation was similar, there were some 
differences in methods and use of equipment. 
For the steady­state operation, two trials were performed by keeping the hot water flow 
rate constant while varying the cold water flow rates. The cold water from one tank was moved 
to the other in order to produce a steady group of data during a certain time interval, in which 
there were minimal temperature fluctuations from a set thermocouple temperature reading. A 
“From” tank and a “To” tank were first determined from the two cold water tanks. The valves 
from the Cold­out stream and Cold­in stream were opened and closed respectively depending on 
the labeled tank. Lastly, the hot and cold flow rate valves were both adjusted to the desired level. 
The VI was then run and both hot water and cold water pumps were turned on and the 
temperature data was recorded. Once the plate heat exchanger has reached steady­state, the VI 
was stopped after 60 seconds of stable data. Between each trial, the water heater had to warm the 
tank up to nearly fully hot.  
Similar procedures were used for the batch operation, but this operation instead would be 
circulating the cold water back into the same tank it was pumped from. Only one cold water tank 
would be used whose level of water was not too high or too low. The depth of the water tank 
would be recorded and the Cold­out and Cold­in stream valves were adjusted accordingly. The 
rest of the procedure was the same as the steady­state operation except there had to be a 
motorized consistent stirring in the cold water tank to allow the water temperature to achieve 
10 
equilibrium before passing through the heat exchanger. The flow rates for both hot and cold 
water should not be adjusted so that there is as little human input as possible. 
Lastly the inline flow meter was calibrated to result in a good calibration curve. Error 
could increase with increasing temperatures resulting in an inaccurate reading. A temperature 
was established to run the calibration, and the “From tank was set to this particular temperature. 
The temperatures of both tanks were recorded as well as the initial water level in the chosen 
“To” tank. The cold water pump was switched on for one minute at a certain flow rate, and then 
the time elapsed and new water level was then recorded.  
After the experiment was finished, the water heater was turned down to the low setting 
and the labview program was closed and shut down, accordingly.The data from the steady­state 
and batch operations were then used to determine the overall heat transfer coefficient for this 
particular plate heat exchanger. 
Results 
 
The cold stream flow rate was measured and varied over different time intervals. A 
calibration graph was developed as shown in Figure 3. The hot stream was not used for 
calibration as it was assumed that information on one of the flow streams would provide 
identical information on the other. A slope of 1 on the calibration curve would indicate an ideal 
flow meter. A slope of 1.0792 indicates an error in the calculated flow rate of being 
approximately 8% higher than the flow rate displayed by the flow meter. 
 
11 
 
Figure 3​: Cold stream calibration for calculated flow rate vs. measured flow rate 
Temperature data from the batch operations were used to solve for the log­mean 
temperature differences according to Eqn. 2. T​H​
In​
 values were averaged over the duration of the 
trials due to minor fluctuations in boiler temperature. The negative values of the LMTD’s for the 
trials were plotted against time as shown in Figure 4. The slopes of the curves for each trial were 
extracted and used to solve for the value of K according to Eqn. 3. These K values were then 
used to solve for the overall heat transfer coefficient according to Eqn. 4. These results along 
with the parameters used in each equation are displayed in Table A1. The area of the heat 
exchanger plate used is .0321 m​2​
. This value is multiplied by 7 to account for the 7 plates in the 
heat exchanger. Note that the flow streams were adjusted by 7.92% due to calibration. 
 
12 
 
Figure 4:​ Plots of ­LMTD vs. time for batch trials 
Temperature data from the steady state operation was averaged during the duration of the 
trials due to minor fluctuations in temperature readings. The overall heat transfer coefficient was 
determined by Eqn 1. Because Eqn. U was calculated using both hot and cold stream 
information, which gives 2 values of U for each trial. This data along with temperature data is 
displayed in Table A2. 
 
Discussion 
 
Data for the overall heat transfer coefficient was produced using flow rates that had not 
been calibrated. Upon adjusting the flow rates, it was found that the overall heat transfer 
coefficient increased for steady state results and decreased for batch results. These values along 
with percent differences are displayed in Table A3 and A4, respectively. Noting that the flow 
rate calibration is only correcting error in the flow meter readings of our data, it was found that 
calibrating the mass flow rate will increase the value of U. This can be seen by analyzing Eq. 1. 
13 
The area, temperature differences and heat capacities are the same values as before, therefore an 
increase in the flow rate can only increase U. Hence, the overall heat transfer coefficient and the 
mass flow rate are directly proportional for this system. 
 The batch results require more analysis due to the solution technique for calculating U. 
When utilizing Eqn. 4, the values of the LHS are the same. The RHS has increased flow rates, 
therefore the value of K decreases after calibration. When using Eqn. 5, the calculated U value is 
smaller. This may be less intuitive than the steady state results because a misleading assumption 
may lead one to conclude that increasing flow rates increases the heat transfer rate. The 
temperature dynamics of the batch system may account for the results for increased hot and cold 
inlet flow rates. A higher hot stream inlet flow rate would increase the cold stream outlet 
temperature at a faster rate. This would also increase the cold stream inlet temperature at a faster 
rate, which is also flowing faster into the heat exchanger. Because all streams are approaching 
steady state temperatures at a faster rate, the overall heat transfer coefficient decreases as the 
temperature differences between the hot and cold streams decreases. 
The procedure for the flow rate calibration may have introduced error when developing 
the calibration. The container used to fill the water from the cold stream hose had approximate 
volume measurements and were not completely accurate. Although the volumes were 
approximate on the container, our group agreed that measurement of the original water tub 
intended for the procedure would introduce more error. This was concluded because the tub is 
rounded and warped and doesn’t accurately represent a rectangular prism. Thus, the dimensions 
of the tubs would introduce significant error in volume calculations. Calibration of the hot stream 
may introduce error if the hot stream equipment contains more fouling due to high temperature 
14 
streams. The thermal energy from the hot streams may loosen and distribute more particles 
through the pipes than the cold streams, however it was assumed that the cold and hot stream 
equipment was identical. 
The results for U for the batch and steady state operations were not precise and ranged 
from about 300 to 1900 W/m​2​
K. The largest source of error may be from assuming that U is a 
constant and not a function of temperature. This may be detrimental in calculations because 
depending on the temperature of the heat exchanger plates, U may be a higher or lower value. 
 The values of U​c​ and U​H ​for the steady state operation should theoretically be equal 
values in a closed system. Sources of error are limited due to the simplicity of the system. 
Temperatures read from the thermocouples may have introduced significant error because the 
thermocouples were not calibrated with manual thermometer readings of the water tanks. By not 
calibrating the thermocouples, temperature differences may actually be higher or lower, and will 
definitely affect the values of U. The small amount of data analyzed for the steady state system 
may not be enough to accurately represent the heat exchanger dynamics, and more trials would 
need to be conducted to get more accurate results.  
The batch operation results produced inconsistent U values of 1507, 298, 470 and 755 
W/m​2​
K. After taking a look at Table A1 and noting the differences in H​2​O mass for each trial, it 
may be concluded that the mass of H​2​O that went through the system had the greatest effect on 
calculating U. This can be seen by Eqn. 4, as mass of water in the denominator will affect the 
value of K, which will in turn affect the calculation of U in Eqn. 5. More trials would need to be 
conducted with more variance in flow rates to extract consistent K values, and hence calculate a 
better value of U.  
15 
Conclusion 
In conclusion, plate heat exchangers are used throughout a wide range of industries, such 
as dairy and other hygienic industries, as well as in sustainable energy conservation and 
biomedical industries. The purpose of this experiment was to determine the overall heat transfer 
coefficient under both the steady­state and batch operations while varying hot and cold water 
flow rates. It was found that for the steady­state operation, the overall heat transfer coefficient 
increased with increasing flow rates, which shows that the overall heat transfer coefficient and 
the mass flow rates are directly proportional. However for the batch operation, since all the 
streams were approaching steady state temperatures at a faster rate, the overall heat transfer 
coefficient decreases as the temperature differences between the hot and cold streams decreases. 
Furthermore, the flow rate calibration of the plate heat exchanger indicated an 8% discrepancy 
between the measured flow rate and the calculated flow rate. This indicates an error in the 
calibration of the flow meter.   
16 
References 
 
[1]  Wang, L; Bengt, S; Manglik, R.M., Plate Heat Exchangers: Design, Applications and 
Performance: Southampton: WIT, 2002. 
 
[2] ​Perry, R. H., Green, D. W. (Eds.): Perry's Chemical Engineers' Handbook, 7th edition, 
McGraw­Hill, 1997 , Section 11. 
 
[3] Pinto, M. J.; Gut, J.A.W “A Screening Method For the Optimal Selection Of Plate Heat 
Exchanger Configurations” ​Brazilian Journal of Chemical Engineering​ 27 May 2002: 433­439. 
Print.  
 
[4] Kakac, Sadik, and Hongtan Liu. ​Heat Exchangers Selection, Rating, and Thermal Design​. 
Boca Raton: CRC Press, 2002. Print. 
 
[5] Martinez, I; Heat Exchangers. ​Webserver.dmt​ [Online] ​1995­2015​, pp1­16 
http://webserver.dmt.upm.es/~isidoro/bk3/c12/Heat%20exchangers.pdf​ (accesssed January 28, 
2015). 
 
 
 
 
 
   
17 
Appendices 
 
Trial  T​H​
In​
 (K) 
  T​C​
In​
(K)  C​p​ (J/kg 
K) 
W​c 
(kg/s)  
W​h 
(kg/s) 
Mass 
H​2​O 
(kg) 
K  U 
(W/m​2
K) 
1  339.5  301.4  4184  .2045  .2052  27.63  1.0013  1507 
2  334.8  293.41  4184  .2454  .0954  15.90  .9027  297.7 
3  334.5  302.4  4184  .2045  .2052  8.327  1.0004  470.2 
4  332.7  300.3  4184  .1363  .2045  14.76  1.104  755.2 
 
Table A1:​ Batch data for determining overall heat transfer coefficient 
 
 
Trial  T​H​
In
 
(K) 
 
T​C​
In
(K) 
T​H​
Out
 
(K) 
 
T​C​
Out
(K) 
W​c 
(kg/s)  
W​h 
(kg/s) 
U​H 
(W/m​2​
K) 
U​C 
(W/m​2​
K) 
U  
% Diff. 
1  327.7  292.
4 
317.7  307.3  .1023  .2045  1557  1159  29.3 
2  335.9  291.
7 
323.0  310.0  .1363  .2045  1568  1761  11.6 
 
Table A2: ​Steady state data for determining overall heat transfer coefficient 
 
  Overall Heat Transfer Coefficient (W/m​2​
K) 
  U​C  U​H 
Trial  Uncalibrated  Calibrated  Uncalibrated  Calibrated 
1  1159  1251  1557  1680 
2  1761  1900  1568  1692 
 
 
Table A3:​ Calibrated steady state values of overall heat transfer coefficient  
 
 
18 
  Overall Heat Transfer Coefficient (W/m​2​
K)   
Trial  Uncalibrated  Calibrated  % Difference 
1  1556  1507  3.2 
2  300.5  297.7  .936 
3  474.9  470.3  .973 
4  1008  755.2  28.68 
 
Table A4:​ Calibrated batch values of overall heat transfer coefficient  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
19 
TO: NanoEngineering Department Faculty 
FROM: Brandon Sanchez, Saman Hadavand, Janet Mok, Liliana Busanez 
DATE: January 30, 2015  
SUBJECT: CVD 
  We propose to design a Chemical Vapor Deposition (CVD) reactor using the 
COMSOL simulation. CVD is a chemical process essential to micro­electronic device 
manufacturing. In this experiment we will conduct a simulation of a CVD reactor to understand 
the kinetics of silane deposition. To do this, multiple variables will be adjusted including: 
temperature, wafer packing density, pressure, inlet velocity, and mole fraction of hydrogen 
present in the inlet. We expect to see an increase in the rate of silane deposition as temperature 
increases. Furthermore, we believe that an increase in hydrogen mole fraction and inlet velocity 
will increase the rate of silane production and thus its deposition in the reactor.  If you have any 
concerns, please contact Saman Hadavand at (760) 884­9484. 
 
20 

Mais conteúdo relacionado

Mais procurados

Shell and tube heat exchanger design
Shell and tube heat exchanger designShell and tube heat exchanger design
Shell and tube heat exchanger designhossie
 
Plate and Frame Filter Press Lab 1 Report
Plate and Frame Filter Press Lab 1 ReportPlate and Frame Filter Press Lab 1 Report
Plate and Frame Filter Press Lab 1 ReportNicely Jane Eleccion
 
Shell & tube heat exchanger single fluid flow heat transfer
Shell & tube heat exchanger single fluid flow heat transferShell & tube heat exchanger single fluid flow heat transfer
Shell & tube heat exchanger single fluid flow heat transferVikram Sharma
 
Linear heat conduction
Linear heat conductionLinear heat conduction
Linear heat conductionAree Salah
 
Flash Distillation in Chemical and Process Engineering (Part 2 of 3)
Flash Distillation in Chemical and Process Engineering (Part 2 of 3)Flash Distillation in Chemical and Process Engineering (Part 2 of 3)
Flash Distillation in Chemical and Process Engineering (Part 2 of 3)Chemical Engineering Guy
 
Heat Exchangers
Heat ExchangersHeat Exchangers
Heat Exchangersmohkab1
 
Chemical reaction engineering
Chemical reaction engineeringChemical reaction engineering
Chemical reaction engineeringNurul Ain
 
Plate type heat exchanger
Plate type heat exchangerPlate type heat exchanger
Plate type heat exchangerPankaj Nishant
 
Lab cstr in series
Lab cstr in seriesLab cstr in series
Lab cstr in seriesAzlan Skool
 
Process design of heat exchanger
Process design of heat exchangerProcess design of heat exchanger
Process design of heat exchangerDila Shah
 
friction loss along a pipe
friction loss along a pipefriction loss along a pipe
friction loss along a pipeSaif al-din ali
 
Fluid Mechanic Lab - Bernoulli Equation
Fluid Mechanic Lab - Bernoulli EquationFluid Mechanic Lab - Bernoulli Equation
Fluid Mechanic Lab - Bernoulli EquationMuhammadSRaniYah
 
Characteristics of single pump and pumps in series and parallel use of indust...
Characteristics of single pump and pumps in series and parallel use of indust...Characteristics of single pump and pumps in series and parallel use of indust...
Characteristics of single pump and pumps in series and parallel use of indust...TOPENGINEERINGSOLUTIONS
 
Shell and Tube Heat Exchanger in heat Transfer
Shell and Tube Heat Exchanger in heat TransferShell and Tube Heat Exchanger in heat Transfer
Shell and Tube Heat Exchanger in heat TransferUsman Shah
 

Mais procurados (20)

Cooling Tower
Cooling TowerCooling Tower
Cooling Tower
 
Lab_report_CMT348_1322748
Lab_report_CMT348_1322748Lab_report_CMT348_1322748
Lab_report_CMT348_1322748
 
Shell and tube heat exchanger design
Shell and tube heat exchanger designShell and tube heat exchanger design
Shell and tube heat exchanger design
 
Plate and Frame Filter Press Lab 1 Report
Plate and Frame Filter Press Lab 1 ReportPlate and Frame Filter Press Lab 1 Report
Plate and Frame Filter Press Lab 1 Report
 
Radial heat conduction
Radial heat conductionRadial heat conduction
Radial heat conduction
 
Shell & tube heat exchanger single fluid flow heat transfer
Shell & tube heat exchanger single fluid flow heat transferShell & tube heat exchanger single fluid flow heat transfer
Shell & tube heat exchanger single fluid flow heat transfer
 
AGITATION Final Report
AGITATION Final ReportAGITATION Final Report
AGITATION Final Report
 
Linear heat conduction
Linear heat conductionLinear heat conduction
Linear heat conduction
 
Flash Distillation in Chemical and Process Engineering (Part 2 of 3)
Flash Distillation in Chemical and Process Engineering (Part 2 of 3)Flash Distillation in Chemical and Process Engineering (Part 2 of 3)
Flash Distillation in Chemical and Process Engineering (Part 2 of 3)
 
experiment Cstr 40l
experiment Cstr 40lexperiment Cstr 40l
experiment Cstr 40l
 
Heat Exchangers
Heat ExchangersHeat Exchangers
Heat Exchangers
 
Chemical reaction engineering
Chemical reaction engineeringChemical reaction engineering
Chemical reaction engineering
 
Plate type heat exchanger
Plate type heat exchangerPlate type heat exchanger
Plate type heat exchanger
 
Lab cstr in series
Lab cstr in seriesLab cstr in series
Lab cstr in series
 
Process design of heat exchanger
Process design of heat exchangerProcess design of heat exchanger
Process design of heat exchanger
 
exp.9 flow meter demonstration
exp.9 flow meter demonstrationexp.9 flow meter demonstration
exp.9 flow meter demonstration
 
friction loss along a pipe
friction loss along a pipefriction loss along a pipe
friction loss along a pipe
 
Fluid Mechanic Lab - Bernoulli Equation
Fluid Mechanic Lab - Bernoulli EquationFluid Mechanic Lab - Bernoulli Equation
Fluid Mechanic Lab - Bernoulli Equation
 
Characteristics of single pump and pumps in series and parallel use of indust...
Characteristics of single pump and pumps in series and parallel use of indust...Characteristics of single pump and pumps in series and parallel use of indust...
Characteristics of single pump and pumps in series and parallel use of indust...
 
Shell and Tube Heat Exchanger in heat Transfer
Shell and Tube Heat Exchanger in heat TransferShell and Tube Heat Exchanger in heat Transfer
Shell and Tube Heat Exchanger in heat Transfer
 

Destaque

Heat exchanger parallel flow
Heat exchanger parallel flowHeat exchanger parallel flow
Heat exchanger parallel flowAree Salah
 
Design Considerations for Plate Type Heat Exchanger
Design Considerations for Plate Type Heat ExchangerDesign Considerations for Plate Type Heat Exchanger
Design Considerations for Plate Type Heat ExchangerArun Sarasan
 
Heat exchangers and types
Heat exchangers and typesHeat exchangers and types
Heat exchangers and typesGopesh Chilveri
 
CVDLabReport
CVDLabReportCVDLabReport
CVDLabReportJanet Mok
 
Plate type heat exchanger by vikas saini
Plate type heat exchanger by vikas sainiPlate type heat exchanger by vikas saini
Plate type heat exchanger by vikas sainiVikas Saini
 
Heat exchanger curent flow
Heat exchanger curent flowHeat exchanger curent flow
Heat exchanger curent flowAree Salah
 
Hmt lab manual (heat and mass transfer lab manual)
Hmt lab manual (heat and mass transfer lab manual)Hmt lab manual (heat and mass transfer lab manual)
Hmt lab manual (heat and mass transfer lab manual)Awais Ali
 
ReverseOsmosisLabReport
ReverseOsmosisLabReportReverseOsmosisLabReport
ReverseOsmosisLabReportJanet Mok
 
EDIBON PRESENTATION - All EDIBON Products and Facilities
EDIBON PRESENTATION - All EDIBON Products and FacilitiesEDIBON PRESENTATION - All EDIBON Products and Facilities
EDIBON PRESENTATION - All EDIBON Products and FacilitiesEDIBON
 
Final Photocatalysis Lab Report (1) (1)
Final Photocatalysis Lab Report (1) (1)Final Photocatalysis Lab Report (1) (1)
Final Photocatalysis Lab Report (1) (1)Henry Hsieh
 
Liposome Nanoparticles Lab Report
Liposome Nanoparticles Lab ReportLiposome Nanoparticles Lab Report
Liposome Nanoparticles Lab ReportAdam Rice
 
FINAL_201 Thursday A-3 Convective and Radiant Heat Transfer
FINAL_201 Thursday A-3 Convective and Radiant Heat TransferFINAL_201 Thursday A-3 Convective and Radiant Heat Transfer
FINAL_201 Thursday A-3 Convective and Radiant Heat TransferKaylene Kowalski
 
Heat exchanger design project
Heat exchanger design project Heat exchanger design project
Heat exchanger design project Chinedu Isiadinso
 

Destaque (20)

Heat exchangers
Heat exchangersHeat exchangers
Heat exchangers
 
Heat exchanger parallel flow
Heat exchanger parallel flowHeat exchanger parallel flow
Heat exchanger parallel flow
 
95396211 heat-transfer-lab-manual
95396211 heat-transfer-lab-manual95396211 heat-transfer-lab-manual
95396211 heat-transfer-lab-manual
 
Heat Exchanger
Heat ExchangerHeat Exchanger
Heat Exchanger
 
Design Considerations for Plate Type Heat Exchanger
Design Considerations for Plate Type Heat ExchangerDesign Considerations for Plate Type Heat Exchanger
Design Considerations for Plate Type Heat Exchanger
 
Heat exchangers and types
Heat exchangers and typesHeat exchangers and types
Heat exchangers and types
 
CVDLabReport
CVDLabReportCVDLabReport
CVDLabReport
 
Plate type heat exchanger by vikas saini
Plate type heat exchanger by vikas sainiPlate type heat exchanger by vikas saini
Plate type heat exchanger by vikas saini
 
Heat exchanger curent flow
Heat exchanger curent flowHeat exchanger curent flow
Heat exchanger curent flow
 
Hmt lab manual (heat and mass transfer lab manual)
Hmt lab manual (heat and mass transfer lab manual)Hmt lab manual (heat and mass transfer lab manual)
Hmt lab manual (heat and mass transfer lab manual)
 
ReverseOsmosisLabReport
ReverseOsmosisLabReportReverseOsmosisLabReport
ReverseOsmosisLabReport
 
Heat exchanger
Heat exchanger Heat exchanger
Heat exchanger
 
Heat exchangers
Heat exchangersHeat exchangers
Heat exchangers
 
EDIBON PRESENTATION - All EDIBON Products and Facilities
EDIBON PRESENTATION - All EDIBON Products and FacilitiesEDIBON PRESENTATION - All EDIBON Products and Facilities
EDIBON PRESENTATION - All EDIBON Products and Facilities
 
Final Photocatalysis Lab Report (1) (1)
Final Photocatalysis Lab Report (1) (1)Final Photocatalysis Lab Report (1) (1)
Final Photocatalysis Lab Report (1) (1)
 
Mfg lab manual
Mfg lab manualMfg lab manual
Mfg lab manual
 
Liposome Nanoparticles Lab Report
Liposome Nanoparticles Lab ReportLiposome Nanoparticles Lab Report
Liposome Nanoparticles Lab Report
 
FINAL_201 Thursday A-3 Convective and Radiant Heat Transfer
FINAL_201 Thursday A-3 Convective and Radiant Heat TransferFINAL_201 Thursday A-3 Convective and Radiant Heat Transfer
FINAL_201 Thursday A-3 Convective and Radiant Heat Transfer
 
Heat exchanger design project
Heat exchanger design project Heat exchanger design project
Heat exchanger design project
 
Plate Heat Exchangers
Plate Heat ExchangersPlate Heat Exchangers
Plate Heat Exchangers
 

Semelhante a Plate Heat Exchanger Report Analyzes Effect of Flow Rates on Coefficient

Wenbo_thesis_A Numerical Study of Catalytic Light-Off Response
Wenbo_thesis_A Numerical Study of Catalytic Light-Off ResponseWenbo_thesis_A Numerical Study of Catalytic Light-Off Response
Wenbo_thesis_A Numerical Study of Catalytic Light-Off Response文博 贾
 
IRJET- Experimental Investigation of Heat Transfer Study in Rectangle Type St...
IRJET- Experimental Investigation of Heat Transfer Study in Rectangle Type St...IRJET- Experimental Investigation of Heat Transfer Study in Rectangle Type St...
IRJET- Experimental Investigation of Heat Transfer Study in Rectangle Type St...IRJET Journal
 
SINGLE-PHASE FLOW AND FLOW BOILING OF WATER IN HORIZONTAL RECTANGULAR MICROCH...
SINGLE-PHASE FLOW AND FLOW BOILING OF WATER IN HORIZONTAL RECTANGULAR MICROCH...SINGLE-PHASE FLOW AND FLOW BOILING OF WATER IN HORIZONTAL RECTANGULAR MICROCH...
SINGLE-PHASE FLOW AND FLOW BOILING OF WATER IN HORIZONTAL RECTANGULAR MICROCH...Mirmanto
 
NUMERICAL ANALYSIS TO OPTIMIZE THE HEAT TRANSFER RATE OF TUBE-IN-TUBE HELICAL...
NUMERICAL ANALYSIS TO OPTIMIZE THE HEAT TRANSFER RATE OF TUBE-IN-TUBE HELICAL...NUMERICAL ANALYSIS TO OPTIMIZE THE HEAT TRANSFER RATE OF TUBE-IN-TUBE HELICAL...
NUMERICAL ANALYSIS TO OPTIMIZE THE HEAT TRANSFER RATE OF TUBE-IN-TUBE HELICAL...Netha Jashuva
 
IRJET- Double Pipe Heat Exchanger with Spiral Flow
IRJET- Double Pipe Heat Exchanger with Spiral FlowIRJET- Double Pipe Heat Exchanger with Spiral Flow
IRJET- Double Pipe Heat Exchanger with Spiral FlowIRJET Journal
 
Heat transfer enhancement of nano fluids –a review
Heat transfer enhancement of nano fluids –a reviewHeat transfer enhancement of nano fluids –a review
Heat transfer enhancement of nano fluids –a revieweSAT Publishing House
 
Project_work_-_1st_review_Presentation_dt._28-12-2021.pptx
Project_work_-_1st_review_Presentation_dt._28-12-2021.pptxProject_work_-_1st_review_Presentation_dt._28-12-2021.pptx
Project_work_-_1st_review_Presentation_dt._28-12-2021.pptxTAMILSELVANNATARAJAN3
 
IRJET- Heat Exchanger based on Nano Fluid
IRJET- Heat Exchanger based on Nano FluidIRJET- Heat Exchanger based on Nano Fluid
IRJET- Heat Exchanger based on Nano FluidIRJET Journal
 
IRJET- Numerical Investigation on the Heat Transfer Characteristics of Alumin...
IRJET- Numerical Investigation on the Heat Transfer Characteristics of Alumin...IRJET- Numerical Investigation on the Heat Transfer Characteristics of Alumin...
IRJET- Numerical Investigation on the Heat Transfer Characteristics of Alumin...IRJET Journal
 
IRJET- Numerical Investigation of the Forced Convection using Nano Fluid
IRJET-  	  Numerical Investigation of the Forced Convection using Nano FluidIRJET-  	  Numerical Investigation of the Forced Convection using Nano Fluid
IRJET- Numerical Investigation of the Forced Convection using Nano FluidIRJET Journal
 
IRJET- Thermal Analysis of Corrugated Plate Heat Exchanger by using Ansys...
IRJET-  	  Thermal Analysis of Corrugated Plate Heat Exchanger by using Ansys...IRJET-  	  Thermal Analysis of Corrugated Plate Heat Exchanger by using Ansys...
IRJET- Thermal Analysis of Corrugated Plate Heat Exchanger by using Ansys...IRJET Journal
 
IRJET- Development and Calibration of Modified Parallel Plate Method for Meas...
IRJET- Development and Calibration of Modified Parallel Plate Method for Meas...IRJET- Development and Calibration of Modified Parallel Plate Method for Meas...
IRJET- Development and Calibration of Modified Parallel Plate Method for Meas...IRJET Journal
 
Fvm Analysis for Thermal and Hydraulic Behaviour of Circular Finned Mpfhs by ...
Fvm Analysis for Thermal and Hydraulic Behaviour of Circular Finned Mpfhs by ...Fvm Analysis for Thermal and Hydraulic Behaviour of Circular Finned Mpfhs by ...
Fvm Analysis for Thermal and Hydraulic Behaviour of Circular Finned Mpfhs by ...IJERA Editor
 
Experimental Investigation on Heat Transfer Analysis in a Cross flow Heat Ex...
Experimental Investigation on Heat Transfer Analysis in a Cross  flow Heat Ex...Experimental Investigation on Heat Transfer Analysis in a Cross  flow Heat Ex...
Experimental Investigation on Heat Transfer Analysis in a Cross flow Heat Ex...IJMER
 
THE EFFECT OF GEOMETRICAL PARAMETERS ON HEAT TRANSFER AND HYDRO DYNAMICAL CHA...
THE EFFECT OF GEOMETRICAL PARAMETERS ON HEAT TRANSFER AND HYDRO DYNAMICAL CHA...THE EFFECT OF GEOMETRICAL PARAMETERS ON HEAT TRANSFER AND HYDRO DYNAMICAL CHA...
THE EFFECT OF GEOMETRICAL PARAMETERS ON HEAT TRANSFER AND HYDRO DYNAMICAL CHA...ijmech
 
IRJET- Experimental Investigation of Aluminium-Water Nano Fluid
IRJET- Experimental Investigation of Aluminium-Water Nano FluidIRJET- Experimental Investigation of Aluminium-Water Nano Fluid
IRJET- Experimental Investigation of Aluminium-Water Nano FluidIRJET Journal
 
Heat Conduction Laboratory
Heat Conduction Laboratory Heat Conduction Laboratory
Heat Conduction Laboratory Hail Munassar
 
Experimental Investigation of Brazed Plate Heat Exchanger for Small Temperatu...
Experimental Investigation of Brazed Plate Heat Exchanger for Small Temperatu...Experimental Investigation of Brazed Plate Heat Exchanger for Small Temperatu...
Experimental Investigation of Brazed Plate Heat Exchanger for Small Temperatu...IRJET Journal
 
A Review on Nanofluids Thermal Properties Determination Using Intelligent Tec...
A Review on Nanofluids Thermal Properties Determination Using Intelligent Tec...A Review on Nanofluids Thermal Properties Determination Using Intelligent Tec...
A Review on Nanofluids Thermal Properties Determination Using Intelligent Tec...IJSRD
 

Semelhante a Plate Heat Exchanger Report Analyzes Effect of Flow Rates on Coefficient (20)

Wenbo_thesis_A Numerical Study of Catalytic Light-Off Response
Wenbo_thesis_A Numerical Study of Catalytic Light-Off ResponseWenbo_thesis_A Numerical Study of Catalytic Light-Off Response
Wenbo_thesis_A Numerical Study of Catalytic Light-Off Response
 
IRJET- Experimental Investigation of Heat Transfer Study in Rectangle Type St...
IRJET- Experimental Investigation of Heat Transfer Study in Rectangle Type St...IRJET- Experimental Investigation of Heat Transfer Study in Rectangle Type St...
IRJET- Experimental Investigation of Heat Transfer Study in Rectangle Type St...
 
SINGLE-PHASE FLOW AND FLOW BOILING OF WATER IN HORIZONTAL RECTANGULAR MICROCH...
SINGLE-PHASE FLOW AND FLOW BOILING OF WATER IN HORIZONTAL RECTANGULAR MICROCH...SINGLE-PHASE FLOW AND FLOW BOILING OF WATER IN HORIZONTAL RECTANGULAR MICROCH...
SINGLE-PHASE FLOW AND FLOW BOILING OF WATER IN HORIZONTAL RECTANGULAR MICROCH...
 
NUMERICAL ANALYSIS TO OPTIMIZE THE HEAT TRANSFER RATE OF TUBE-IN-TUBE HELICAL...
NUMERICAL ANALYSIS TO OPTIMIZE THE HEAT TRANSFER RATE OF TUBE-IN-TUBE HELICAL...NUMERICAL ANALYSIS TO OPTIMIZE THE HEAT TRANSFER RATE OF TUBE-IN-TUBE HELICAL...
NUMERICAL ANALYSIS TO OPTIMIZE THE HEAT TRANSFER RATE OF TUBE-IN-TUBE HELICAL...
 
IRJET- Double Pipe Heat Exchanger with Spiral Flow
IRJET- Double Pipe Heat Exchanger with Spiral FlowIRJET- Double Pipe Heat Exchanger with Spiral Flow
IRJET- Double Pipe Heat Exchanger with Spiral Flow
 
Heat transfer enhancement of nano fluids –a review
Heat transfer enhancement of nano fluids –a reviewHeat transfer enhancement of nano fluids –a review
Heat transfer enhancement of nano fluids –a review
 
Project_work_-_1st_review_Presentation_dt._28-12-2021.pptx
Project_work_-_1st_review_Presentation_dt._28-12-2021.pptxProject_work_-_1st_review_Presentation_dt._28-12-2021.pptx
Project_work_-_1st_review_Presentation_dt._28-12-2021.pptx
 
IRJET- Heat Exchanger based on Nano Fluid
IRJET- Heat Exchanger based on Nano FluidIRJET- Heat Exchanger based on Nano Fluid
IRJET- Heat Exchanger based on Nano Fluid
 
IRJET- Numerical Investigation on the Heat Transfer Characteristics of Alumin...
IRJET- Numerical Investigation on the Heat Transfer Characteristics of Alumin...IRJET- Numerical Investigation on the Heat Transfer Characteristics of Alumin...
IRJET- Numerical Investigation on the Heat Transfer Characteristics of Alumin...
 
IRJET- Numerical Investigation of the Forced Convection using Nano Fluid
IRJET-  	  Numerical Investigation of the Forced Convection using Nano FluidIRJET-  	  Numerical Investigation of the Forced Convection using Nano Fluid
IRJET- Numerical Investigation of the Forced Convection using Nano Fluid
 
IRJET- Thermal Analysis of Corrugated Plate Heat Exchanger by using Ansys...
IRJET-  	  Thermal Analysis of Corrugated Plate Heat Exchanger by using Ansys...IRJET-  	  Thermal Analysis of Corrugated Plate Heat Exchanger by using Ansys...
IRJET- Thermal Analysis of Corrugated Plate Heat Exchanger by using Ansys...
 
IRJET- Development and Calibration of Modified Parallel Plate Method for Meas...
IRJET- Development and Calibration of Modified Parallel Plate Method for Meas...IRJET- Development and Calibration of Modified Parallel Plate Method for Meas...
IRJET- Development and Calibration of Modified Parallel Plate Method for Meas...
 
Fvm Analysis for Thermal and Hydraulic Behaviour of Circular Finned Mpfhs by ...
Fvm Analysis for Thermal and Hydraulic Behaviour of Circular Finned Mpfhs by ...Fvm Analysis for Thermal and Hydraulic Behaviour of Circular Finned Mpfhs by ...
Fvm Analysis for Thermal and Hydraulic Behaviour of Circular Finned Mpfhs by ...
 
Experimental Investigation on Heat Transfer Analysis in a Cross flow Heat Ex...
Experimental Investigation on Heat Transfer Analysis in a Cross  flow Heat Ex...Experimental Investigation on Heat Transfer Analysis in a Cross  flow Heat Ex...
Experimental Investigation on Heat Transfer Analysis in a Cross flow Heat Ex...
 
THE EFFECT OF GEOMETRICAL PARAMETERS ON HEAT TRANSFER AND HYDRO DYNAMICAL CHA...
THE EFFECT OF GEOMETRICAL PARAMETERS ON HEAT TRANSFER AND HYDRO DYNAMICAL CHA...THE EFFECT OF GEOMETRICAL PARAMETERS ON HEAT TRANSFER AND HYDRO DYNAMICAL CHA...
THE EFFECT OF GEOMETRICAL PARAMETERS ON HEAT TRANSFER AND HYDRO DYNAMICAL CHA...
 
IRJET- Experimental Investigation of Aluminium-Water Nano Fluid
IRJET- Experimental Investigation of Aluminium-Water Nano FluidIRJET- Experimental Investigation of Aluminium-Water Nano Fluid
IRJET- Experimental Investigation of Aluminium-Water Nano Fluid
 
Heat Conduction Laboratory
Heat Conduction Laboratory Heat Conduction Laboratory
Heat Conduction Laboratory
 
02.jnae10085
02.jnae1008502.jnae10085
02.jnae10085
 
Experimental Investigation of Brazed Plate Heat Exchanger for Small Temperatu...
Experimental Investigation of Brazed Plate Heat Exchanger for Small Temperatu...Experimental Investigation of Brazed Plate Heat Exchanger for Small Temperatu...
Experimental Investigation of Brazed Plate Heat Exchanger for Small Temperatu...
 
A Review on Nanofluids Thermal Properties Determination Using Intelligent Tec...
A Review on Nanofluids Thermal Properties Determination Using Intelligent Tec...A Review on Nanofluids Thermal Properties Determination Using Intelligent Tec...
A Review on Nanofluids Thermal Properties Determination Using Intelligent Tec...
 

Plate Heat Exchanger Report Analyzes Effect of Flow Rates on Coefficient