SlideShare uma empresa Scribd logo
1 de 8
Baixar para ler offline
34

ELEMENTOS DE ÁLGEBRA LINEAR
CAPÍTULO 4
BASE – DIMENSÃO - COORDENADAS
1 BASE
Definição: Seja V um espaço vetorial finitamente gerado. Uma base de V é um subconjunto finito

B ⊂ V satisfazendo:
a) B gera V, ou seja, o subespaço gerado por B é igual a V.
b) B é LI.
Exemplo (1): Mostre que B = {(1,2,3), (0,1,2), (1,−1,2)} é base do ℜ3.
Solução: Para verificar o item (a) da definição, vamos mostrar que qualquer vetor do ℜ3 se escreve
3

como combinação linear de B. Seja v = ( x , y, z ) ∈ ℜ . Então, existem escalares a, b e
c ∈ℜ tais que:

x =a+c


v = ( x , y, z) = a (1,2,3) + b(0,1,2) + c(1,−1,2) ⇒  y = 2a + b − c . Resolvendo
z = 3a + 2b + 2c

4x + 2y − z

a=

5

− 7 x − y + 3z

o sistema teremos: b =
, mostrando que o sistema tem solução. Logo,
5

 c = x − 2y + z

5

B gera o ℜ3. Para mostrar o item (b), lembrando que no ℜ3, se três vetores não são

1
coplanares, então eles são LI. Daí é só mostrar que o determinante 0

2 3
1 2 ≠ 0.

1 −1 2
Portanto B é base do ℜ3.

O espaço vetorial nulo V = {0} não possui base, pois o zero é LD. Todos os demais
espaços vetoriais possuem infinitas bases. De todas estas infinitas bases, uma delas é considerada a
mais simples e chamada de Base Canônica. A base canônica de todo espaço vetorial supõe-se
35

conhecida, elas, geralmente, não são dadas nos exercícios. Portanto, vamos listar as base canônicas
do principais espaços vetoriais. São elas:
•

ℜ

⇒ {1}

•

ℜ2

⇒ {(1,0), (0,1)}

•

ℜ3

⇒ {(1,0,0), (0,1,0), (0,0,1)}

•

ℜn

⇒ {(1,0,...,0), (0,1,...,0),..., (0,0,...,1)}

•

M 2 x 2 (ℜ)

⇒ 


•

Pn (ℜ)

⇒ 1, t , t ,..., t

 1 0   0 1   0 0   0 0 
, 
, 
, 





 0 0   0 0   1 0   0 1 

{

2

n

}

Teorema da Invariância: Seja V um espaço vetorial finitamente gerado. Então, qualquer uma de
suas bases têm o mesmo número de vetores.
► Processo Prático para obter uma base de um subespaço do ℜn

Este processo consiste em colocar os vetores candidatos a base do subespaço, dispostos
como linhas de uma matriz e escaloná-la. Depois de escalonada, retirar todas as linhas nulas. As
linhas restantes serão vetores LI e formarão a base procurada.
Exemplo (2): Seja W um subespaço do

ℜ4 que possui o seguinte sistema de geradores

[(2,1,1,0), (1,0,1,2), (0,−1,1,4), (3,0,3,6)] . Determine uma base para W.
Solução: Vamos aplicar o processo acima:

1 0

1
2
0 −1

3 0


1 2

1 0  − 2 L1 + L 2
→
1 4  −3L1 + L 4

3 6


1
2
1 0


0
1 − 1 − 4  1L 2 + L3

→
0 −1 1
4


0 0 0
0



1

0
0

0


0
1
2

1 −1 − 4
0 0
0

0 0
0


Retiradas as linhas nulas, temos que B = {(1,0,1,2), (0,1,−1,−4)} é base de W.

Definição: Um conjunto de vetores {v1 , v 2 ,..., v n } ⊂ V é dito LI-Maximal se:
a) {v1 , v 2 ,..., v n } é LI
b) {v1 , v 2 ,..., v n , w} é LD, ∀w ∈ V

.
36

Proposição (1): Seja V um espaço vetorial. Um conjunto de vetores {v1 , v 2 ,..., v n } é base de V
se for LI-Maximal.
2 DIMENSÃO
Definição: Seja V um espaço vetorial finitamente gerado. Denomina-se Dimensão do espaço V,
denotado por dim(V), a quantidade de vetores de qualquer uma de suas bases.
OBS: Se o número de vetores de uma base de um espaço vetorial é finito, então dizemos que o
espaço é de dimensão finita. Os espaços de dimensão infinita não serão objetivos do nossos
estudos.

Assim, analisando as bases canônicas anteriormente listadas, podemos concluir:
•

dim(ℜ) = 1; dim(ℜ 2 ) = 2; dim(ℜ) 3 = 3;..., dim(ℜ n ) = n

•

dim( M 2 x 2 ) = 4 = 2 x 2

•

dim( M mxn ) = m ⋅ n

•

dim( Pn ) = n + 1

•

dim({0}) = 0

Teorema do Completamento: Em um espaço vetorial de dimensão finita, sempre podemos
completar um conjunto LI de maneira a obter uma base.
Proposição (2): Seja W ⊆ V um subespaço de V. Se dim( W ) = dim(V ) então W = V .

Proposição (3): Seja V um espaço vetorial e B = {v1 , v 2 ,..., v n } uma de suas bases. Então, todo
elemento de V se escreve de maneira única como combinação linear dos vetores
da base B.
Teorema (1): Sejam U e W subespaços de um espaço vetorial V. Então:

dim( U + W ) = dim( U) + dim( W ) − dim(U ∩ W ) .
Teorema (2): Seja V um espaço vetorial tal que dim(V ) = n . Então:
a) Qualquer conjunto com n+1 ou mais vetores é LD.
37

b) Qualquer conjunto LI com n vetores é base de V

4

Exemplo (3): Seja W = {( x , y, z, t ) ∈ ℜ / x − 2 y + t = 0} . Determine a dimensão de W.
Solução: Para determinar a dimensão de W é necessário determinar uma de suas bases. De W
temos que: x − 2 y + t = 0 ⇒ x = 2 y − t . Então todo vetor de W é da forma

(2 y − t , y, z, t ), ∀y, z, t ∈ ℜ . Determinando um sistema de geradores para W:
(2 y − t , y, z, t ) = y(2,1,0,0) + z(0,0,1,0) + t (−1,0,0,1) . O conjunto formado pelos
vetores S = {( 2,1,0,0), (0,0,1,0), ( −1,0,0,1)} é um sistema de geradores de W.
Aplicando o processo prático de obtenção de base teremos:

 − 1 0 0 1 2 L + L  − 1 0 0 1

 1 2

2 1 0 0  →  0 1 0 2  . A matriz está escalonada e não apresenta

 0 0 1 0
 0 0 1 0




nenhuma linha nula. Logo, os vetores são LI e constituem uma base de W, ou seja, S é
base de W. Portanto, dim( W ) = 3 .

OBS: Um erro muito comum entre os alunos é confundir a quantidade de coordenadas de um vetor,
com a quantidade de vetores de uma base. Veja o exemplo (3). A base de W é

S = {( 2,1,0,0), (0,0,1,0), (−1,0,0,1)} ,

cujos

vetores

têm

4

2

coordenadas,

mas

3

dim( W ) = 3 , porque na base S temos 3 vetores.
2

3

2

3

Exemplo (4): Seja U = [1 − 2 t , 2 t + t − t ,1 + t − t , 2 − 6t − t + t ] . Qual é a dimensão
de U?
Solução: O enunciado diz que o subespaço U ⊂ P3 (ℜ) é gerado pelos vetores dados. Para
determinar uma base de U, podemos usar o processo prático, escrevendo uma matriz com
os coeficientes dos polinômios dados.

0
0
0
0
0
1 −2
1 −2
1 −2 0






2
1 − 1 −1L1 + L3  0
2
1 − 1 −1L 2 + L3  0
2 1 − 1
0
Então: 
→
→
1
0
1 − 1 − 2 L1 + L 4  0
2
1 − 1 1L 2 + L 4  0
0 0
0





 2 − 6 − 1 1

0 − 2 −1
0
1
0 0
0






Retiradas as linhas nulas, os polinômios restantes forma uma base de U, ou seja,

B = {1 − 2 t , 2 + t 2 − t 3 } é base de U. Portanto, dim( U) = 2 .
38

3

Exemplo (5): Sejam U e W, subespaços do ℜ3, onde U = {( x , y, z) ∈ ℜ / x − 2 y + z = 0} e

W = {( x , y, z) ∈ ℜ 3 / 3x + 2 y + z = 0} . Determine uma base e a dimensão para
U + W e U ∩ W . O ℜ3 = U ⊕ W ?
Solução: Primeiro, vamos determinar uma base e a dimensão para U e W. Podemos escrever:

U = {( 2 y − z, y, z), ∀y, z ∈ ℜ}

⇒

(2 y − z, y, z) = y(2,1,0) + z(−1,0,1)

⇒

B U = {(2,1,0), (−1,0,1)} é base de U ⇒ dim( U) = 2
W = {( x , y,−3x − 2 y), ∀x , y ∈ ℜ} ⇒ ( x , y,−3x − 2 y) = x (1,0,−3) + y(0,1,−2)
⇒ B W = {(1,0,−3), (0,1,−2)} é base de W ⇒ dim( W ) = 2
a) Para determinar uma base de U+W, devemos obter um sistema de geradores fazendo a
união da base de U com a base de W e usar o processo prático de obtenção de base.
Então, seja S = B U ∪ B W = {( 2,1,0), ( −1,0,1), (1,0,−3), (0,1,−2)} o sistema de
geradores de U+W. Aplicando o processo teremos:

 1

 0
 −1

 2


− 3
1


1 − 2  1L1 + L3  0
→
0
1 − 2 L1 + L 4  0


0
1
0



0

− 3
1


1 − 2  −1L2 + L 4  0
→ 
0 − 2
0


0
1
6


0

− 3
1


1 − 2  4 L3 + L 4  0
→ 
0 − 2
0


0
0
8


0

− 3

1 − 2
.
0 − 2

0
0

0

B U + W = {(1,0,−3), (0,1,−2), (0,0,−2)} é base de U+W ⇒ dim( U + W ) = 3 .
b) Pelo Teorema (1):

dim( U + W ) = dim( U) + dim( W ) − dim(U ∩ W ) ⇒

3 = 2 + 2 − dim( U ∩ W ) ⇒ dim( U ∩ W ) = 1 . Portanto, sua base tem que conter
apenas um vetor comum a U e a W. Para determinar estes vetor, que está na
interseção, fazemos:

 2a − b = α

( x , y, z) = a (2,1,0) + b(−1,0,1) = α (1,0,−3) + β(0,1,−2) ⇒ 
a =β ⇒
b = −3α − 2β

substituindo a 1ª e a 2ª equações na 3ª, teremos: b = −3( 2a − b) − 2a ⇒ b = 4a .
Então: ( x , y, z ) = a ( 2,1,0) + 4a ( −1,0,1) = a ( −2,1,4) ⇒ B U ∩ W = {( −2,1,4)} é
base de U ∩ W .
c) O ℜ3 não é soma direta de U com W porque dim( U ∩ W ) = 1 ≠ 0 ⇒

U ∩ W ≠ {0}
39

Exemplo (6): Determine uma base e a dimensão para o espaço das soluções do sistema linear

x − y − z − t = 0

L :  2x + y + t = 0

z−t =0

Solução:

Como

o

sistema

L

é

SPI,

ele

possui

infinitas

soluções

do

tipo

S = {( x , y, z, t ), ∀x , y, z, t ∈ ℜ} . Este conjunto de soluções forma um espaço vetorial.
Vamos achar a solução geral do sistema L. Resolvendo o sistema, teremos:

S = {( x ,−5x ,3x ,3x ), ∀x ∈ ℜ} . Então: B = {(1,−5,3,3)} é base de S ⇒ dim(S) = 1 .

3 COORDENADAS DE UM VETOR

A partir de agora, trabalharemos, sempre, com bases ordenadas. Uma base ordenada é
aquela em que as posições dos vetores estão fixadas, ou seja, dada uma base qualquer

B = {v1 , v 2 ,..., v n } , então, v1 sempre será o primeiro vetor, v2 sempre será o segundo, assim por
diante até o último que sempre será vn.
Definição: Sejam V um espaço vetorial e B = {v1 , v 2 ,..., v n } uma de suas bases ordenadas.
Qualquer vetor v ∈ V se escreve, de maneira única, como combinação linear da base
B. Existem escalares a 1 , a 2 ,..., a n ∈ K , tais que v = a 1 v1 + a 2 v 2 + ... + a n v n .
Assim, os escalares a 1 , a 2 ,..., a n são chamados de coordenadas do vetor v em relação

 a1 
 
a2 
a base B, denotado por: [ v] B =  
...
 
a 
 n
Exemplo (7): Determine as coordenadas do vetor v = ( −1,5,−8) em relação:
a) Base canônica

b) B = {(1,1,0), ( 2,01), ( 2,−1,1)}

Solução:
a) A base canônica do ℜ3 é C = {(1,0,0), (0,1,0), (0,0,1)} . Então:
40

a = −1
 − 1
 

v = (−1,5,−8) = a (1,0,0) + b(0,1,0) + c(0,0,1) ⇒  b = 5 ⇒ [ v]C =  5 
 − 8
c = −8

 
b) Escrevendo v como combinação da base B teremos:

a + 2b + 2c = −1
 15 



v = (−1,5,−8) = a (1,1,0) + b(2,0,1) + c(2,−1,1) ⇒ 
a − c = 5 ⇒ [ v]B =  − 18 
 10 

b + c = −8




OBS: Note que, as coordenadas de qualquer vetor (de qualquer espaço vetorial) em relação à base
canônica do espaço é ele mesmo (ver exemplo (7), item (a)) . Portanto, se nada for dito, as
coordenadas de um vetor, vêm sempre dadas em relação à base canônica do espaço.

Exemplo (8): Determine as coordenadas do vetor p( t ) = 2 + 4 t + t

2

em relação a base

B = {−2,1 − t ,1 + 2 t − 3t 2 }
Solução: Vamos escrever p(t) com combinação linear dos vetores da base B. Então:

p( t ) = 2 + 4 t + t 2 = a (−2) + b(1 − t ) + c(1 + 2 t − 3t 2 ) ⇒
2 + 4 t + t 2 = (−2a + b + c) + (−b + 2c) t + (−3c) t 2

 − 7
 2
[p( t )]B =  − 14 
3
 − 1
 3

Exercícios Propostos

⇒

2 = −2a + b + c

 4 = − b + 2c

1 = −3c


⇒
41
2

3

1) Seja W = {a o + a 1 t + a 2 t + a 3 t ∈ P3 (ℜ) / a o = 2a 2 − 5a 3 e a 1 = a 2 − 4a 3 } . Determine uma base e a dimensão de W.

Resp: B = {2 + t + t , − 5 − 4 t + t } ⇒ dim( W ) = 2
2

3

2) Determine uma base e a dimensão para W+U e W∩U, onde:

W = {( x , y, z, t ) ∈ ℜ 4 / x − 2 y = 0 e z = −3t}
U = {( x , y, z, t ) ∈ ℜ 4 / 2 x − y + 2z − t = 0}
Resp: B W + U = {(1,2,0,0), (0,−1,0,1), (0,0,−3,1), (0,0,0,−3)} ⇒ dim( W + U) = 4

 14 7

B W ∩ U =  , ,−3,1 ⇒ dim( W ∩ U) = 1

 3 3
 a b 

 ∈ M 2 x 2 (ℜ) / a = 2b e d = −c . Determine uma base e a dimensão de

 c d 


3) Seja W = 


W e estenda a base de W para obter uma base de M 2 x 2 (ℜ) .

0 
 2 1   0
 2 1   0 0   1 0   0 0 
, 
 e B M 2 x 2 = 

 0 0 ,  1 − 1,  0 0 ,  0 1 





 0 0   1 − 1 







Resp: B W = 


 x + y + 2z + 2 t
 − 3x + 3y − z + t

4) Determine um base e a dimensão do espaço das soluções do sistema 
− 2 x + 4 y + z + 3 t

6 y + 5z + 7 t


=0
=0
=0
=0

Resp: B = {( −7,−5,6,0), ( −5,−7,0,6)} e dim(S) = 2
3

5) Mostre que o ℜ é soma direta do ( π) : x − 2 y + 5z = 0 com a reta ( r ) :

x
y
=
= z.
2 −1

Mais conteúdo relacionado

Mais procurados

Exercícios Resolvidos: Área com integrais
Exercícios Resolvidos: Área com integraisExercícios Resolvidos: Área com integrais
Exercícios Resolvidos: Área com integraisDiego Oliveira
 
Tabela derivadas integral
Tabela derivadas integralTabela derivadas integral
Tabela derivadas integralLidia Tiggemann
 
Função quadrática resumo teórico e exercícios - celso brasil
Função quadrática   resumo teórico e exercícios - celso brasilFunção quadrática   resumo teórico e exercícios - celso brasil
Função quadrática resumo teórico e exercícios - celso brasilCelso do Rozário Brasil Gonçalves
 
Cesgranrio petrobras engenheiro petroleo 2018
Cesgranrio petrobras engenheiro petroleo 2018Cesgranrio petrobras engenheiro petroleo 2018
Cesgranrio petrobras engenheiro petroleo 2018Arthur Lima
 
Probabilidade e Estatística
Probabilidade e EstatísticaProbabilidade e Estatística
Probabilidade e Estatísticarubensejunior
 

Mais procurados (20)

Exercícios Resolvidos: Área com integrais
Exercícios Resolvidos: Área com integraisExercícios Resolvidos: Área com integrais
Exercícios Resolvidos: Área com integrais
 
Tabela derivadas integral
Tabela derivadas integralTabela derivadas integral
Tabela derivadas integral
 
Aula 01 limites e continuidade
Aula 01   limites e continuidadeAula 01   limites e continuidade
Aula 01 limites e continuidade
 
Função quadrática resumo teórico e exercícios - celso brasil
Função quadrática   resumo teórico e exercícios - celso brasilFunção quadrática   resumo teórico e exercícios - celso brasil
Função quadrática resumo teórico e exercícios - celso brasil
 
Função quadrática
Função quadráticaFunção quadrática
Função quadrática
 
Tópico 08 - Derivadas
Tópico 08 - DerivadasTópico 08 - Derivadas
Tópico 08 - Derivadas
 
94204719 teoria-dos-numeros
94204719 teoria-dos-numeros94204719 teoria-dos-numeros
94204719 teoria-dos-numeros
 
Equação exponencial
Equação exponencialEquação exponencial
Equação exponencial
 
Tabela de Integrais
Tabela de  IntegraisTabela de  Integrais
Tabela de Integrais
 
Cesgranrio petrobras engenheiro petroleo 2018
Cesgranrio petrobras engenheiro petroleo 2018Cesgranrio petrobras engenheiro petroleo 2018
Cesgranrio petrobras engenheiro petroleo 2018
 
Polinomios
PolinomiosPolinomios
Polinomios
 
Vetores
VetoresVetores
Vetores
 
Função exponencial
Função exponencialFunção exponencial
Função exponencial
 
Aula 27 espaços vetoriais
Aula 27   espaços vetoriaisAula 27   espaços vetoriais
Aula 27 espaços vetoriais
 
P.a. e p.g.
P.a. e p.g.P.a. e p.g.
P.a. e p.g.
 
Probabilidade e Estatística
Probabilidade e EstatísticaProbabilidade e Estatística
Probabilidade e Estatística
 
Função.quadratica
Função.quadraticaFunção.quadratica
Função.quadratica
 
Aula 02 Cálculo de limites - Conceitos Básicos
Aula 02   Cálculo de limites - Conceitos BásicosAula 02   Cálculo de limites - Conceitos Básicos
Aula 02 Cálculo de limites - Conceitos Básicos
 
Exercicios de estatistica resolvido.3
Exercicios de estatistica resolvido.3Exercicios de estatistica resolvido.3
Exercicios de estatistica resolvido.3
 
Exercicios derivada lista3
Exercicios derivada lista3Exercicios derivada lista3
Exercicios derivada lista3
 

Semelhante a Bases e dimensões em R3

Semelhante a Bases e dimensões em R3 (20)

Algebra Linear cap 04
Algebra Linear cap 04Algebra Linear cap 04
Algebra Linear cap 04
 
Algebra linear exercicios_resolvidos
Algebra linear exercicios_resolvidosAlgebra linear exercicios_resolvidos
Algebra linear exercicios_resolvidos
 
Algebra Linear cap 08
Algebra Linear cap  08Algebra Linear cap  08
Algebra Linear cap 08
 
exercicios de calculo
exercicios de calculoexercicios de calculo
exercicios de calculo
 
Algebra Linear cap 03
Algebra Linear cap 03Algebra Linear cap 03
Algebra Linear cap 03
 
Aula espaço vetorial
Aula espaço vetorialAula espaço vetorial
Aula espaço vetorial
 
Algebra Linear cap 02
Algebra Linear cap 02Algebra Linear cap 02
Algebra Linear cap 02
 
Aula 4 espaços vetoriais
Aula 4   espaços vetoriaisAula 4   espaços vetoriais
Aula 4 espaços vetoriais
 
Produto escalar resumo
Produto escalar resumoProduto escalar resumo
Produto escalar resumo
 
1928 d
1928 d1928 d
1928 d
 
Funções.saa
Funções.saaFunções.saa
Funções.saa
 
Vetor resumo
Vetor resumoVetor resumo
Vetor resumo
 
FunçãO Do 1º E 2º Grau Autor Antonio Carlos Carneiro Barroso
FunçãO Do 1º  E 2º Grau Autor Antonio Carlos Carneiro BarrosoFunçãO Do 1º  E 2º Grau Autor Antonio Carlos Carneiro Barroso
FunçãO Do 1º E 2º Grau Autor Antonio Carlos Carneiro Barroso
 
Aula 15 2020
Aula 15 2020Aula 15 2020
Aula 15 2020
 
Apostila pré cálculo
Apostila pré cálculoApostila pré cálculo
Apostila pré cálculo
 
616a9aa93f9554aa9a9550f5bd9a16147866a87d
616a9aa93f9554aa9a9550f5bd9a16147866a87d616a9aa93f9554aa9a9550f5bd9a16147866a87d
616a9aa93f9554aa9a9550f5bd9a16147866a87d
 
Algebra
AlgebraAlgebra
Algebra
 
Algebra Linear cap 05
Algebra Linear cap  05Algebra Linear cap  05
Algebra Linear cap 05
 
Apostila de cálculo 3
Apostila de cálculo 3Apostila de cálculo 3
Apostila de cálculo 3
 
Exercicios resolvidos
Exercicios resolvidosExercicios resolvidos
Exercicios resolvidos
 

Último

PLANEJAMENTO anual do 3ANO fundamental 1 MG.pdf
PLANEJAMENTO anual do  3ANO fundamental 1 MG.pdfPLANEJAMENTO anual do  3ANO fundamental 1 MG.pdf
PLANEJAMENTO anual do 3ANO fundamental 1 MG.pdfProfGleide
 
Recurso Casa das Ciências: Sistemas de Partículas
Recurso Casa das Ciências: Sistemas de PartículasRecurso Casa das Ciências: Sistemas de Partículas
Recurso Casa das Ciências: Sistemas de PartículasCasa Ciências
 
HORA DO CONTO3_BECRE D. CARLOS I_2023_2024
HORA DO CONTO3_BECRE D. CARLOS I_2023_2024HORA DO CONTO3_BECRE D. CARLOS I_2023_2024
HORA DO CONTO3_BECRE D. CARLOS I_2023_2024Sandra Pratas
 
Dança Contemporânea na arte da dança primeira parte
Dança Contemporânea na arte da dança primeira parteDança Contemporânea na arte da dança primeira parte
Dança Contemporânea na arte da dança primeira partecoletivoddois
 
VALORES HUMANOS NA DISCIPLINA DE ENSINO RELIGIOSO
VALORES HUMANOS NA DISCIPLINA DE ENSINO RELIGIOSOVALORES HUMANOS NA DISCIPLINA DE ENSINO RELIGIOSO
VALORES HUMANOS NA DISCIPLINA DE ENSINO RELIGIOSOBiatrizGomes1
 
Aula 1, 2 Bacterias Características e Morfologia.pptx
Aula 1, 2  Bacterias Características e Morfologia.pptxAula 1, 2  Bacterias Características e Morfologia.pptx
Aula 1, 2 Bacterias Características e Morfologia.pptxpamelacastro71
 
Sociologia Contemporânea - Uma Abordagem dos principais autores
Sociologia Contemporânea - Uma Abordagem dos principais autoresSociologia Contemporânea - Uma Abordagem dos principais autores
Sociologia Contemporânea - Uma Abordagem dos principais autoresaulasgege
 
PRÉ-MODERNISMO - GUERRA DE CANUDOS E OS SERTÕES
PRÉ-MODERNISMO - GUERRA DE CANUDOS E OS SERTÕESPRÉ-MODERNISMO - GUERRA DE CANUDOS E OS SERTÕES
PRÉ-MODERNISMO - GUERRA DE CANUDOS E OS SERTÕESpatriciasofiacunha18
 
Investimentos. EDUCAÇÃO FINANCEIRA 8º ANO
Investimentos. EDUCAÇÃO FINANCEIRA 8º ANOInvestimentos. EDUCAÇÃO FINANCEIRA 8º ANO
Investimentos. EDUCAÇÃO FINANCEIRA 8º ANOMarcosViniciusLemesL
 
Guia completo da Previdênci a - Reforma .pdf
Guia completo da Previdênci a - Reforma .pdfGuia completo da Previdênci a - Reforma .pdf
Guia completo da Previdênci a - Reforma .pdfEyshilaKelly1
 
Currículo escolar na perspectiva da educação inclusiva.pdf
Currículo escolar na perspectiva da educação inclusiva.pdfCurrículo escolar na perspectiva da educação inclusiva.pdf
Currículo escolar na perspectiva da educação inclusiva.pdfIedaGoethe
 
As Viagens Missionária do Apostolo Paulo.pptx
As Viagens Missionária do Apostolo Paulo.pptxAs Viagens Missionária do Apostolo Paulo.pptx
As Viagens Missionária do Apostolo Paulo.pptxAlexandreFrana33
 
Slide de exemplo sobre o Sítio do Pica Pau Amarelo.pptx
Slide de exemplo sobre o Sítio do Pica Pau Amarelo.pptxSlide de exemplo sobre o Sítio do Pica Pau Amarelo.pptx
Slide de exemplo sobre o Sítio do Pica Pau Amarelo.pptxconcelhovdragons
 
QUARTA - 1EM SOCIOLOGIA - Aprender a pesquisar.pptx
QUARTA - 1EM SOCIOLOGIA - Aprender a pesquisar.pptxQUARTA - 1EM SOCIOLOGIA - Aprender a pesquisar.pptx
QUARTA - 1EM SOCIOLOGIA - Aprender a pesquisar.pptxIsabellaGomes58
 
Educação São Paulo centro de mídias da SP
Educação São Paulo centro de mídias da SPEducação São Paulo centro de mídias da SP
Educação São Paulo centro de mídias da SPanandatss1
 
Bingo da potenciação e radiciação de números inteiros
Bingo da potenciação e radiciação de números inteirosBingo da potenciação e radiciação de números inteiros
Bingo da potenciação e radiciação de números inteirosAntnyoAllysson
 
Slides Lição 4, CPAD, Como se Conduzir na Caminhada, 2Tr24.pptx
Slides Lição 4, CPAD, Como se Conduzir na Caminhada, 2Tr24.pptxSlides Lição 4, CPAD, Como se Conduzir na Caminhada, 2Tr24.pptx
Slides Lição 4, CPAD, Como se Conduzir na Caminhada, 2Tr24.pptxLuizHenriquedeAlmeid6
 
v19n2s3a25.pdfgcbbbbbbbbbbbbbbbbbbbbbbbbbbbbbb
v19n2s3a25.pdfgcbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbv19n2s3a25.pdfgcbbbbbbbbbbbbbbbbbbbbbbbbbbbbbb
v19n2s3a25.pdfgcbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbyasminlarissa371
 
Mapas Mentais - Português - Principais Tópicos.pdf
Mapas Mentais - Português - Principais Tópicos.pdfMapas Mentais - Português - Principais Tópicos.pdf
Mapas Mentais - Português - Principais Tópicos.pdfangelicass1
 

Último (20)

PLANEJAMENTO anual do 3ANO fundamental 1 MG.pdf
PLANEJAMENTO anual do  3ANO fundamental 1 MG.pdfPLANEJAMENTO anual do  3ANO fundamental 1 MG.pdf
PLANEJAMENTO anual do 3ANO fundamental 1 MG.pdf
 
Recurso Casa das Ciências: Sistemas de Partículas
Recurso Casa das Ciências: Sistemas de PartículasRecurso Casa das Ciências: Sistemas de Partículas
Recurso Casa das Ciências: Sistemas de Partículas
 
HORA DO CONTO3_BECRE D. CARLOS I_2023_2024
HORA DO CONTO3_BECRE D. CARLOS I_2023_2024HORA DO CONTO3_BECRE D. CARLOS I_2023_2024
HORA DO CONTO3_BECRE D. CARLOS I_2023_2024
 
Dança Contemporânea na arte da dança primeira parte
Dança Contemporânea na arte da dança primeira parteDança Contemporânea na arte da dança primeira parte
Dança Contemporânea na arte da dança primeira parte
 
VALORES HUMANOS NA DISCIPLINA DE ENSINO RELIGIOSO
VALORES HUMANOS NA DISCIPLINA DE ENSINO RELIGIOSOVALORES HUMANOS NA DISCIPLINA DE ENSINO RELIGIOSO
VALORES HUMANOS NA DISCIPLINA DE ENSINO RELIGIOSO
 
Aula 1, 2 Bacterias Características e Morfologia.pptx
Aula 1, 2  Bacterias Características e Morfologia.pptxAula 1, 2  Bacterias Características e Morfologia.pptx
Aula 1, 2 Bacterias Características e Morfologia.pptx
 
Sociologia Contemporânea - Uma Abordagem dos principais autores
Sociologia Contemporânea - Uma Abordagem dos principais autoresSociologia Contemporânea - Uma Abordagem dos principais autores
Sociologia Contemporânea - Uma Abordagem dos principais autores
 
PRÉ-MODERNISMO - GUERRA DE CANUDOS E OS SERTÕES
PRÉ-MODERNISMO - GUERRA DE CANUDOS E OS SERTÕESPRÉ-MODERNISMO - GUERRA DE CANUDOS E OS SERTÕES
PRÉ-MODERNISMO - GUERRA DE CANUDOS E OS SERTÕES
 
Investimentos. EDUCAÇÃO FINANCEIRA 8º ANO
Investimentos. EDUCAÇÃO FINANCEIRA 8º ANOInvestimentos. EDUCAÇÃO FINANCEIRA 8º ANO
Investimentos. EDUCAÇÃO FINANCEIRA 8º ANO
 
Guia completo da Previdênci a - Reforma .pdf
Guia completo da Previdênci a - Reforma .pdfGuia completo da Previdênci a - Reforma .pdf
Guia completo da Previdênci a - Reforma .pdf
 
Currículo escolar na perspectiva da educação inclusiva.pdf
Currículo escolar na perspectiva da educação inclusiva.pdfCurrículo escolar na perspectiva da educação inclusiva.pdf
Currículo escolar na perspectiva da educação inclusiva.pdf
 
As Viagens Missionária do Apostolo Paulo.pptx
As Viagens Missionária do Apostolo Paulo.pptxAs Viagens Missionária do Apostolo Paulo.pptx
As Viagens Missionária do Apostolo Paulo.pptx
 
Slide de exemplo sobre o Sítio do Pica Pau Amarelo.pptx
Slide de exemplo sobre o Sítio do Pica Pau Amarelo.pptxSlide de exemplo sobre o Sítio do Pica Pau Amarelo.pptx
Slide de exemplo sobre o Sítio do Pica Pau Amarelo.pptx
 
QUARTA - 1EM SOCIOLOGIA - Aprender a pesquisar.pptx
QUARTA - 1EM SOCIOLOGIA - Aprender a pesquisar.pptxQUARTA - 1EM SOCIOLOGIA - Aprender a pesquisar.pptx
QUARTA - 1EM SOCIOLOGIA - Aprender a pesquisar.pptx
 
treinamento brigada incendio 2024 no.ppt
treinamento brigada incendio 2024 no.ppttreinamento brigada incendio 2024 no.ppt
treinamento brigada incendio 2024 no.ppt
 
Educação São Paulo centro de mídias da SP
Educação São Paulo centro de mídias da SPEducação São Paulo centro de mídias da SP
Educação São Paulo centro de mídias da SP
 
Bingo da potenciação e radiciação de números inteiros
Bingo da potenciação e radiciação de números inteirosBingo da potenciação e radiciação de números inteiros
Bingo da potenciação e radiciação de números inteiros
 
Slides Lição 4, CPAD, Como se Conduzir na Caminhada, 2Tr24.pptx
Slides Lição 4, CPAD, Como se Conduzir na Caminhada, 2Tr24.pptxSlides Lição 4, CPAD, Como se Conduzir na Caminhada, 2Tr24.pptx
Slides Lição 4, CPAD, Como se Conduzir na Caminhada, 2Tr24.pptx
 
v19n2s3a25.pdfgcbbbbbbbbbbbbbbbbbbbbbbbbbbbbbb
v19n2s3a25.pdfgcbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbv19n2s3a25.pdfgcbbbbbbbbbbbbbbbbbbbbbbbbbbbbbb
v19n2s3a25.pdfgcbbbbbbbbbbbbbbbbbbbbbbbbbbbbbb
 
Mapas Mentais - Português - Principais Tópicos.pdf
Mapas Mentais - Português - Principais Tópicos.pdfMapas Mentais - Português - Principais Tópicos.pdf
Mapas Mentais - Português - Principais Tópicos.pdf
 

Bases e dimensões em R3

  • 1. 34 ELEMENTOS DE ÁLGEBRA LINEAR CAPÍTULO 4 BASE – DIMENSÃO - COORDENADAS 1 BASE Definição: Seja V um espaço vetorial finitamente gerado. Uma base de V é um subconjunto finito B ⊂ V satisfazendo: a) B gera V, ou seja, o subespaço gerado por B é igual a V. b) B é LI. Exemplo (1): Mostre que B = {(1,2,3), (0,1,2), (1,−1,2)} é base do ℜ3. Solução: Para verificar o item (a) da definição, vamos mostrar que qualquer vetor do ℜ3 se escreve 3 como combinação linear de B. Seja v = ( x , y, z ) ∈ ℜ . Então, existem escalares a, b e c ∈ℜ tais que: x =a+c   v = ( x , y, z) = a (1,2,3) + b(0,1,2) + c(1,−1,2) ⇒  y = 2a + b − c . Resolvendo z = 3a + 2b + 2c  4x + 2y − z  a=  5  − 7 x − y + 3z  o sistema teremos: b = , mostrando que o sistema tem solução. Logo, 5   c = x − 2y + z  5  B gera o ℜ3. Para mostrar o item (b), lembrando que no ℜ3, se três vetores não são 1 coplanares, então eles são LI. Daí é só mostrar que o determinante 0 2 3 1 2 ≠ 0. 1 −1 2 Portanto B é base do ℜ3. O espaço vetorial nulo V = {0} não possui base, pois o zero é LD. Todos os demais espaços vetoriais possuem infinitas bases. De todas estas infinitas bases, uma delas é considerada a mais simples e chamada de Base Canônica. A base canônica de todo espaço vetorial supõe-se
  • 2. 35 conhecida, elas, geralmente, não são dadas nos exercícios. Portanto, vamos listar as base canônicas do principais espaços vetoriais. São elas: • ℜ ⇒ {1} • ℜ2 ⇒ {(1,0), (0,1)} • ℜ3 ⇒ {(1,0,0), (0,1,0), (0,0,1)} • ℜn ⇒ {(1,0,...,0), (0,1,...,0),..., (0,0,...,1)} • M 2 x 2 (ℜ) ⇒   • Pn (ℜ) ⇒ 1, t , t ,..., t  1 0   0 1   0 0   0 0  ,  ,  ,        0 0   0 0   1 0   0 1  { 2 n } Teorema da Invariância: Seja V um espaço vetorial finitamente gerado. Então, qualquer uma de suas bases têm o mesmo número de vetores. ► Processo Prático para obter uma base de um subespaço do ℜn Este processo consiste em colocar os vetores candidatos a base do subespaço, dispostos como linhas de uma matriz e escaloná-la. Depois de escalonada, retirar todas as linhas nulas. As linhas restantes serão vetores LI e formarão a base procurada. Exemplo (2): Seja W um subespaço do ℜ4 que possui o seguinte sistema de geradores [(2,1,1,0), (1,0,1,2), (0,−1,1,4), (3,0,3,6)] . Determine uma base para W. Solução: Vamos aplicar o processo acima: 1 0  1 2 0 −1  3 0  1 2  1 0  − 2 L1 + L 2 → 1 4  −3L1 + L 4  3 6  1 2 1 0   0 1 − 1 − 4  1L 2 + L3  → 0 −1 1 4   0 0 0 0   1  0 0  0  0 1 2  1 −1 − 4 0 0 0  0 0 0  Retiradas as linhas nulas, temos que B = {(1,0,1,2), (0,1,−1,−4)} é base de W. Definição: Um conjunto de vetores {v1 , v 2 ,..., v n } ⊂ V é dito LI-Maximal se: a) {v1 , v 2 ,..., v n } é LI b) {v1 , v 2 ,..., v n , w} é LD, ∀w ∈ V .
  • 3. 36 Proposição (1): Seja V um espaço vetorial. Um conjunto de vetores {v1 , v 2 ,..., v n } é base de V se for LI-Maximal. 2 DIMENSÃO Definição: Seja V um espaço vetorial finitamente gerado. Denomina-se Dimensão do espaço V, denotado por dim(V), a quantidade de vetores de qualquer uma de suas bases. OBS: Se o número de vetores de uma base de um espaço vetorial é finito, então dizemos que o espaço é de dimensão finita. Os espaços de dimensão infinita não serão objetivos do nossos estudos. Assim, analisando as bases canônicas anteriormente listadas, podemos concluir: • dim(ℜ) = 1; dim(ℜ 2 ) = 2; dim(ℜ) 3 = 3;..., dim(ℜ n ) = n • dim( M 2 x 2 ) = 4 = 2 x 2 • dim( M mxn ) = m ⋅ n • dim( Pn ) = n + 1 • dim({0}) = 0 Teorema do Completamento: Em um espaço vetorial de dimensão finita, sempre podemos completar um conjunto LI de maneira a obter uma base. Proposição (2): Seja W ⊆ V um subespaço de V. Se dim( W ) = dim(V ) então W = V . Proposição (3): Seja V um espaço vetorial e B = {v1 , v 2 ,..., v n } uma de suas bases. Então, todo elemento de V se escreve de maneira única como combinação linear dos vetores da base B. Teorema (1): Sejam U e W subespaços de um espaço vetorial V. Então: dim( U + W ) = dim( U) + dim( W ) − dim(U ∩ W ) . Teorema (2): Seja V um espaço vetorial tal que dim(V ) = n . Então: a) Qualquer conjunto com n+1 ou mais vetores é LD.
  • 4. 37 b) Qualquer conjunto LI com n vetores é base de V 4 Exemplo (3): Seja W = {( x , y, z, t ) ∈ ℜ / x − 2 y + t = 0} . Determine a dimensão de W. Solução: Para determinar a dimensão de W é necessário determinar uma de suas bases. De W temos que: x − 2 y + t = 0 ⇒ x = 2 y − t . Então todo vetor de W é da forma (2 y − t , y, z, t ), ∀y, z, t ∈ ℜ . Determinando um sistema de geradores para W: (2 y − t , y, z, t ) = y(2,1,0,0) + z(0,0,1,0) + t (−1,0,0,1) . O conjunto formado pelos vetores S = {( 2,1,0,0), (0,0,1,0), ( −1,0,0,1)} é um sistema de geradores de W. Aplicando o processo prático de obtenção de base teremos:  − 1 0 0 1 2 L + L  − 1 0 0 1   1 2  2 1 0 0  →  0 1 0 2  . A matriz está escalonada e não apresenta   0 0 1 0  0 0 1 0     nenhuma linha nula. Logo, os vetores são LI e constituem uma base de W, ou seja, S é base de W. Portanto, dim( W ) = 3 . OBS: Um erro muito comum entre os alunos é confundir a quantidade de coordenadas de um vetor, com a quantidade de vetores de uma base. Veja o exemplo (3). A base de W é S = {( 2,1,0,0), (0,0,1,0), (−1,0,0,1)} , cujos vetores têm 4 2 coordenadas, mas 3 dim( W ) = 3 , porque na base S temos 3 vetores. 2 3 2 3 Exemplo (4): Seja U = [1 − 2 t , 2 t + t − t ,1 + t − t , 2 − 6t − t + t ] . Qual é a dimensão de U? Solução: O enunciado diz que o subespaço U ⊂ P3 (ℜ) é gerado pelos vetores dados. Para determinar uma base de U, podemos usar o processo prático, escrevendo uma matriz com os coeficientes dos polinômios dados. 0 0 0 0 0 1 −2 1 −2 1 −2 0       2 1 − 1 −1L1 + L3  0 2 1 − 1 −1L 2 + L3  0 2 1 − 1 0 Então:  → → 1 0 1 − 1 − 2 L1 + L 4  0 2 1 − 1 1L 2 + L 4  0 0 0 0       2 − 6 − 1 1  0 − 2 −1 0 1 0 0 0       Retiradas as linhas nulas, os polinômios restantes forma uma base de U, ou seja, B = {1 − 2 t , 2 + t 2 − t 3 } é base de U. Portanto, dim( U) = 2 .
  • 5. 38 3 Exemplo (5): Sejam U e W, subespaços do ℜ3, onde U = {( x , y, z) ∈ ℜ / x − 2 y + z = 0} e W = {( x , y, z) ∈ ℜ 3 / 3x + 2 y + z = 0} . Determine uma base e a dimensão para U + W e U ∩ W . O ℜ3 = U ⊕ W ? Solução: Primeiro, vamos determinar uma base e a dimensão para U e W. Podemos escrever: U = {( 2 y − z, y, z), ∀y, z ∈ ℜ} ⇒ (2 y − z, y, z) = y(2,1,0) + z(−1,0,1) ⇒ B U = {(2,1,0), (−1,0,1)} é base de U ⇒ dim( U) = 2 W = {( x , y,−3x − 2 y), ∀x , y ∈ ℜ} ⇒ ( x , y,−3x − 2 y) = x (1,0,−3) + y(0,1,−2) ⇒ B W = {(1,0,−3), (0,1,−2)} é base de W ⇒ dim( W ) = 2 a) Para determinar uma base de U+W, devemos obter um sistema de geradores fazendo a união da base de U com a base de W e usar o processo prático de obtenção de base. Então, seja S = B U ∪ B W = {( 2,1,0), ( −1,0,1), (1,0,−3), (0,1,−2)} o sistema de geradores de U+W. Aplicando o processo teremos:  1   0  −1   2  − 3 1   1 − 2  1L1 + L3  0 → 0 1 − 2 L1 + L 4  0   0 1 0   0 − 3 1   1 − 2  −1L2 + L 4  0 →  0 − 2 0   0 1 6   0 − 3 1   1 − 2  4 L3 + L 4  0 →  0 − 2 0   0 0 8   0 − 3  1 − 2 . 0 − 2  0 0  0 B U + W = {(1,0,−3), (0,1,−2), (0,0,−2)} é base de U+W ⇒ dim( U + W ) = 3 . b) Pelo Teorema (1): dim( U + W ) = dim( U) + dim( W ) − dim(U ∩ W ) ⇒ 3 = 2 + 2 − dim( U ∩ W ) ⇒ dim( U ∩ W ) = 1 . Portanto, sua base tem que conter apenas um vetor comum a U e a W. Para determinar estes vetor, que está na interseção, fazemos:  2a − b = α  ( x , y, z) = a (2,1,0) + b(−1,0,1) = α (1,0,−3) + β(0,1,−2) ⇒  a =β ⇒ b = −3α − 2β  substituindo a 1ª e a 2ª equações na 3ª, teremos: b = −3( 2a − b) − 2a ⇒ b = 4a . Então: ( x , y, z ) = a ( 2,1,0) + 4a ( −1,0,1) = a ( −2,1,4) ⇒ B U ∩ W = {( −2,1,4)} é base de U ∩ W . c) O ℜ3 não é soma direta de U com W porque dim( U ∩ W ) = 1 ≠ 0 ⇒ U ∩ W ≠ {0}
  • 6. 39 Exemplo (6): Determine uma base e a dimensão para o espaço das soluções do sistema linear x − y − z − t = 0  L :  2x + y + t = 0  z−t =0  Solução: Como o sistema L é SPI, ele possui infinitas soluções do tipo S = {( x , y, z, t ), ∀x , y, z, t ∈ ℜ} . Este conjunto de soluções forma um espaço vetorial. Vamos achar a solução geral do sistema L. Resolvendo o sistema, teremos: S = {( x ,−5x ,3x ,3x ), ∀x ∈ ℜ} . Então: B = {(1,−5,3,3)} é base de S ⇒ dim(S) = 1 . 3 COORDENADAS DE UM VETOR A partir de agora, trabalharemos, sempre, com bases ordenadas. Uma base ordenada é aquela em que as posições dos vetores estão fixadas, ou seja, dada uma base qualquer B = {v1 , v 2 ,..., v n } , então, v1 sempre será o primeiro vetor, v2 sempre será o segundo, assim por diante até o último que sempre será vn. Definição: Sejam V um espaço vetorial e B = {v1 , v 2 ,..., v n } uma de suas bases ordenadas. Qualquer vetor v ∈ V se escreve, de maneira única, como combinação linear da base B. Existem escalares a 1 , a 2 ,..., a n ∈ K , tais que v = a 1 v1 + a 2 v 2 + ... + a n v n . Assim, os escalares a 1 , a 2 ,..., a n são chamados de coordenadas do vetor v em relação  a1    a2  a base B, denotado por: [ v] B =   ...   a   n Exemplo (7): Determine as coordenadas do vetor v = ( −1,5,−8) em relação: a) Base canônica b) B = {(1,1,0), ( 2,01), ( 2,−1,1)} Solução: a) A base canônica do ℜ3 é C = {(1,0,0), (0,1,0), (0,0,1)} . Então:
  • 7. 40 a = −1  − 1    v = (−1,5,−8) = a (1,0,0) + b(0,1,0) + c(0,0,1) ⇒  b = 5 ⇒ [ v]C =  5   − 8 c = −8    b) Escrevendo v como combinação da base B teremos: a + 2b + 2c = −1  15     v = (−1,5,−8) = a (1,1,0) + b(2,0,1) + c(2,−1,1) ⇒  a − c = 5 ⇒ [ v]B =  − 18   10   b + c = −8    OBS: Note que, as coordenadas de qualquer vetor (de qualquer espaço vetorial) em relação à base canônica do espaço é ele mesmo (ver exemplo (7), item (a)) . Portanto, se nada for dito, as coordenadas de um vetor, vêm sempre dadas em relação à base canônica do espaço. Exemplo (8): Determine as coordenadas do vetor p( t ) = 2 + 4 t + t 2 em relação a base B = {−2,1 − t ,1 + 2 t − 3t 2 } Solução: Vamos escrever p(t) com combinação linear dos vetores da base B. Então: p( t ) = 2 + 4 t + t 2 = a (−2) + b(1 − t ) + c(1 + 2 t − 3t 2 ) ⇒ 2 + 4 t + t 2 = (−2a + b + c) + (−b + 2c) t + (−3c) t 2  − 7  2 [p( t )]B =  − 14  3  − 1  3 Exercícios Propostos ⇒ 2 = −2a + b + c   4 = − b + 2c  1 = −3c  ⇒
  • 8. 41 2 3 1) Seja W = {a o + a 1 t + a 2 t + a 3 t ∈ P3 (ℜ) / a o = 2a 2 − 5a 3 e a 1 = a 2 − 4a 3 } . Determine uma base e a dimensão de W. Resp: B = {2 + t + t , − 5 − 4 t + t } ⇒ dim( W ) = 2 2 3 2) Determine uma base e a dimensão para W+U e W∩U, onde: W = {( x , y, z, t ) ∈ ℜ 4 / x − 2 y = 0 e z = −3t} U = {( x , y, z, t ) ∈ ℜ 4 / 2 x − y + 2z − t = 0} Resp: B W + U = {(1,2,0,0), (0,−1,0,1), (0,0,−3,1), (0,0,0,−3)} ⇒ dim( W + U) = 4  14 7  B W ∩ U =  , ,−3,1 ⇒ dim( W ∩ U) = 1   3 3  a b    ∈ M 2 x 2 (ℜ) / a = 2b e d = −c . Determine uma base e a dimensão de   c d   3) Seja W =   W e estenda a base de W para obter uma base de M 2 x 2 (ℜ) . 0   2 1   0  2 1   0 0   1 0   0 0  ,   e B M 2 x 2 =    0 0 ,  1 − 1,  0 0 ,  0 1        0 0   1 − 1        Resp: B W =    x + y + 2z + 2 t  − 3x + 3y − z + t  4) Determine um base e a dimensão do espaço das soluções do sistema  − 2 x + 4 y + z + 3 t  6 y + 5z + 7 t  =0 =0 =0 =0 Resp: B = {( −7,−5,6,0), ( −5,−7,0,6)} e dim(S) = 2 3 5) Mostre que o ℜ é soma direta do ( π) : x − 2 y + 5z = 0 com a reta ( r ) : x y = = z. 2 −1