119988 apostila serra

482 visualizações

Publicada em

Apostila Eletrica

Publicada em: Engenharia
0 comentários
1 gostou
Estatísticas
Notas
  • Seja o primeiro a comentar

Sem downloads
Visualizações
Visualizações totais
482
No SlideShare
0
A partir de incorporações
0
Número de incorporações
4
Ações
Compartilhamentos
0
Downloads
18
Comentários
0
Gostaram
1
Incorporações 0
Nenhuma incorporação

Nenhuma nota no slide

119988 apostila serra

  1. 1. Centro Federal de Educação Tecnológica do Espírito Santo Unidade de Ensino Descentralizada da Serra/ES ____________________________________________________________ ELETRÔNICA DE POTÊNCIA _____________________________________________AUTOMAÇÃO INDUSTRIAL
  2. 2. Centro Federal de Educação Tecnológica do Espírito Santo Unidade de Ensino Descentralizada da Serra/ES _____________________________________________________________ ELETRÔNICA DE POTÊNCIA MARCIO BRUMATTI SERRA - ES 2005 _____________________________________________AUTOMAÇÃO INDUSTRIAL
  3. 3. CEFET-ES/ Uned. Serra Automação Industrial Eletrônica de Potência ii SUMÁRIO 1. INTRODUÇÃO ................................................................................................................4 2. SEMICONDUTORES DE POTÊNCIA .............................................................................6 2.1 – Introdução ........................................................................................................................... 6 2.2 – Perdas nos Semicondutores de Potência........................................................................ 6 2.3 – O Diodo................................................................................................................................ 7 2.4 - Tiristores ............................................................................................................................ 10 2.4.1 – SCR (Retificador controlado de silício) ..................................................................... 10 2.4.2 – O TRIAC.................................................................................................................... 13 2.4.3 – O DIAC...................................................................................................................... 14 2.5 – O Transistor Bipolar de Junção (BJT) ............................................................................ 14 2.6 – Mosfet de Potência........................................................................................................... 16 2.7 – O IGBT ............................................................................................................................... 18 2.8 – Módulos de Potência........................................................................................................ 19 2.9 – A Escolha do Semicondutor de Potência....................................................................... 20 3. RETIFICADORES NÃO CONTROLADOS....................................................................22 3.1 - Introdução.......................................................................................................................... 22 3.2 - Retificador Monofásico de Meia Onda ............................................................................ 22 3.3 - Retificador Monofásico de Onda Completa em Ponte................................................... 26 3.4 - Retificadores Trifásicos.................................................................................................... 29 3.4.1 - Retificador Trifásico de Meia Onda............................................................................ 29 3.4.2 - Retificador Trifásico de Onda Completa .................................................................... 30 4. RETIFICADORES CONTROLADOS.............................................................................33 4.1 - Retificador Monofásico Controlado de Meia Onda ........................................................ 33 4.2 - Retificador Monofásico Controlado de Onda Completa em Ponte............................... 36 4.3 - Retificador Monofásico Semicontrolado......................................................................... 38 4.4 - Retificador Trifásico Controlado de Meia Onda ............................................................. 40 4.5 - Retificador Trifásico Controlado de Onda Completa..................................................... 42 4.6 - Retificador Trifásico Semicontrolado.............................................................................. 46 4.7 - Sincronismo de Retificadores Trifásicos........................................................................ 49 4.8 - Acionamento de Motores CC Com Retificadores........................................................... 50 4.9 – Acionamento de Motor CC Com Conversor Dual.......................................................... 51 5. CIRCUITOS DE DISPARO............................................................................................55
  4. 4. CEFET-ES/ Uned. Serra Automação Industrial Eletrônica de Potência iii 5.1 – Introdução ......................................................................................................................... 55 5.2 - Circuito de Disparo Com Sinais CA................................................................................. 55 5.3 - Circuito de Disparo Com Pulsos Usando o UJT ............................................................ 56 5.4 – Isolação de Circuitos de Disparo.................................................................................... 60 5.5 - Circuito Integrado - TCA785............................................................................................. 61 6. CONTROLADORES CA................................................................................................64 6.1 – Controle Liga-Desliga....................................................................................................... 64 6.2 - Controle de fase ................................................................................................................ 65 6.2.1- Controlador Monofásico.............................................................................................. 65 6.2.2 - Controlador Trifásico.................................................................................................. 66 6.3 – Soft-Start ........................................................................................................................... 66 7. CONVERSORES CC – CC............................................................................................68 7.1 - Introdução.......................................................................................................................... 68 7.2 – Modulação por Largura de Pulso (PWM)........................................................................ 68 7.3 - Conversor Abaixador (BUCK) .......................................................................................... 69 7.4 - Conversor Elevador (Boost)............................................................................................. 73 7.5 - Fontes Chaveadas............................................................................................................. 74 7.6 – Controle em Fontes Chaveadas...................................................................................... 76 8. CONVERSORES CC – CA (INVERSORES).................................................................78 8.1 - Introdução.......................................................................................................................... 78 8.2 - Inversores Monofásicos de Onda Quadrada .................................................................. 78 8.3 - Inversor Trifásico de Onda Quadrada ............................................................................. 80 8.4 - Inversores PWM................................................................................................................. 82 REFERÊNCIAS BIBLIOGRÁFICAS .................................................................................85
  5. 5. CEFET-ES/ Uned. Serra Automação Industrial Eletrônica de Potência Introdução 4 1. INTRODUÇÃO A eletrônica de potência tem a função de controlar o fluxo de potência, processando energia das fontes de alimentação disponíveis (rede elétrica, geradores ou baterias) através de dispositivos semicondutores de potência, para alimentar as cargas. Por exemplo, em um microcomputador é necessário alimentar os chips lógicos com 5 Vcc, através da rede 127 Vac, logo se necessita de um circuito de eletrônica de potência. A Importância da eletrônica de potência pode ser notada através de uma lista onde aparecem algumas de suas aplicações: Residencial e comercial: iluminação – reatores eletrônicos; computadores pessoais; equipamentos eletrônicos de entretenimento; elevadores; sistemas ininterruptos de energia (“no- break”); equipamentos de escritório. Industrial: acionamento de bombas, compressores, ventiladores, máquinas ferramenta e outros motores; iluminação; aquecimento indutivo; soldagem. Transporte: veículos elétricos; carga de baterias; locomotivas; metrô. Sistemas Elétricos: transmissão em altas tensões CC; fontes de energia alternativa (vento, solar, etc.); armazenamento de energia. Aeroespaciais: sistema de alimentação de satélites; sistema de alimentação de naves; Telecomunicações: carregadores de baterias; fontes de alimentação CC; sistemas ininterruptos de energia (UPS). Os sistemas de eletrônica de potência consistem em muito mais que um conversor de energia. Como pode ser visto no diagrama de blocos da Fig. 1.1, necessita-se também de filtros para minimizar os ruídos e harmônicos de tensão e corrente gerados pelo circuito de potência, o qual opera em regime chaveado; circuitos de comando para impor ao semicondutor do conversor sua entrada em condução ou corte; e a realimentação e controle que mantém o sistema operando no ponto desejado mesmo com mudanças na entrada (fonte) ou na saída (carga). O circuito de potência é composto por semicondutores de potência e elementos passivos (indutores, capacitores e resistores), podendo assumir várias configurações em função das características de tensão, corrente e freqüência da fonte de alimentação e da carga. Pelo fato de não haver partes móveis, esses circuitos de potência são chamados de conversores estáticos, os quais podem ser classificados como: Conversores CA – CC (Retificadores), Conversores CC – CA (Inversores), Conversores CC – CC (Choppers) e Conversores CA – CA (Cicloconversores e Controladores CA). O diagrama da Fig. 1.2 relaciona cada conversor com a respectiva conversão.
  6. 6. CEFET-ES/ Uned. Serra Automação Industrial Eletrônica de Potência Introdução 5 Fig. 1.1 - Diagrama de blocos de um sistema em eletrônica de potência. RETIFICADOR CICLOCONVERSOR CHOPPER INVERSOR CONVERSORDE FREQUÊNCIAde2 ESTAGIOS CONVERSORCC de2ESTAGIOS Fig. 1.2 - Conversores em eletrônica de potência. Os conversores estáticos utilizados para acionamento com velocidade variável de motores de indução são chamados comercialmente de conversores de freqüência ou simplesmente inversores. Em sua maioria são conversores CA – CA em dois estágios, ou seja, retificadores associados a inversores. FILTRO DE ENTRADA FILTRO DE SAÍDA CIRCUITO DE POTÊNCIA (CONVERSOR ESTÁTICO) CARGA CIRCUITO DE COMANDO DOS SEMICONDUTORES CIRCUITO DE CONTROLE GRANDEZAS ELÉTRICAS GRANDEZAS MECÂNICAS ENTRADA DE ENERGIA REALIMENTAÇÃO
  7. 7. CEFET-ES/ Uned. Serra Automação Industrial Eletrônica de Potência Semicondutores de Potência 6 2. SEMICONDUTORES DE POTÊNCIA 2.1 – Introdução Para entender o funcionamento e as diversas topologias dos conversores estáticos é necessário o conhecimento dos dispositivos semicondutores que compõem estes conversores, ou seja, suas características de tensão, corrente, comando e velocidade de comutação. Em eletrônica de potência, os semicondutores podem ser considerados como chaves, podendo estar no estado fechado ou conduzindo (ON) e aberto ou bloqueado (OFF). Podem ser divididos em três grupos de acordo com o grau de controlabilidade. Esses grupos são: Chaves não controladas: estado ON e OFF dependendo do circuito de potência. Ex.: diodos. Chaves semicontroladas: estado ON controlado por um sinal externo e OFF dependendo do circuito de potência. Ex.: SCR, TRIAC. Chaves Controladas – os estados ON e OFF são controlados por sinal externo. Ex.: Transistor (BJT), MOSFET, IGBT, GTO. 2.2 – Perdas nos Semicondutores de Potência Operando como chave, o semicondutor apresenta dois tipos de perdas de energia, as quais geram dissipação de calor sobre o mesmo: as perdas em condução e as perdas em comutação. A Fig. 2.1 a seguir apresenta as formas de onda de tensão, corrente e potência dissipada sobre um semicondutor que opera como chave. Quando o semicondutor está em condução, flui através do mesmo uma corrente Ion e aparece sobre ele uma baixa queda de tensão Von, as quais são responsáveis pelas perdas em condução. Quanto maiores forem Ion e Von, maior será a perda de condução, assim, são desejáveis semicondutores que apresentam baixos valores de tensão quando em condução. A comutação pode ser de dois tipos: OFF para ON (entrada em condução) ou de ON para OFF (bloqueio). No primeiro caso, quando o semicondutor entra em condução sua tensão cai até próximo de zero (Von) e a corrente cresce. Enquanto estes valores não se estabilizam aparecem as perdas por comutação. Tais perdas ocorrem também durante o bloqueio, onde a corrente cai até zero enquanto a tensão no semicondutor cresce atingindo o valor Voff. Quanto maiores forem a tensão Voff, a corrente Ion, a duração da comutação (toff/on e ton/off) e a freqüência de comutação, maior será a perda de comutação. Assim, é desejável que o semicondutor apresente comutações rápidas para diminuir as perdas de comutação.
  8. 8. CEFET-ES/ Uned. Serra Automação Industrial Eletrônica de Potência Semicondutores de Potência 7 Ion comutação off/on Voff Ioff = 0 comutação on/off bloqueiocondução Von toff/on ton/offton toff T = período de comutação Perdas Fig. 2.1 - Comutação nos semicondutores de potência. 2.3 – O Diodo A Fig. 2.2 mostra o símbolo do diodo e suas características de operação através da curva v x i. Fig. 2.2 - Diodo: símbolo e característica de operação. Quando a tensão entre o anodo e o catodo for positiva e maior que VF (em torno de 0,7 V), é dito que o diodo está diretamente polarizado e está no estado de condução, ou seja, começa a conduzir corrente com uma pequena tensão sobre ele. Quando o diodo é reversamente polarizado, ou seja a tensão entre anodo e catodo é negativa, ele esta no estado corte, bloqueando a passagem de corrente no sentido reverso. A entrada em condução de um diodo é considerada ideal, ou seja, rápida o suficiente para não afetar o resto do circuito de potência em que está inserido. Entretanto, para o bloqueio leva-se um tempo adicional, chamado tRR – tempo de recuperação reversa. Na comutação do estado de condução para o bloqueio, ocorre a descarga da capacitância intrínseca da junção. Nesse VF iF vD KA vD -+ iD A - anodo K - catodo
  9. 9. CEFET-ES/ Uned. Serra Automação Industrial Eletrônica de Potência Semicondutores de Potência 8 intervalo de tempo tRR, a corrente no diodo torna-se negativa até que toda a carga armazenada na capacitância durante a condução se anule. Após a carga ter se anulado o diodo bloqueia. Esta corrente reversa pode, além de comprometer o bom funcionamento do circuito, gerar ruídos, sobretensões e perdas adicionais de comutação. A Fig. 2.3 mostra como ocorre a comutação em um diodo. A partir dos tempos de recuperação reversa, os diodos podem ser classificados quanto à velocidade de comutação. A tabela a seguir mostra algumas linhas comerciais de diodos. Os diodos Schottky apresentam tempos de recuperação reversa muito pequenos, da ordem de 10 ns, pequena queda de tensão e é aplicado em altas freqüências e baixas tensões. Já o diodo ultra-rápido pode ser usado em tensões superiores, com um acréscimo do tempo de recuperação reversa. Os diodos rápidos são usados para maiores potências e menores freqüências. Já os diodos de uso geral são os diodos normalmente utilizados na freqüência da rede CA (60Hz). Os diodos de potência são fornecidos em vários tipos diferentes de encapsulamento como mostrado na Figura 2.4 ao lado. É através do encapsulamento que o calor gerado na junção do diodo se difunde para o meio circundante. Fig.2.4 - Tipos de encapsulamento. VD ID VE t t t +V R -VR -VR VON VFP tON t OFF tRR IR D R VE ID VD Fig.2.3 – Comutação em um diodo.
  10. 10. CEFET-ES/ Uned. Serra Automação Industrial Eletrônica de Potência Semicondutores de Potência 9 SCHOTTKY ULTRA-RÁPIDO 1 A 10 A 35 A 1 A 15 A 50 A Vr COD. Vr COD. Vr COD. Vr COD. Vr COD. Vr COD. 20 1N5817 35 MBR1035 20 MBR3520 50 MUR105 50 MUR1505 50 MUR5005 40 1N5819 45 MBR1045 35 MBR3535 200 MUR120 200 MUR1520 100 MUR5010 60 MBR160 60 MBR1060 45 MBR3545 400 MUR140 400 MUR1540 200 MUR5020 80 MBR180 80 MBR1080 600 MUR160 600 MUR1560 100 MBR1100 100 MBR10100 1000 MUR1100 IFSM 25 A IFSM 150 A IFSM 600 A IFSM 35 A IFSM 200 A IFSM 600 A VF 0,6 V VF 0,57 V VF 0,55 V trr 50 ns trr 35 ns trr 50 ns RÁPIDO USO GERAL 1 A 35 A 300 A 1 A 15 A 50 A Vr COD. Vr COD. Vr COD. Vr COD. Vr COD. Vr COD. 50 1N4933 50 1N3899 600 R23F6A 50 1N4001 50 MUR1505 50 MUR2100 200 1N4935 200 1N3901 1000 R32F10A 200 1N4003 200 MUR1520 200 MUR2102 400 1N4936 400 1N3903 1400 R23F14A 400 1N4004 400 MUR1540 400 MUR2104 600 1N4937 600 1N1386 600 1N4005 600 MUR1560 600 MUR2106 IFSM 30 A IFSM 250 A IFSM 5000 A IFSM 30 A IFSM 400 A IFSM 400 A trr 0,2 µs trr 0,2 µs trr 0,2 µs Na tabela constam alguns parâmetros importantes para a especificação de um diodo, sendo: VR - tensão reversa; IFAVG - corrente média direta; VF – queda de tensão direta; IFSM - corrente se surto não repetitiva máxima; trr - tempo de recuperação reversa. Além destes, existem outros parâmetros como: IFRMS - corrente direta eficaz; IFRM - corrente direta repetitiva máxima; IRRM - valor de pico da corrente de recuperação reversa.
  11. 11. CEFET-ES/ Uned. Serra Automação Industrial Eletrônica de Potência Semicondutores de Potência 10 2.4 - Tiristores Dá-se o nome de tiristores a uma família de dispositivos semicondutores que funcionam como chaves, onde se destacam: o SCR (Retificador Controlado de Silício), TRIAC (tiristor triodo bidirecional), DIAC (tiristor diodo bidirecional), GTO (tiristor comutável pela porta), MCT (Tiristor controlado por MOS), e LASCR (SCR ativado por luz), também chamado de LTT (Light Triggered Thyristor). O tiristor mais utilizado é o SCR, que comumente acaba sendo chamado simplesmente de tiristor. 2.4.1 – SCR (Retificador controlado de silício) A Fig. 2.5 mostra o símbolo do SCR e suas características de operação através da curva v x i. Fig. 2.5 – Tiristor: símbolo e característica de operação do SCR. Quando o SCR está diretamente polarizado (vT > 0) e é aplicado um pulso positivo de corrente de seu gate (G) para o catodo (K), este dispositivo entra em condução permitindo circulação da corrente IT entre anodo e catodo. Uma vez em condução, o pulso de gate pode ser removido e o SCR continua em condução como um diodo, ou seja, não pode ser comandado a bloquear. Para que o tal deixe de conduzir é necessário que a corrente IT caia abaixo do valor mínimo de manutenção (IH), desta forma o SCR entra novamente na região de corte. Quando o SCR está reversamente polarizado (vT < 0) ele não conduz. Maneiras de disparar um SCR A seguir são apresentadas as formas de disparo de um SCR. Disparo por pulso de gatilho Esta forma é a mais utilizada. Como já foi dito, quando o SCR está diretamente polarizado e recebe um pulso positivo de corrente de gate para catodo, ele entra em condução. O componente A - anodo K - catodo KA vT -+ iT G G - gate VF vT on off iT
  12. 12. CEFET-ES/ Uned. Serra Automação Industrial Eletrônica de Potência Semicondutores de Potência 11 se manterá em condução desde que, após o processo de entrada em condução, a corrente de anodo tenha atingido um valor superior ao limite IL (corrente de “latching”). Sendo assim, a duração do sinal de disparo deve ser tal que permita à corrente atingir o valor IL antes que o sinal de disparo seja retirado. Disparo por sobretensão Se a tensão entre anodo e catodo (diretamente polarizado) aumenta demasiadamente, atingindo valor superior a tensão de breakover (VBO), é possível iniciar o processo de condução mesmo sem corrente no gate. Embora nem sempre destrutivo, este procedimento raramente é utilizado na prática. Disparo por taxa de crescimento da tensão direta Uma vez que o SCR esteja diretamente polarizado, mesmo sem corrente de gate, pode haver a entrada em condução devido à taxa de crescimento da tensão entre anodo e catodo. Se esta taxa for suficientemente elevada (a tensão crescer rapidamente), o SCR entra em condução. Este disparo, normalmente não desejado, é evitado pela ação de um circuito de proteção conhecido como snubber, que se trata de um circuito RC em paralelo com o tiristor. Disparo por temperatura Em altas temperaturas, a corrente de fuga numa junção p-n reversamente polarizada pode assumir valor suficiente para que leve o tiristor ao estado de condução. Para evitar este disparo, utilizam-se dissipadores de calor evitando o aumento excessivo de temperatura. Métodos de comutação de um SCR Como já sabemos, o SCR não pode ser levado ao bloqueio através de um sinal de comando. A condição para o bloqueio é que a corrente de anodo fique abaixo do valor IH - corrente de manutenção, cujo valor é estabelecido pelo fabricante. Existem duas formas básicas de bloqueio de um SCR. Comutação natural Em circuitos de corrente alternada, a corrente naturalmente passa por zero em algum instante fazendo com que o SCR corte. Este tipo de comutação é chamado comutação pela rede. Em T R C Fig. 2.6 – Tiristor com um circuito snubber.
  13. 13. CEFET-ES/ Uned. Serra Automação Industrial Eletrônica de Potência Semicondutores de Potência 12 circuitos CC, onde a comutação depende da característica da própria carga, a comutação é definida como comutação pela carga. Comutação forçada É utilizada em circuitos CC onde não é possível a reversão da corrente de anodo. Sendo assim, deve-se oferecer um caminho alternativo para a corrente, enquanto se aplica uma tensão reversa sobre o SCR. Normalmente é utilizado um capacitor carregado antecipadamente com uma tensão reversa, em relação aos terminais do SCR. No instante desejado para o corte, coloca-se o capacitor em paralelo com o SCR aplicando sobre ele uma tensão reversa. Um exemplo deste tipo de comutação será visto durante o estudo dos inversores, no Capítulo 8. A tabela abaixo mostra as características principais de alguns SCR’s encontrados comercialmente. TIRISTORES – SCR 4 A 25 A 110A 1230 A V Cod. V Cod. V Cod. V Cod. 50 2N6237 50 2N682 50 2N1910 200 ST330C02L 200 2N6238 200 2N685 200 2N1913 600 ST330C06L 400 2N6239 400 2N688 400 2N1916 1200 ST330C12L 600 2N6240 600 2N690 600 2N1806 1600 ST330C162L 800 2N6241 800 2N692 700 2N1807 ITSM 15 A ITSM 150 ITSM 100 A ITSM 7925 A VGT 3 V VGT 2 V VGT 2,5 VGT 3 V IGT 10 mA IGT 40 mA IGT 110 mA IGT 200 mA Entre os parâmetros importantes a serem especificados em um SCR, têm-se: ITAV – Corrente direta média; ITRMS – Corrente direta eficaz; ITSM – Surto máximo de corrente; VDRM e VRRM – Máximos valores de tensão direta e reversa; VGT e IGT – tensão e corrente de gate; IL e IH – corrente de “latching” e de manutenção.
  14. 14. CEFET-ES/ Uned. Serra Automação Industrial Eletrônica de Potência Semicondutores de Potência 13 2.4.2 – O TRIAC O TRIAC é um tiristor que permite a condução de corrente nos dois sentidos, entrando em condução e bloqueando de modo análogo ao SCR. Uma visão simplificada do TRIAC é a de uma associação de dois SCR’s conectados em antiparalelo. Entretanto, note que no caso de dois SCR’s é necessário dois terminais de gatilho. A Figura 2.7 mostra o símbolo do Triac e a comparação com dois SCR’s. Como é bidirecional, não se usa os termos anodo e catodo, deste modo os terminais do TRIAC são chamados anodo 1 (A1), anodo 2 (A2) e gatilho (G). Além de conduzir nos dois sentidos, o TRIAC pode ser disparado tanto com pulso positivo como por pulso negativo de corrente aplicado entre o gate(G) e o anodo1(A1). Fig. 2.7 – Símbolo do Triac e comparação com dois SCR’s em antiparalelo. O TRIAC é um dispositivo utilizado em baixos níveis de potência quando comparado com o SCR. Um exemplo de aplicação é o controle do fluxo de corrente alternada. Este controle pode ser feito de duas formas: (A) Controle por ciclos inteiros e (B) Controle do ângulo de fase. Conforme mostra a Figura 2.8. Fig. 2.8 – Controle do fluxo de potência por Triac’s. (A) Controle por ciclos inteiros, (B) Controle do ângulo de fase. A1A2 G G1 A1A2 G2 tensão de entrada pulso de disparo tensão de saída (A) (B)
  15. 15. CEFET-ES/ Uned. Serra Automação Industrial Eletrônica de Potência Semicondutores de Potência 14 2.4.3 – O DIAC Assim como o Triac, o Diac é um dispositivo que permite condução nos dois sentidos tendo aplicações em baixos níveis de potência. Entretanto, a entrada em condução não ocorre devido a um pulso de corrente no gate, mas a partir de uma tensão de disparo aplicada entre seus terminais. A Figura 2.9 mostra a característica tensão x corrente e o símbolo comumente utilizado para a representação do DIAC. Quando o DIAC está submetido a uma tensão inferior a VD (tensão de disparo), o mesmo não conduz. Depois de atingido o valor da tensão de disparo, o DIAC entra em condução, mantendo uma pequena tensão entre seus terminais. Para o seu bloqueio é necessário que a corrente assuma valor inferior a IH (corrente de manutenção). 2.5 – O Transistor Bipolar de Junção (BJT) O Transistor bipolar mostrado na Figura 2.10, entra e permanece em condução (região de saturação), quando é aplicada uma corrente adequada em sua base, tornando-se equivalentre a uma chave fechada. Nesta condição, a tensão entre coletor e emissor (VCE = VCESat) é tipicamente menor que 2 Volts, logo, são baixas as perdas em condução do BJT. Entretanto, sua comutação não é rápida, o que aumenta muito as perdas de comutação quando opera em altas freqüências (acima de 40 kHz). Fig. 2.10 – Transistor bipolar de Junção: símbolo e característica de operação C B E iC iB VCE VBE C – coletor B – base E - emissor Região de saturação iB3 iB2 iB4 VCE iC iB1 iB0 Fig. 2.9 – Símbolo e características do DIAC. Vi i V + VD 1°Quadrante + IH 3°Quadrante - IH - VD
  16. 16. CEFET-ES/ Uned. Serra Automação Industrial Eletrônica de Potência Semicondutores de Potência 15 Para saturar o transistor bipolar é necessário uma corrente de base IB > ICsat/β, sendo β o ganho de corrente que está em torno de 10 para transistores de baixa tensão e 5 para transistores de alta tensão. Para o bloqueio do dispositivo, é necessário reduzir a corrente de base até zero. Dá-se o nome de transistor “par darlington” quando se associam dois transistores em um único encapsulamento de forma a aumentar o seu ganho, entretanto isso aumenta a queda de tensão e perdas de condução e comutação. A partir do exposto acima, pode-se concluir que além das perdas de comutação já mencionadas, a complexidade dos circuitos de comando e sua potência requerida são grandes fatores limitantes destes dispositivos. A tabela a seguir é uma reduzida amostra de transistores bipolares de potência comerciais da Motorola Semiconductors, mostrando algumas de suas principais características. Ressalta-se que existem outras opções de tensão, corrente e tipo de encapsulamento. TRANSISTOR BIPOLAR IC (A) VCE (V) COD. ts (µs) tf (µs) hFEmin 5 500 MJ16002A 3 3 5 400 MJ13015 2 0,5 8 400 MJ10007 “darlington" 1,5 0,5 3010 800 MJ16008 4,5 0,2 4 50 100 BUS51 3,3 1,6 15 Entre os parâmetros para especificação de um BJT, têm-se: IC – corrente de coletor; VCE – máxima tensão entre coletor e emissor; VCE sat – tensão entre coletor e emissor quando em saturação; hFE – ganho de corrente; tON = td + tR; tOFF = tS + tF – tempos relacionados às comutações. Sendo: td – “delay time”; tR – “rise time”; tS – “storage time”; tF – “fall time”.
  17. 17. CEFET-ES/ Uned. Serra Automação Industrial Eletrônica de Potência Semicondutores de Potência 16 2.6 – Mosfet de Potência O Mosfet (Transistor de Efeito de Campo), cujo símbolo e curva característica são mostrados na Figura 2.11, é comandado por tensão aplicada entre os terminais Gate (G) e Fonte (S). Este dispositivo se aproxima de uma chave fechada (região ôhmica) quando a tensão VGS é adequada, tipicamente de 9 a 15V. E está bloqueado quando esta tensão for inferior ao limite VGSth (4V, típico). Quando em condução, o dispositivo necessita de permanente aplicação da tensão VGS (tensão entre gate e fonte), entretanto não flui corrente no gate, exceto durante as transições ON – OFF e OFF – ON, quando a capacitância de gate é carregada e descarregada. Fig. 2.11 – Mosfet: símbolo e característica de operação. Operando na região ôhmica, o Mosfet se comporta como uma resistência de valor relativamente baixo entre dreno e fonte (RDS ON), sendo assim, é a região de interesse para operação como chave. Os tempos de comutação são curtos (da ordem de dezenas de ns), e sua a resistência de condução RDS ON cresce com o aumento da tensão do dispositivo, logo este dispositivo possui poucas perdas em aplicações de altas freqüências e baixas tensões (até 300V e acima de 50k Hz). Como o dispositivo é comandado por tensão, seu circuito de gate é simples e consome pouca energia, como mostra o esquema e as formas de onda da Figura 2.12 a seguir. M D S G V VGS IG ID Fig. 2.12 – Comando de gate do Mosfet e principais formas de onda. vGS1 VDS vGS2 vGS3 vGS4 vGS5 Região ôhmica vGS0 iD D G S iD VDS VGS D - Dreno G - Gate S - Fonte
  18. 18. CEFET-ES/ Uned. Serra Automação Industrial Eletrônica de Potência Semicondutores de Potência 17 Cabe destacar que em qualquer Mosfet existe um diodo intrínseco entre os terminais fonte e dreno. A tabela abaixo mostra as características principais de uma linha comercial de Mosfet’s da International Rectifiers Semiconductors e alguns de seus parâmetros importantes a serem especificados. Pode-se verificar o incremento de RDson com o aumento da tensão máxima admissível, bem como a redução nos limites máximos de corrente admissíveis. MOSFET’S DE POTÊNCIA COD. VDS RDSon ID 25º COD. VDS RDSon ID 25º IRF540 100 0,077 47 IRFP150 100 0,055 47 IRF640 200 0,18 34 IRFP250 200 0,085 34 IRF740 400 0,55 18 IRFP350 400 0,3 18 IRFBC40 600 1,2 6,8 IRFPC40 600 1,2 6,8 IRFBE30 800 3,0 6,9 IRFPF40 800 2,0 6,9 IRFBG30 1000 5,0 4,3 IRFPG40 1000 3,5 4,3 Os principais parâmetros de um Mosfet de potência são: VDS – Tensão entre dreno e fonte; ID – Corrente de dreno; IDM – Pulso de corrente de dreno; RDS ON – Resistência entre dreno e fonte (região ôhmica); tON = td (on) + tR; tOFF = td (off) + tF - Tempos relacionados às comutações; Sendo: td – “delay time”; tR – “rise time”; tF – “fall time”.
  19. 19. CEFET-ES/ Uned. Serra Automação Industrial Eletrônica de Potência Semicondutores de Potência 18 2.7 – O IGBT O IGBT (Isolated Gate Bipolar Transistor) associa a característica de comando dos MOSFET com a característica de condução dos BJT. Nos últimos anos, vem tendo considerável evolução, com o crescimento de sua velocidade de comutação. A Figura 2.13 mostra o símbolo e a curva característica do IGBT, onde se nota que o componente apresenta os terminais coletor e emissor (como no BJT) e gate (como no Mosfet). O IGBT apresenta a vantagem de ser comandado por tensão requerendo baixa quantidade de energia do circuito de comando, e em condução tem a vantagem do BJT de baixas tensões VCE on, podendo conduzir elevadas correntes com baixas perdas. O tempo de entrada em condução é maior que o do MOSFET, na ordem de décimos de µs, e no bloqueio surge o fenômeno da corrente de cauda que provoca elevadas perdas de comutação em altas freqüências. A Figura 2.14 mostra o esquema simplificado do comando com suas principais formas de onda. Tipicamente, VGE entre 12V e 20V resulta em VCE ON reduzida, diminuindo as perdas de condução. Fig. 2.14 – Comando de gate do IGBT e principais formas de onda C G E 15 V VGE IG IC corrente de cauda C G E C- Coletor G- Gate E- Emissor C VCE ON VGE5 V GE4 VGE3 VGE2 VGE1 VGE0 VCE V CE IC VGE I Fig. 2.13 – Símbolo e curva característica do IGBT
  20. 20. CEFET-ES/ Uned. Serra Automação Industrial Eletrônica de Potência Semicondutores de Potência 19 A tabela abaixo mostra as características principais de uma linha comercial de IGBT’s da International Rectifiers Semiconductors e seus parâmetros importantes a serem especificados e aplicações típicas. IGBT 600 V * PADRÃO Aplicações: UPS e acionamento RÁPIDO Aplicações: Industrial, UPS de altas tensões e acionamento ULTRA-RÁPIDO Aplicações: Robótica e acionamento Ic COD. Perdas Ic (25º) COD. Perdas Ic (25º ) COD. Perdas 19 IRGBC20S 4,1 16 IRGBC20F 1,8 13 IRGBC20U 0,35 50 IRGBC40S 13 49 IRGBC40F 4,4 40 IRGBC40U 1,5 70 IRGBC50S 16 70 IRGBC50F 6,0 55 IRGBC50U 1,7 Os principais parâmetros a serem especificados em um IGBT são: VCES – tensão máxima suportável entre coletor e emissor; IC - corrente de coletor; ICM – pulso de corrente de coletor; VCE ON – tensão entre coletor e emissor na região de saturação; tON = td (on) + tR; tOFF = td (off) + tF - Tempos relacionados às comutações; Sendo: td – “delay time”; tR – “rise time”; tF – “fall time”. 2.8 – Módulos de Potência Os semicondutores de potência podem aparecer já associados em módulos, reduzindo o tamanho dos conversores e facilitando a montagem, entretanto podem encarecer a manutenção. Como por exemplo, mostramos abaixo: 1. Ponte monofásica de diodos, 2. ponte trifásica de diodos, 3. ponte monofásica de tiristores, 4. ponte completa trifásica de IGBT’s ou MOSFET’s
  21. 21. CEFET-ES/ Uned. Serra Automação Industrial Eletrônica de Potência Semicondutores de Potência 20 2.9 – A Escolha do Semicondutor de Potência A escolha de um dispositivo semicondutor de potência para uma aplicação específica deve levar em conta vários fatores como: custo do dispositivo, os níveis de tensão e corrente encontrados, a complexidade do circuito de comando e seu custo, e a freqüência com que o dispositivo irá operar. Os tiristores são os semicondutores de potência de menor custo, entretanto apresentam limitações devido à baixa velocidade de comutação, a complexidade do circuito de comando e dificuldade no bloqueio. São amplamente utilizados em conversores que usam comutação pela rede, como retificadores controlados e controladores CA. O SCR se destaca pela sua elevada capacidade de corrente e tensão suportável (3kA/ 3kV). Antes do desenvolvimento dos Mosfet’s o único dispositivo disponível para aplicações em conversores de alta freqüência (5 a 20 kHz) e médias potências (até 100 kW) era o transistor 1 2 3 4
  22. 22. CEFET-ES/ Uned. Serra Automação Industrial Eletrônica de Potência Semicondutores de Potência 21 bipolar de potência – BJT. A tecnologia deste dispositivo evoluiu bastante, permitindo a fabricação de componentes com capacidade de suportar corrente de coletor de centenas de ampères e tensões de bloqueio de até 800 V. A principal vantagem do BJT de potência é o custo, particularmente em altas tensões, enquanto suas principais desvantagens são a complexidade e custo do circuito de comando e limitação na velocidade de comutação, tornando-se uma tecnologia ultrapassada. É aplicado em deflexão horizontal de TVs e monitores, amplificador de áudio, etc. O Mosfet funciona muito bem em altas freqüências e necessita de um simples circuito de comando. Assim, reina absoluto em aplicações de alta freqüência (acima dos 50kHz) e baixas tensões e correntes. Como já vimos, a resistência de condução dos Mosfet’s cresce muito com o aumento da máxima tensão suportável, o que leva a uma redução da capacidade de corrente. Deste modo, normalmente os Mosfet’s são utilizados para tensões inferiores a 500V. Para maiores tensões a aplicação se restringe a baixas potências (menor que 100W). Geralmente são usados em fontes de alimentação chaveadas, reatores eletrônicos, relés de estado sólido de sistemas automotivos, etc. O mais recente dos semicondutores desenvolvidos - o IGBT – vem se destacando pela sua capacidade de condução de altas correntes e de suportar elevadas tensões (500A/1500V), além da simplicidade de seu circuito de comando. Embora mais lentos que os Mosfet’s, os IGBT’s são mais rápidos que os BJT’s permitindo operação em freqüências até os 30kHz. Trata-se de uma tecnologia em crescente desenvolvimento, que permitiu a melhoria dos acionamentos de motores CA, com o desenvolvimento dos Inversores de freqüência PWM. Sua aplicação vai desde acionamento de motores até ignição automotiva. A tabela abaixo mostra uma comparação entre os principais dispositivos semicondutores. Diodos BJT MOSFET IGBT SCR Comando em - corrente tensão tensão corrente Complexidade do circuito de comando - alta muito baixa muito baixa baixa Capacidade de corrente alta média baixa para média média para alta alta Tensão suportável alta média baixa para média média para alta alta Freqüência de comutação alta média alta média baixa
  23. 23. CEFET-ES/ Uned. Serra Automação Industrial Eletrônica de Potência Retificadores não controlados 22 3. RETIFICADORES NÃO CONTROLADOS 3.1 - Introdução Na maior parte das aplicações em eletrônica de potência, a entrada de energia tem a forma de uma tensão alternada senoidal em 60 Hz, proveniente da rede, que é convertida em tensão contínua para ser aplicada à carga. Isto é realizado através dos conversores CA-CC, também chamado de Retificadores. Dependendo do semicondutor utilizado, SCR ou diodo, os retificadores podem ser controlados ou não controlados respectivamente. Os retificadores a diodo são encontrados em muitas aplicações, em geral como estágio de entrada de fontes de potência, acionamento de máquinas, carregadores de baterias e outros. Neste caso a tensão de saída do retificador não pode ser controlada. Em algumas aplicações, tais como acionamento de máquinas CC, alguns acionamentos de máquinas CA, controle de temperatura, galvanoplastia, e sistemas de transmissão em corrente contínua, o controle da tensão de saída se faz necessário. Nestas situações são utilizados retificadores controlados. Os retificadores controlados serão estudados no Capítulo 4. 3.2 - Retificador Monofásico de Meia Onda a) Carga Resistiva O circuito deste retificador alimentando carga resistiva, bem como as principais formas de onda, são mostrados na Figura 3.1. No semiciclo positivo da tensão de entrada, o diodo está polarizado diretamente, logo o mesmo conduz e a tensão da fonte é aplicada sobre a carga. No semiciclo negativo o diodo fica polarizado reversamente, logo se bloqueia, levando a tensão sobre a carga a zero. Fig. 3.1 – Retificador a diodo em meia ponte e principais formas de onda. iL R VL D1+ - VS + _VD + _ t t t t VS VL IL VD VMÉDIO VS pico
  24. 24. CEFET-ES/ Uned. Serra Automação Industrial Eletrônica de Potência Retificadores não controlados 23 A tensão média aplicada sobre a carga neste caso é: Sendo VS RMS o valor eficaz da tensão da fonte de entrada. Por exemplo, para uma tensão da rede de 127V, a tensão média de saída deste retificador será de 57V. E a corrente média sobre na carga é dada por: Algumas vezes é conveniente o uso do valor eficaz da tensão da carga ao invés do valor médio. O valor eficaz da tensão na carga é dado por: RMSSRMSL VV ×= 707,0 b) Carga RL O retificador monofásico de meia onda alimentando uma carga RL bem como as formas de onda estão representadas na Figura 3.2. iL D1 + _VD R VL + _ VR L + _ Vind + - VS t t t VS VL IL VD VS pico π 2π 3πβ0° Fig. 3.2 - Retificador monofásico de meia onda alimentando carga RL e formas de onda. A indutância provoca um atraso da corrente em relação à tensão, assim o diodo não corta no fim do semiciclo positivo de VS (ωt = π). O corte ocorre no ângulo β chamado ângulo de extinção, que é maior que π. O diodo permanece em condução até que a corrente na carga se anule, permitindo que a tensão na carga, para ângulos superiores a π, assuma valores negativos. A existência da indutância provoca uma redução na tensão média na carga, sendo que quanto maior a indutância, maior será o valor do ângulo de extinção, com conseqüente redução do valor médio de tensão na carga. RMSSMEDIO V0,45V ×= R RMSS MÉDIO V0,45 I × =
  25. 25. CEFET-ES/ Uned. Serra Automação Industrial Eletrônica de Potência Retificadores não controlados 24 c) Carga RL com Diodo de "Roda-Livre" Para solucionar os problemas causados pela presença da indutância, utiliza-se o diodo de roda-livre, também conhecido como diodo de circulação, diodo de retorno ou diodo de recuperação. O retificador é apresentado na Figura 3.3. Na Figura 3.4 estão representadas as duas etapas de funcionamento do retificador contendo o diodo de roda-livre. Fig. 3.4 - Etapas de funcionamento para o retificador com diodo de "roda-livre". Durante o semiciclo positivo da tensão VS de alimentação, o diodo D1 conduz a corrente de carga IL e o diodo DRL como está polarizado reversamente, está na região de corte. Nesta etapa a tensão na carga é igual à tensão de entrada. No semiciclo negativo da tensão VS, a corrente de carga, devido à indutância, circula no diodo de "roda-livre" DRL, que está polarizado diretamente nesta etapa. Em razão disso, o diodo D1 polarizado reversamente está bloqueado e a tensão na carga é nula. O diodo de roda-livre permanece em condução até que a corrente de carga caia até zero. Isso se dá quando a energia armazenada no indutor é completamente descarregada. As formas de onda estão representadas na Figura 3.5. D1 VS R L DRL Fig. 3.3 - Retificador Monofásico de Meia Onda com Diodo de circulação. D1 R VL + _ VR L + _ Vind + - VS DRL iL D1 R VL + _ VR L + _ Vind + - VS DRL iL + _ 1°etapa 2°etapa t t t VS VL IL VMÉDIO Fig. 3.5 - Formas de onda na carga.
  26. 26. CEFET-ES/ Uned. Serra Automação Industrial Eletrônica de Potência Retificadores não controlados 25 Na Figura 3.5 apresentada, a corrente de carga se anula em cada ciclo de funcionamento do retificador, nesta situação a condução é chamada descontínua. Se a corrente na carga não se anula antes do inicio do próximo ciclo, a condução é contínua. O que define o modo de condução, contínuo ou descontínuo, é a constante de tempo da carga. Para constantes de tempo L/R elevadas, ou seja, indutância de alto valor e/ou resistência de baixo valor, a condução provavelmente será contínua. Existe uma importância sob o ponto de vista prático em se ter condução contínua, pois a mesma resulta numa redução do ripple (ondulação) de corrente na carga. As formas de onda do retificador funcionando em condução contínua estão representadas na Figura 3.6. Da mesma forma que no caso de uma carga resistiva pura, a tensão média na carga para o retificador de meia onda com diodo de roda livre é dada por: Como o indutor é magnetizado e desmagnetizado a cada ciclo de funcionamento, o seu valor médio de tensão é nulo. Sendo assim, a tensão média na carga é igual à tensão média na parcela resistiva. Daí: Note então que o valor da indutância não altera o valor médio da corrente na carga. O efeito do indutor é de filtragem da componente CA de corrente, ou seja, quanto maior o valor da indutância, menor será a ondulação (ripple) da corrente. Comumente se diz que “o indutor alisa a corrente”. Corrente e tensão nos diodos 1. A máxima tensão reversa sobre os diodos é dada pelo valor de pico da tensão de entrada do retificador. 2. Se tratando de condução contínua (constante de tempo L/R elevada), o valor médio da corrente em cada diodo é dado pela metade da corrente média na carga. RMSSMEDIO V0,45V ×= R RMSS MÉDIO V0,45 I × = 1°etapa 2°etapa t t VS VL IL Fig. 3.6 - Formas de onda na carga para condução contínua.
  27. 27. CEFET-ES/ Uned. Serra Automação Industrial Eletrônica de Potência Retificadores não controlados 26 3.3 - Retificador Monofásico de Onda Completa em Ponte a) Carga Resistiva Nesta configuração, também chamada de ponte monofásica, durante o semiciclo positivo da tensão de entrada os diodos D1 e D4 conduzem corrente à carga e os diodos D2 e D3 estão bloqueados. Já no semiciclo negativo, D2 e D3 passam a conduzir e D1 e D4 bloqueiam. Desta forma a tensão sobre a carga é sempre positiva. A Figura 3.7 mostra as duas etapas de operação deste retificador com as principais formas de onda. Fig. 3.7 – Retificador a diodo em ponte: etapas e principais formas de onda O valor médio da tensão na carga é dado por: E a corrente média na carga é obtida de: Corrente e tensão nos diodos da ponte 1. A máxima tensão reversa sobre os diodos é dada pelo valor de pico da tensão de entrada da ponte retificadora. 2. Os valores médios das correntes nos diodos são iguais à metade do valor calculado para a carga. RMSSMÉDIO V0,9V ×= R RMSS MÉDIO V0,9 I × = vs vR D1 D2 D4D3 vs + - vR + - D1 D2 D4D3 + - vs vR + - is is is t t VMÉDIO D1 - D4 D1 - D4D2 - D3
  28. 28. CEFET-ES/ Uned. Serra Automação Industrial Eletrônica de Potência Retificadores não controlados 27 As oscilações que aparecem na tensão sobre a carga, denominam-se “ripple”. Este ripple de tensão pode ser reduzido com a inclusão de um filtro capacitivo, normalmente um capacitor eletrolítico de alto valor em paralelo com a carga. b) Filtro Capacitivo As formas de onda da Figura 3.8 comparam a tensão na carga e a corrente na fonte nas duas situações, com e sem o capacitor de filtro. Quanto maior a capacitância menor será o ripple. Como o capacitor se mantém carregado, os diodos são polarizados somente quando a tensão da rede ultrapassa o valor da tensão de saída sobre o capacitor, portanto durante pequenos intervalos de tempo. Isto provoca correntes não senoidais na fonte de alimentação, gerando harmônicas que reduzem o fator de potência e poluem o sistema elétrico. (a) (b) Fig. 3.8 – Tensão de saída e corrente da rede para retificadores sem (a) e com (b) filtro capacitivo. c) Carga RL A ponte monofásica alimentando carga RL, bem como as principais formas de onda, estão representados na Figura 3.9. Fig. 3.9 – Retificador em ponte monofásica alimentando carga RL e formas de onda.. VR iS VR iS D1 D2 D4D3 + - vs vRR L vl + - VL iL t t VS VL IL D1 - D4 D1 - D4D2 - D3
  29. 29. CEFET-ES/ Uned. Serra Automação Industrial Eletrônica de Potência Retificadores não controlados 28 Com o uso do indutor, pode-se obter uma corrente de carga menos ondulada. Assim, quanto maior o valor da indutância, menor será o ripple de corrente. As expressões para cálculo de tensão e corrente médias são as mesmas para carga resistiva. d) Carga RLE Em algumas aplicações, os retificadores alimentam cargas RLE, ou seja, cargas constituídas de resistência, indutância e uma tensão CC. Como exemplo típico, cita-se um motor de corrente contínua, cujo enrolamento de armadura pode ser representado eletricamente por uma resistência, uma tensão contínua (tensão gerada ou contra-eletromotriz) e uma indutância. Normalmente se utiliza um indutor em série com o motor para diminuir a ondulação da corrente. A Figura 3.10 apresenta um retificador em ponte com carga RLE e as principais formas de onda. Fig. 3.10 – Retificador em ponte alimentando carga RLE. Considerando condução contínua, o que é assegurado pelo alto valor da indutância, a corrente na carga nunca se anula. Assim, a forma de onda da tensão na carga (VL) não sofre alteração devido à existência da tensão E. Sabendo que o valor médio da tensão na carga é dado por: E como a tensão média no indutor é zero, tem-se que: Então, a corrente média na carga é dada por: RMSSMÉDIOL V0,9V ×= EVV MÉDIORMÉDIOL += R EV I MÉDIOL MÉDIOL − = D1 D2 D4D3 vs + - vR R L vl + - VL iL + - E vs t t VMÉDIO vL E IL
  30. 30. CEFET-ES/ Uned. Serra Automação Industrial Eletrônica de Potência Retificadores não controlados 29 3.4 - Retificadores Trifásicos Na indústria onde a rede trifásica está disponível, às vezes é preferível utilizar retificadores trifásicos, que são constituídos de três pontos de entrada, cada um conectado a uma das fases da rede, sendo indicados para níveis maiores de potência (maior que 2kW). Nesta configuração, o ripple de tensão e de corrente são menores, conseqüentemente os filtros serão menores. Além disso, os retificadores trifásicos apresentam maior valor médio de tensão de saída. 3.4.1 - Retificador Trifásico de Meia Onda Na Figura 3.11 é apresentado o retificador, o qual pode ser entendido como a combinação de três retificadores monofásicos de meia onda, cada um alimentado por uma das fases da rede de alimentação trifásica. Nesse tipo de retificador, também conhecido como retificador com ponto médio, note que é necessário o uso do neutro do sistema de alimentação. As formas de onda deste retificador alimentando uma carga resistiva estão apresentadas na figura 3.12. Cada diodo conduz durante um intervalo correspondente a 120 graus da tensão da rede, sendo que o diodo em condução é sempre aquele conectado à fase que apresenta o maior valor de tensão instantânea. O valor médio da tensão na carga é dado pela expressão: Sendo VRMS de FASE o valor eficaz da tensão de fase (entre fase e neutro). FASEdeRMSMÉDIO V17,1V ×= D1 D2 D3 A B C N + - vLR Fig. 3.11 - Retificador trifásico com ponto médio. 30° 150° 270° 390° vAN vBN vCN D1 D2 D3 Diodos conduzindo VL Fig. 3.12 - Formas de onda do retificador de ponto médio.
  31. 31. CEFET-ES/ Uned. Serra Automação Industrial Eletrônica de Potência Retificadores não controlados 30 O valor médio da corrente na carga é obtido de: Com o uso de um indutor em série com a carga resistiva, pode-se obter um ripple de corrente ainda menor comparado com carga resistiva pura. Observa-se que as expressões para o cálculo da tensão e corrente médias continuam sendo válidas para carga RL. Corrente e tensão nos diodos A máxima tensão reversa sobre os diodos é dada pelo valor de pico da tensão de linha (tensão entre fases) aplicada na entrada do retificador. Por quê?(...) FASEdeRMS REVERSA VV ⋅⋅= 32 Como cada diodo conduz durante um terço do período, a corrente média nos diodos é dada por: 3.4.2 - Retificador Trifásico de Onda Completa De grande importância Industrial, o retificador trifásico de onda completa, apresentado na Figura 3.13, é conhecido também como ponte trifásica ou como Ponte de Graetz. Este retificador apresenta seis etapas de operação ao longo de um período da rede, sendo que cada etapa é caracterizada por um par de diodos em condução. Em cada instante a corrente da carga flui por um diodo da parte superior (D1, D2 ou D3) e um da parte inferior (D4, D5, ou D6). A operação pode ser explicada assumindo as tensões nas três fases conforme a seqüência mostrada na Fig. 3.14. Como pode ser visto, a tensão da fase A é a maior das três entre o período de 30º a 150º levando D1 a condução. A fase B é a maior de 150º a 270º , fazendo D2 conduzir. E a fase C é a maior entre 270º e 390º (ou 30º do próximo ciclo), o que provoca a condução de D3. De forma análoga, cada diodo inferior da ponte conduz quando a fase ligada ao mesmo apresenta o menor valor R MÉDIO MÉDIO V I = 3 I I CARGANAMÉDIA MÉDIAD = D1 D2 D5D4 VL + - D3 D6 N VAN VBN VCN Fig. 3.13 – Retificador trifásico de onda completa.
  32. 32. CEFET-ES/ Uned. Serra Automação Industrial Eletrônica de Potência Retificadores não controlados 31 instantâneo dentre as três. Desta forma, pode-se constatar que a fase A tem menor tensão de 210º a 330º , fazendo D4 conduzir. A fase B de 330º a 450º (90º do próximo ciclo), o que faz D5 conduzir. E a fase C de 90º a 210º , levando D6 à condução. O resultado final dos estados de condução são seis etapas de operação, tal que em cada etapa, dois diodos (um da parte superior e um da parte inferior) estão conduzindo, como mostra a Fig. 3.14. Em cada etapa de operação duas fases estão conectadas a carga, uma através de um diodo superior e a outra através de um diodo inferior. A tensão de saída é dada pelo valor instantâneo das tensões entre as fases conectadas à carga em cada uma das seis etapas de operação mostradas, conforme mostra a Fig. 3.15. Fig. 3.15 – Forma de onda da tensão de saída de um retificador trifásico de onda completa. 90° 150° 210° 270° 330° 390° VAN VBN VCN D1–D5 D1–D6 D2–D6 D2–D4 D3–D4 D3–D5 30° Diodos conduzindo Fig. 3.14 - Tensões nas três fases e diodos em condução nas seis etapas. D1–D5 D1–D6 D2–D6 D2–D4 D3–D4 D3–D5 Diodos conduzindo V MÉDIO VAB VAC VBC VBA VCA VCB 30° 90° 150° 210° 270° 330° 390° VL
  33. 33. CEFET-ES/ Uned. Serra Automação Industrial Eletrônica de Potência Retificadores não controlados 32 Note que a freqüência da componente fundamental da tensão é igual a 6 vezes a freqüência das tensões de alimentação. Ou seja, para a rede de 60Hz, a tensão de saída apresenta oscilação de 360Hz. O valor médio da tensão de saída é dada por: Sendo VRMS é o valor eficaz da tensão entre fase e neutro. O valor médio da corrente de saída é: O ripple na corrente de carga pode ser reduzido ainda mais se for utilizado um indutor série. Observa-se que as expressões para o cálculo da tensão e corrente médias continuam sendo válidas para carga RL. A máxima tensão reversa e a corrente média nos diodos são obtidas da mesma forma que no retificador de ponto médio. Entre as vantagens do retificador em ponte de Graetz sobre o retificador de ponto médio, citam- se: maior tensão de saída (para uma mesma tensão de entrada); menor ripple da tensão de saída; e maior freqüência da componente fundamental da tensão de saída (isso requer filtros de menor peso e volume). FASEdeRMSMEDIOL V2,34V ×= R MÉDIOL MÉDIO V I =
  34. 34. CEFET-ES/ Uned. Serra Automação Industrial Eletrônica de Potência Retificadores controlados 33 4. RETIFICADORES CONTROLADOS Neste Capítulo serão apresentados os retificadores controlados usando SCR’s, enfocando o funcionamento da parte de potência dos retificadores. Os circuitos de disparo dos SCR’s serão apresentados no Capítulo 5. 4.1 - Retificador Monofásico Controlado de Meia Onda Se substituirmos o diodo do retificador de meia onda por um SCR, tem-se um retificador controlado, o qual permite variar a tensão de saída. a) Carga Resistiva O circuito e as formas de onda do retificador monofásico controlado de meia onda estão representados na figura 4.1. Fig. 4.1 - Retificador monofásico de meia onda e principais formas de onda. No semiciclo positivo da tensão de entrada VS, o SCR está diretamente polarizado, entretanto o mesmo não conduz, pois é necessária a aplicação de um pulso de corrente entre os terminais gate e catodo para que ele entre em condução. Assim, no intervalo de 0° até αd , o SCR está cortado e a tensão na carga é nula. Transcorrido um certo ângulo αd (ângulo de disparo) após a passagem da tensão Vs por zero, o circuito de disparo aplica um pulso de corrente (IG) entre os terminais gate e catodo do SCR provocando seu disparo. Com isso, a tensão na carga passa ser igual à tensão de entrada. iL R VL T1 + - VS + _ VT + _ Circuito de disparo iG sincronismo αd t t t VS IL VT VS pico t VL VMÉDIO iMÉDIO t iG αd αd 0° π π °≡ 02
  35. 35. CEFET-ES/ Uned. Serra Automação Industrial Eletrônica de Potência Retificadores controlados 34 Como a carga é resistiva, a forma de onda de corrente segue a forma de onda de tensão. No instante em que a tensão de alimentação e conseqüentemente a tensão na carga passam por zero, a corrente de carga também se anula provocando o corte do SCR. No semiciclo negativo da tensão da fonte o SCR se mantém em corte. Portanto, durante este intervalo, a tensão e corrente na carga são nulas. Somente no próximo ciclo, quando for atingido o ângulo de disparo αd, é que ocorre o disparo e o processo se repete. Note que com a variando-se o ângulo de disparo αd varia-se a tensão média na carga. Sendo VL MÉDIO a tensão média na carga, esta pode ser obtida pela expressão: Sendo VS RMS a tensão eficaz de entrada. Nos ângulos mínimo e máximo, ocorre que: αd = 0°, VL MÉDIO = 0,45VS RMS (semelhante ao retificador não controlado); αd = 180°, VL MÉDIO = 0. Na figura 4.2 é apresentado um gráfico da tensão média na carga em função do ângulo de disparo αd. Fig. 4.2 – Gráfico representativo da tensão na carga em função de αd, para um retificador monofásico controlado de meia onda com carga resistiva. Note que a tensão média de saída é dada em p.u. (valor por unidade). Assim, este gráfico pode ser utilizado para qualquer valor de tensão de entrada. Por exemplo: se o ângulo de disparo for 90°, pelo gráfico se obtém o valor 0,225. Então, para uma tensão eficaz de entrada de 127V, a tensão média de saída será 0,225 x 127V = 28,5V. 0,000 0,225 0,450 0 90 180 Ângulo de disparo em graus Tensãomédiadesaída (p.u.) RMSS MèdioL V V )cos1(V0,225V RMSSMEDIOL dα+⋅⋅=
  36. 36. CEFET-ES/ Uned. Serra Automação Industrial Eletrônica de Potência Retificadores controlados 35 b) Carga RL Fig. 4.3 - Retificador de meia onda alimentando carga RL. Com carga RL a corrente na carga se extingue num ângulo β superior a π. Sendo assim, a tensão na carga se mantém igual à da fonte até que a corrente no SCR se anule. Note então que a tensão na carga assume valores negativos. Isso causa uma redução no seu valor médio quando comparado com carga resistiva pura. Os fatores que determinam o valor médio da tensão na carga são a tensão de entrada, o ângulo de disparo αd e o ângulo de extinção β. E como o ângulo β é influenciado pela carga, logo a tensão média de saída dependerá da própria carga. Esse fato se constitui um grande empecilho deste retificador para cargas RL. c) Carga RL com diodo de “Roda Livre” O circuito e as formas de onda para o retificador de meia onda com diodo de circulação estão representados na Figura 4.4. No intervalo de 0°até αd o SCR está cortado, sendo assim a tensão na carga é nula. No instante correspondente ao ângulo αd, o SCR é disparado pela corrente de gate IG e a tensão na carga passa ser igual à tensão da fonte. No instante em que a tensão da fonte passa por zero, o diodo de retorno é polarizado diretamente desviando a corrente de carga e fazendo com que o SCR bloqueie. A corrente circula então pelo diodo, decaindo exponencialmente, e a tensão na carga se mantém nula. iL T1 R VL L+ - VS iG t VL IL VMÉDIO t VS π 2πβ0° t iG αd αd
  37. 37. CEFET-ES/ Uned. Serra Automação Industrial Eletrônica de Potência Retificadores controlados 36 Se o ângulo de disparo for elevado, é provável que a corrente se anule antes do próximo disparo, caracterizando condução descontínua. Da mesma forma ocorre quando a carga apresenta baixa constante de tempo L / R, ou em outras palavras, se a carga for ‘pouco indutiva’. Por outro lado, para baixos ângulos de disparo e cargas com elevada constante de tempo, possivelmente a condução será contínua. Seja a expressão seguinte para o calculo do valor médio da tensão na carga. Note que esta expressão é a mesma utilizada para o retificador de meia onda com carga resistiva pura. Portanto, agora o valor médio da tensão na carga não depende do ângulo de extinção β, em outras palavras, não depende da carga. 4.2 - Retificador Monofásico Controlado de Onda Completa em Ponte a) Carga resistiva O retificador, também chamado de ponte monofásica controlada, é formado por quatro SCR’s que são comandados aos pares: T1-T4 e T2-T3, como mostra a Figura 4.5. Quando a tensão de entrada é positiva, os SCR’s T1 e T4 podem ser disparados, permitindo um caminho para a corrente circular entre a fonte e a carga. Com carga resistiva, a corrente chega a zero junto com a tensão, neste instante este par de tiristores é cortado. No semiciclo negativo da rede, os SCR’s T2 e T3 conduzem a partir do pulso de gatilho, desta forma a corrente de carga permanece unidirecional, mesmo que a fonte seja alternada. T1 + - VS iG DRL R L iL VL t VL IL VMÉDIO t VS π 2πβ0° t iG αd αd T1 DRL Fig. 4.4 - Retificador monofásico de meia onda a tiristor com diodo de circulação. )cos1(V0,225V RMSSMEDIOL dα+⋅⋅=
  38. 38. CEFET-ES/ Uned. Serra Automação Industrial Eletrônica de Potência Retificadores controlados 37 t iG αd αd αd t VS 0° π π °≡ 02 t VL VMÉDIO T1 - T4 T2 - T3 T1 - T4 T1 T2 T4T3 vs + - vL + - Fig. 4.5 – Retificador monofásico controlado em ponte e formas de onda. A variação da tensão de saída é obtida variando-se o ângulo de disparo αd dos SCR’s. A tensão média na carga é dada pela expressão a seguir, onde VS RMS é o valor eficaz da tensão de entrada. b) Carga RL Na Figura 4.6a estão representadas as formas de onda de tensão e corrente na carga quando a ponte de SCR’s alimenta uma carga RL. Devido ao atraso da corrente em relação à tensão, quando esta passa por zero a corrente ainda circula pelos SCR’s e a carga, e enquanto a corrente não se anula, a tensão de carga se mantém igual à da fonte. Quando a corrente se anular, o par de SCR’s em condução é cortado, e a tensão na carga se anula. Essa permanecerá nula até que ocorra o próximo disparo provocando a condução do outro par de SCR’s. iG t VL t αd αd αd IL T1 - T4T1 - T4 T2 - T3 iG t VL t αd αd αd IL T1 - T4T1 - T4 T2 - T3 (a) (b) Fig. 4.6 – Formas de onda para carga RL; (a) em condução descontínua, e (b) em condução contínua. )cos1(V0,45V RMSSMEDIOL dα+⋅⋅=
  39. 39. CEFET-ES/ Uned. Serra Automação Industrial Eletrônica de Potência Retificadores controlados 38 Como a corrente se anula antes da ocorrência do próximo disparo, a condução é descontínua. Se a indutância L for grande o suficiente para que a corrente não se anule antes do próximo disparo, a condução é contínua. A Figura 4.6b apresenta as formas de onda para este caso. A condução contínua é possível para cargas com alta constante de tempo (L/R) e baixos ângulos de disparo (inferiores a 90°, por quê?...) 4.3 - Retificador Monofásico Semicontrolado É possível economizar em componentes, substituindo dois SCR’s da ponte monofásica controlada por dois diodos como mostra a Figura 4.7. O retificador obtido é conhecido como retificador monofásico semicontrolado, ou também como ponte monofásica semicontrolada, ou ainda como ponte monofásica mista. (a) (b) Fig. 4.7 – Possibilidades para ponte mista;(a) simétrica, (b) assimétrica. O funcionamento do retificador semicontrolado é semelhante ao do controlado, sendo que a diferença está no instante de bloqueio. A Figura 4.8 apresenta as formas de onda e as quatro etapas de operação da ponte mista do tipo simétrica para carga RL. Etapa 1: No instante correspondente ao ângulo de disparo αd, durante o semiciclo positivo da tensão de entrada, o SCR T1 é disparado permitindo que a corrente IL circule por ele e pelo diodo D2. Nesta etapa a tensão de saída é igual à tensão de entrada. Etapa 2: Quando a tensão de entrada passa por zero e na eminência de assumir valores negativos, o diodo D1 fica diretamente polarizado entrado em condução. Em conseqüência, o diodo D2 fica reversamente polarizado, entrando em corte. A corrente de carga passa a circular por T1 e D1 mantendo a tensão na carga nula. Dependendo da natureza da carga, a corrente pode chegar a zero antes do próximo disparo. Etapa 3: no semiciclo negativo de VS, quando T2 é disparado, T1 é cortado e a corrente da carga é conduzida por T2 e o diodo D1, mantendo a tensão na saída positiva. T1 D1 D2T2 carga Vs T1 T2 D1 carga Vs D2 DRL
  40. 40. CEFET-ES/ Uned. Serra Automação Industrial Eletrônica de Potência Retificadores controlados 39 Etapa 4: Quando a tensão de entrada passa por zero e na eminência de assumir valores positivos, o diodo D2 entra em condução e o diodo D1 é cortado. A corrente de carga passa a circular por T2 e D2 mantendo a saída com tensão nula. No caso de carga resistiva pura, como a corrente se anula junto com a tensão, as etapas 2 e 4 não ocorrem, já que o SCR em condução é cortado evitando estas etapas. t iG αd αd αd t VL iL T1 -D2 T2-D1 T1-D2T1-D1 T2-D2 (1) (2) (3) (4) (1) etapas T1 T2 D2D1 R VL L iL VS + _ T1 T2 D2D1 R VL L iL VS+ _ T1 T2 D2D1 R VL L iL VS+ _ T1 T2 D2D1 R VL L iL VS + _ etapa (1) etapa (2) etapa (3) etapa (4) Fig. 4.8 – Formas de onda e etapas de operação da ponte mista. Considerando que T1 esteja em condução, note que se T2 não for disparado, e supondo que T1 continue a conduzir, em função da elevada constante de tempo elétrica da carga (carga muito indutiva), no próximo semiciclo positivo, a fonte será novamente acoplada à carga através de T1 e D2 fornecendo-lhe mais corrente. Ou seja, a simples retirada dos pulsos de disparo não garante o desligamento entre carga e fonte. Para que isso ocorra é necessário diminuir o ângulo de disparo para que a corrente se torne descontínua e assim T1 corte. Obviamente o mesmo comportamento
  41. 41. CEFET-ES/ Uned. Serra Automação Industrial Eletrônica de Potência Retificadores controlados 40 pode ocorrer com respeito ao outro par de componentes. Isto pode ser evitado pela inclusão do diodo de roda livre DRL, o qual entrará em condução quando a tensão de entrada se inverter, cortando o SCR e o diodo que estavam em condução. A vantagem da montagem assimétrica é que os catodos dos SCR’s estão em ponto comum, de modo que os sinais de disparo podem estar num mesmo potencial. No caso da ponte mista assimétrica, como existe um caminho de livre circulação formado pelos diodos D1 e D2, toda vez que a fonte de entrada inverte a polaridade, a corrente de carga é conduzida pelos diodos, levando ao corte o SCR que estava em condução. Assim, a ponte assimétrica não apresenta o problema mencionado, o que dispensa o uso do diodo DRL. A tensão média de saída numa ponte mista monofásica é dada pela expressão abaixo. 4.4 - Retificador Trifásico Controlado de Meia Onda a) Carga resistiva O circuito deste retificador, conhecido também como retificador trifásico controlado de ponto médio, está representada na Figura 4.9. O funcionamento do retificador controlado é similar ao retificador não controlado, a diferença está na entrada em condução dos semicondutores de potência. Isto faz com que se torne possível variar o valor da tensão de saída. Seja a Figura 4.10a, na qual estão representadas as formas de onda das três fases e a tensão na carga para ângulo de disparo igual a 30°. Observe que para o retificador trifásico, o ângulo de disparo é zero no instante em que duas ondas de tensão se interceptam e não quando a tensão passa por zero, como é o caso dos retificadores monofásicos. Percebe-se que o SCR T1, por exemplo, somente pode conduzir após os 30o da fase A. Isso se deve ao fato de que antes dos 30°desta fase, T1 está reversamente polarizado, logo impossibilitado de conduzir. Portanto, os disparos dos tiristores devem ser sincronizados com a rede e atrasados de 30º para possibilitar qualquer variação da tensão de saída. Na Figura 4.10b estão apresentadas as formas de onda para o ângulo de disparo de 60°. )cos1(V0,45V RMSSMEDIOL dα+⋅⋅= T1 T2 T3 A B C N R Fig. 4.9 - Retificador trifásico de ponto médio.
  42. 42. CEFET-ES/ Uned. Serra Automação Industrial Eletrônica de Potência Retificadores controlados 41 Fig. 4.10 – Formas de onda para o retificador de ponto médio. (a) α = 30°; (b) α = 60°. A tensão média na carga pode ser representada graficamente pela curva a seguir. Fig. 4.11 - Tensão média na carga em função de α para carga resistiva. 0,00 0,25 0,50 0,75 1,00 0 30 60 90 120 150 Ângulo de disparo em graus Tensãomédiana carga.(p.u.) FASERMSS MédioL V V _ 1,17 T1 αα αIg T2 T3 pulsos de disparo etapas de condução VL VAN VBN VCN T1 T2 T3T3 30° α = 0° T1 αα αIg T2 T3 α T1 pulsos de disparo etapas de condução VL VAN VBN VCN T1 T2 T3T3 T1 30° α = 0° (a) (b)
  43. 43. CEFET-ES/ Uned. Serra Automação Industrial Eletrônica de Potência Retificadores controlados 42 Deve-se notar que: 1) Se αd = 0o , obtém-se resultado semelhante ao retificador a diodo, onde VL MEDIO = 1,17 VSRMS , que é o maior valor de tensão média na carga; 2) Se α = 150o , tem-se VL medio = 0. b) Carga RL O retificador de ponto médio alimentando carga RL pode apresentar condução contínua ou descontínua, dependendo da carga e do ângulo de disparo. A Figura 4.12 mostra a tensão na carga em condução contínua. Como a corrente na carga não se anula, a tensão na carga assume valores negativos até que ocorra o próximo disparo. Fig. 4.12 – Tensão na carga para carga RL em condução contínua. Para evitar que a tensão na carga assuma valores instantaneamente negativos, utiliza-se um diodo de roda-livre em antiparalelo com a carga, permitindo a circulação de corrente mantendo a tensão na carga nula. 4.5 - Retificador Trifásico Controlado de Onda Completa a) Carga Resistiva Também conhecido como ponte trifásica controlada, este retificador está apresentado na figura 4.13. Como é possível atrasar a entrada em condução dos SCR’s pode-se variar o valor da tensão de saída. T1 αα αIg T2 T3 pulsos de disparo etapas de condução VL VAN VBN VCN T1 T2 T3T3 30° α = 0°
  44. 44. CEFET-ES/ Uned. Serra Automação Industrial Eletrônica de Potência Retificadores controlados 43 T1 T2 T5T4 R + - T3 T6 N VL VAN V BN VCN Fig. 4.13 – Retificador trifásico controlado em ponte com carga resistiva. O valor médio da tensão na carga está representado graficamente na figura 4.14. Fig. 4.14 - Tensão média de carga para carga resistiva. Observe que: 1) Se α = 0o , obtém-se resultado semelhante ao retificador a diodo, onde VL MEDIO = 2,34 VS RMS , que é o valor máximo da tensão média de carga; 2) Se α = 120o , tem-se VL medio = 0. Assim como no caso não controlado, a tensão de saída é dada pela diferença entre duas fases, uma que se conecta a carga através de um SCR da parte superior da ponte, e outra através de um SCR da parte inferior. Considerando que rede de alimentação trifásica apresente seqüência de fase ABC, a seqüência das tensões que surgem na saída é Vab – Vac – Vbc – Vba – Vca – Vcb, como mostra a Figura 4.15. A partir daí, se estabelece a seqüência com que os seis SCR’s são disparados, a saber: 0,0 0,5 1,0 1,5 2,0 0 30 60 90 120 Ângulo de disparo em graus Tensãomédianacarga. (p.u.) FASERMSS MédioL V V _ 2,34
  45. 45. CEFET-ES/ Uned. Serra Automação Industrial Eletrônica de Potência Retificadores controlados 44 T1 – T6 – T2 – T4 – T3 – T5. Tal seqüência de disparo ocorre a cada ciclo de rede, resultando em um disparo a cada 60°. Exemplificando, considere que os SCR’s T1 e T5 estejam em condução. Nesta etapa a tensão na carga é dada pela diferença entre as fases A e B, ou seja, a tensão Vab. O próximo SCR a ser disparado é T6, provocando o corte de T5 e iniciando uma nova etapa de condução. Nesta nova etapa a tensão de saída é dada por Vac, pois as fases A e C estão ligadas a carga. Assim como no retificador trifásico controlado de ponto médio, os disparos dos tiristores devem ser sincronizados com a rede e atrasados em 30º para possibilitar qualquer variação da tensão de saída. Sendo assim, o SCR T1 por exemplo, somente poderá ser disparado após passados os 30° da fase A, pois antes deste instante o mesmo estará reversamente polarizado. Como na ponte trifásica o neutro do sistema está ausente, é conveniente nos referirmos às tensões de linha (fase-fase) ao invés de tensões de fase. Desta forma, no mesmo exemplo, no instante em que a fase A passa pelos 30°, a tensão Vab passa pelos 60°(30° de defasamento). Assim, o disparo de T1 só será possível após os 60°da tensão Vab (que é o mesmo que 30°após a passagem da fase A por 0°). Fig. 4.15 – Formas de onda de tensão na carga para α = 30°. VAN VBN VCN T1 T6 αα α α α Ig VAB VAC VBC VBA VCA VCB VAB 30° T1 T2 T3T3 T5 T6 T4 T5 T1 α T2 T4 T3 T5 α T1 pulsos de disparo etapas de condução VL
  46. 46. CEFET-ES/ Uned. Serra Automação Industrial Eletrônica de Potência Retificadores controlados 45 Pulsos de reforço Uma questão que ainda não foi mencionada é de como começa o funcionamento do retificador. Note que se apenas um SCR for disparado nada ocorre, pois não há um caminho para a circulação de corrente. Sendo assim, para iniciar o funcionamento do retificador é necessário o disparo de dois SCR’s, um da parte superior e um da parte inferior. A partir daí, só é necessário o disparo de um SCR por vez. Entretando, isso funciona somente se for garantido que a corrente na carga não se anula (condução contínua). Se a corrente se anula, ocorre o corte dos SCR’s e assim o disparo do próximo SCR não tem efeito. Desta forma, o retificador não funciona para cargas puramente resistivas ou de baixa indutância, e ângulos de disparo maiores que 60°, pois neste caso a corrente zera a cada etapa de funcionamento, levando o par de SCR’s em condução para o corte. A solução para o problema apresentado é disparar novamente o SCR que deve permanecer em condução (o último SCR que foi disparado). Tal pulso é chamado pulso de reforço. Assim, a ponte trifásica controlada requer uma estratégia especial para o disparo dos SCR’s. A Figura 4.16 mostra as formas de onda e os pulsos de disparo. Observe que a cada disparo (pulso principal), ocorre também o pulso de reforço no SCR anteriormente disparado. Por exemplo, quando T2 é disparado, ocorre também o disparo de T6; na próxima etapa T4 é disparado e T2 novamente recebe o pulso. Fig. 4.16 – Formas de onda de tensão na carga para α = 90°. VAB VAC VBC VBA VCA VCB VAB 90° T1 T2 T3 T5 T6 T4 T5 T1 T6 Ig T2 T4 T3 T5 α T5 T1 T3 T2 T3 T5 T6 T4 T1 T6 T2 T4 T3T3 T5 pulsos principais pulsos de reforço etapas de condução VL
  47. 47. CEFET-ES/ Uned. Serra Automação Industrial Eletrônica de Potência Retificadores controlados 46 b) Carga RL Assim como ocorre em outros retificadores, a ponte trifásica controlada alimentando carga RL apresenta os mesmos inconvenientes já discutidos, ou seja, quando a tensão passa por zero, a corrente na carga não se anula, fazendo com que a tensão de saída assuma valores instantaneamente negativos até que ocorra o próximo disparo. Assim sendo, além do ângulo de disparo a própria carga influencia no valor médio de tensão na saída. Para evitar tais problemas pode ser utilizado um diodo de roda-livre em anti-paralelo com a carga, permitindo a circulação de corrente mantendo a tensão na carga nula. 4.6 - Retificador Trifásico Semicontrolado Uma alternativa mais simples para um retificador trifásico de onda completa que possibilita variação de tensão de saída é o retificador semicontrolado ou ponte trifásica mista, que esta apresentada na Figura 4.17. Fig. 4.17 – Retificador Trifásico Semicontrolado. Em muitas aplicações é interessante o emprego da ponte mista ao invés da ponte completa. A ponte mista, por utilizar circuitos de disparo mais simples e apenas 3 SCR’s, apresenta um menor custo. A Figura 4.18 mostra a forma de onda de tensão na saída para ângulo de disparo igual a 30°, bem como as etapas de operação. Como em todo retificador trifásico a SCR, o ângulo de disparo se inicia no instante em que duas tensões de fase se interceptam. O funcionamento é mais simples do que o da ponte completa, pois neste caso, os semicondutores inferiores da ponte são diodos, deste modo, entram em condução naturalmente à medida que são diretamente polarizados. T1 T2 D2D1 VAN R + - T3 D3 N VBN VCN VL
  48. 48. CEFET-ES/ Uned. Serra Automação Industrial Eletrônica de Potência Retificadores controlados 47 VAN VBN VCN T1 αα α Ig VAB VAC VBC VBA VCA VCB VAB 30° T1 T2 T3T3 D2 D3 D1 D2 T1 T2 T3 α T1 Fig. 4.18 – Forma de onda para ângulo de disparo igual a 30°. Para ângulos de disparo inferiores a 60°a condução de corrente é sempre contínua, pelo fato da tensão na carga nunca assumir valor nulo. Já para ângulo de disparo superior a 60°, a tensão na carga atinge valor nulo antes da ocorrência do próximo disparo, o que provoca condução descontínua no caso de carga resistiva. A Figura 4.19 mostra a forma de onda de tensão na saída para ângulo de disparo igual a 90°. Pode se observar que, funcionando com carga indutiva, a tensão na saída nunca assume valores negativos devido a presença dos diodos na parte inferior da ponte. Note que se α > 60o , existirá um intervalo em que um SCR e um diodo de um mesmo "braço" do retificador conduzirão a corrente, tornando a tensão na carga nula.
  49. 49. CEFET-ES/ Uned. Serra Automação Industrial Eletrônica de Potência Retificadores controlados 48 VAN VBN VCN T1 αα = 90° α Ig VAB VAC VBC VBA VCA VCB VAB 30° T1 T2 T3T3 D2 D3 D1 D2 T2 T3 T3 D3 T1 D1 T2 D2 Etapas em caso de carga indutiva Fig. 4.19 – Forma de onda para ângulo de disparo igual a 90°. Assim como ocorre na ponte mista monofásica, é usual o emprego de um diodo de roda-livre em antiparalelo com a carga quando a mesma for indutiva. A sua finalidade é evitar a possibilidade de não desligamento entre carga e fonte quando forem inibidos os pulsos de disparo. Pode ocorrer, no caso de carga muito indutiva, de ultimo SCR a ser disparado permanecer conduzindo mantendo etapas de condução indesejadas com os diodos inferiores da ponte. O uso do diodo de roda-livre permite um caminho de livre circulação de corrente, o que evita a etapa de condução entre o SCR e o diodo de um mesmo braço, assim se garante que o SCR será cortado e evita-se o problema mencionado. A tensão média na carga para uma ponte trifásica semicontrolada é dada pela expressão: )cos1(17,1 __ α+⋅⋅= FASEDERMSMÉDIOL VV
  50. 50. CEFET-ES/ Uned. Serra Automação Industrial Eletrônica de Potência Retificadores controlados 49 4.7 - Sincronismo de Retificadores Trifásicos Como já foi discutido em relação a retificadores trifásicos, os disparos dos SCR’s devem ser sincronizados com a rede e atrasados de 30º . Em circuitos de disparo para retificadores trifásicos, o sincronismo pode ser obtido utilizando tensões de linha como referência, de modo a obter essa defasagem de 30°. O uso do diagrama fasorial facilita a compreensão do sincronismo. Vejamos a Figura 4.20, na qual estão representados os fasores das fases A, B e C e das tensões de linha Vac, Vba e Vcb, considerando seqüência de fase ABC. Fig. 4.20 – Diagrama fasorial e sincronismo. Note que a tensão Vac está atrasada 30°em relação à fase A. Assim, quando Vac passar por 0°, a fase A está avançada em 30°. Deste modo, podemos utilizar a tensão Vac como referência de sincronismo para os SCRs ligados à fase A (T1 e T4). Do mesmo modo, os disparos dos SCRs T2 e T5, que estão ligados à fase B, devem estar sincronizados com a tensão Vba, a qual está atrasada 30°em relação à fase B. E de forma semelhante os disparos de T3 e T6 devem ser sincronizados com Vcb, a qual está atrasada 30°em relação à fase C. ref. VA VB VC w -VC -VB -VA VAC 30° VBA 30° VCB 30° SEQ. ABC
  51. 51. CEFET-ES/ Uned. Serra Automação Industrial Eletrônica de Potência Retificadores controlados 50 4.8 - Acionamento de Motores CC Com Retificadores Com o aparecimento dos motores de indução e seu crescente uso em aplicações industriais, além do barateamento e aprimoramento das técnicas de controle, a utilização de motores de indução é cada vez mais atrativa. Entretanto, um número elevado de motores CC é ainda construído em função de suas características, apropriadas para muitos acionamentos em velocidade variável. Entre as vantagens no uso de motores CC citam-se: o elevado torque de partida, ideal para fins de tração elétrica; o controle preciso de velocidade; maior simplicidade e menor custo dos sistemas de controle em relação aos requeridos para motores de indução. O tipo de acionamento a ser empregado depende de, entre outras coisas, potência requerida, fonte disponível(1Φ ou 3Φ ), ondulação de corrente permitida no motor, se o sistema é reversível ou não, e se há necessidade de regeneração. De modo geral, os retificadores controlados monofásicos são restritos a potências menores que 2kW, acima deste valor o retificador trifásico é normalmente utilizado. A Figura 4.21 mostra o esquema básico de controle de velocidade de um motor CC com excitação independente. Fig. 4.21 – Sistema básico de controle de velocidade de um motor CC. Neste sistema é utilizado um retificador controlado (ou semicontrolado) para alimentar o circuito de armadura, possibilitando variar a tensão e conseqüentemente a velocidade. O circuito de campo é alimentado por um retificador não controlado. A utilização de um retificador semicontrolado para alimentar o circuito de armadura, implica em menor custo e maior simplicidade. Na maioria das vezes esta estrutura é a escolhida, atendendo a necessidade do sistema. Retificador Controlado A B C MCC Retificador não Controlado A B C Circuito de Disparo Ajuste de Velocidade Va Ia Vf If Lfiltro
  52. 52. CEFET-ES/ Uned. Serra Automação Industrial Eletrônica de Potência Retificadores controlados 51 Em sistemas onde há necessidade de reversão de velocidade, pode-se utilizar o esquema da Figura 4.22. Fig. 4.22 – Sistema reversível usando chaves contatoras. Neste sistema, quando houver a necessidade de inverter o sentido da velocidade, o disparo dos SCRs deve ser atrasado ou inibido de modo que a corrente se anule. Após isso, o contator é acionado para inverter a polaridade da tensão de armadura e conseqüentemente o sentido de rotação do motor. 4.9 – Acionamento de Motor CC Com Conversor Dual É possível acionar um motor CC nos dois sentidos de rotação e, além disso, permitir a frenagem. Para tal, é utilizado um conversor chamado conversor dual. Antes da apresentação do conversor, se faz necessário conhecer os quadrantes de operação de um motor CC. As duas principais grandezas a considerar quando tratamos de motores CC são a velocidade (proporcional à tensão induzida na armadura - Eg) e o conjugado (proporcional à corrente de armadura - Ia). Combinando estas grandezas, têm-se quatro quadrantes de operação, como mostra a Figura 4.23. No primeiro quadrante, caracterizado por velocidade e conjugado positivos, o motor opera na região motora direta. No segundo quadrante a velocidade é positiva, porém o conjugado se opõem a ela, caracterizando a frenagem no sentido direto. No terceiro quadrante, velocidade e conjugado são negativos, o que caracteriza a região motora reversa. No quarto quadrante, a velocidade é negativa e o conjugado é contrário a ela, o que provoca uma frenagem no sentido reverso. Fig. 4.23 – Quadrantes de operação de um motor CC Retificador Controlado MCC L filtro 1° Q 4° Q3° Q 2° Q Velocidade Conjugado (Eg) (Ia) motora direta frenagem direta motora reversa frenagem reversa
  53. 53. CEFET-ES/ Uned. Serra Automação Industrial Eletrônica de Potência Retificadores controlados 52 Sabe-se que um retificador totalmente controlado quando alimentam cargas indutivas apresentam tensão instantaneamente negativa na saída. Considere a operação da ponte completa monofásica no modo de condução contínuo. Assim, a corrente de carga não se anula antes da ocorrência do próximo disparo. Deste modo, sempre um par de tiristores estará conduzindo (T1 e T4 no semiciclo positivo; T2 e T3 no semiciclo negativo). Como estamos tratando do acionamento de motor CC, o mesmo será representado como uma carga RLE. Se o ângulo de disparo for menor que 90°, a tensão média na saída será positiva. Nesta situação, o motor está recebendo energia proveniente da fonte. Agora considere que o ângulo de disparo é maior que 90°, como mostra a Figura 4.24. Neste caso, a tensão média na saída da ponte será negativa. Sendo assim, o motor fornece energia para a fonte. Como o fluxo de potência vai da carga (CC) para a fonte (CA), a ponte opera como inversor. Fig. 4.24 – Ponte monofásica com carga RLE operando como Inversor: 90°< α < 180°. Na operação da ponte como inversor, o motor está na região de frenagem transferindo a energia cinética do eixo para a fonte CA. Este tipo de frenagem é chamada frenagem regenerativa. A partir do exposto percebe-se que a ponte completa permite a operação em dois quadrantes. Quando a ponte funciona como retificador (α < 90°), o motor está na região motora direta, ou seja no 1°quadrante (tensão e corrente positivas). Na operação da ponte como inversor (α > 180°), o motor opera no 4°quadrante (tensão negativa e corrente positiva), ocorrendo uma frenagem reversa. Note que a polaridade da tensão EG é negativa, simbolizando que o motor está girando no sentido reverso. O Conversores Dual, como mostrado na Figura 4.25, é originado pela associação em antiparalelo de dois retificadores totalmente controlados. Estes retificadores podem ser trifásicos ou a ponte monofásica. T1 T2 T4T3 vs + - Ra Lfiltro EG IL + _ _ + VL VL MÉDIO t αd VL VL
  54. 54. CEFET-ES/ Uned. Serra Automação Industrial Eletrônica de Potência Retificadores controlados 53 MCCVa Ia A B CA B C Estrutura A Estrutura B L LL L Vb Ib Vf If VM + _ IM Fig. 4.25 – Acionamento de motor CC com conversor dual. Cada estrutura (A e B) possibilita a operação em dois quadrantes de operação, totalizando quatro quadrantes. A estrutura A é capaz de fornecer corrente positiva e tensão tanto positiva como negativa para o motor, assim permite a operação no 1°(motora direta) e 4°(frenagem reversa) quadrantes. Já a estrutura B fornece corrente negativa, e tensão em ambos os sentidos, possibilitando operação no 2°(frenagem direta) e 3°(motora reversa) quadrantes. As estruturas podem operar isoladas ou simultaneamente. No caso isolado, quando uma estrutura estiver funcionando, os pulsos de disparo da outra estrutura são inibidos. Para inverter o sentido de rotação, a estrutura que opera é inibida, e a outra entra em funcionamento provocando a inversão de rotação. Na operação simultânea das estruturas, estas fecham uma malha contendo os indutores. Como a tensão média nos indutores é nula, então as tensões médias de saída dos retificadores devem ser iguais com sinais opostos (Va Médio = - VbMédio). Esta condição é garantida através de uma relação entre os ângulos de disparo dos dois retificadores: °=+ 180BA αα Se esta relação não for satisfeita, a diferença entre os valores médios de tensão faz crescer uma corrente de circulação entre as estruturas. Tal corrente crescerá indefinidamente até provocar danos aos retificadores. Embora se garanta que as tensões Va e Vb tenham mesmo valor médio, o mesmo não ocorre com os valores instantâneos. Assim, devido esta diferença de potencial entre os retificadores surge uma corrente de circulação entre os mesmos. Para limitar esta corrente se utilizam os indutores, que além desta função servem como filtro diminuindo o ripple de corrente no motor.
  55. 55. CEFET-ES/ Uned. Serra Automação Industrial Eletrônica de Potência Retificadores controlados 54 Quando o motor funciona na região motora direta, a estrutura A opera como retificador fornecendo energia para o motor. Então se têm que: αA < 90°e αB > 90° Nesta situação, a estrutura A fornece tensão e corrente positivas para o motor (VM > 0, IM > 0). Já a estrutura B não processa energia. Com a elevação do ângulo de disparo αA (e diminuição de αB )ocorre uma redução de velocidade através de uma frenagem direta, situação em que a estrutura B opera como inversor, transferindo energia do motor para a rede CA (regeneração). Neste caso, a estrutura B fornece tensão positiva e corrente negativa para o motor (VM > 0, IM < 0), e a estrutura A não processa energia. Para funcionamento na região motora reversa, têm se que a estrutura B opera como retificador fornecendo energia para o motor. Daí: αB < 90°e αA > 90° Nesta situação, a estrutura B fornece tensão e corrente negativas para o motor (VM < 0, IM < 0), e a estrutura A não processa energia. Para reduzir a velocidade, provocando uma frenagem reversa deve-se elevar o ângulo de disparo αB (e diminuir αA ), deste modo a estrutura A opera como inversor, transferindo energia do motor para a rede CA (regeneração). Nesta situação, a estrutura A fornece tensão negativa e corrente positiva para o motor (VM < 0, IM > 0), e a estrutura B não processa energia. A partir do que foi apresentado, conclui-se que o conversor dual permite a variação de velocidade, reversão e frenagem regenerativa.
  56. 56. CEFET-ES/ Uned. Serra Automação Industrial Eletrônica de Potência Circuitos de disparo 55 5. CIRCUITOS DE DISPARO 5.1 – Introdução Como foi discutido no Capítulo 2, o método mais usual para levar um SCR do corte à condução é aplicar uma corrente do terminal gate para o terminal catodo. O fabricante do componente apresenta várias especificações de disparo, entre elas: corrente de gatilho, tensão de gatilho e tempo de disparo. Assim, o circuito de disparo deve: Considerar as variações das características do componente dentro dos limites estabelecidos pelo fabricante; Não exceder as especificações de tensão, corrente e potência de gatilho; Assegurar que o disparo não ocorra quando não desejado, através de sinais ruidosos. Assegurar que o disparo ocorrerá quando desejado. Permitir variação do ângulo de disparo. O disparo pode ser feito com a aplicação de corrente contínua entre gate e catodo, entretanto esta alternativa provoca um aquecimento do componente devido à potência dissipada na junção gate- catodo. Assim, maiores cuidados devem ser tomados no projeto considerando a especificação da máxima potência de gatilho. Uma forma de reduzir a potência dissipada no gatilho é o disparo por pulsos, além de possibilitar a isolação entre o circuito de disparo e o dispositivo. A isolação elétrica, obtida por transformadores de pulso ou acopladores óticos, permite que uma única fonte de sinal forneça os pulsos necessários para o disparo de vários tiristores. 5.2 - Circuito de Disparo Com Sinais CA Os circuitos mais simples utilizam a própria fonte CA para produzir os disparos dos tiristores. A figura 5.1a apresenta um circuito aplicado no controle de potência na carga usando o SCR. O ângulo de disparo é ajustado através do potenciômetro. Este circuito permite o controle do ângulo de disparo somente até 90°, assim, o controle de tensão na carga não é completo. Uma maneira de resolver este problema é mostrada na figura 5.1b. A idéia é atrasar a tensão que irá comandar o disparo do tiristor. Desta forma, a tensão de disparo irá ocorrer mais tarde no semiciclo positivo.
  57. 57. CEFET-ES/ Uned. Serra Automação Industrial Eletrônica de Potência Circuitos de disparo 56 (a) (b) Fig. 5.1 – Circuitos de disparo de SCR usando a rede CA. Da mesma forma, o ângulo de disparo é variado através do potenciômetro. O diodo D1 garante que só haverá corrente de gatilho no semiciclo positivo da tensão da rede, evitando perdas desnecessárias no gatilho do SCR quando este estiver bloqueado. O diodo D2 conduz no semiciclo negativo carregando o capacitor C1 com tensão negativa. Isso garante que, em cada semiciclo positivo, o capacitor comece sempre a se carregar a partir de uma tensão fixa, mantendo a regularidade do disparo. O TRIAC também pode ser utilizado para variação de potência na carga. A única diferença é que neste caso, a condução de corrente ocorre em ambos sentidos, ou seja, o controle de fase pode ser feito nos semiciclos positivo e negativo. Quando o TRIAC é usado, é freqüentemente utilizado o DIAC como dispositivo de disparo, conforme pode ser visto na Figura 5.2. O circuito funciona da seguinte maneira: o capacitor carrega-se até atingir a tensão Vdiac de disparo do DIAC. Quando isso ocorre, o DIAC entra em condução e cria um caminho de baixa impedância para o capacitor descarregar-se sobre o gatilho do TRIAC. O ângulo de disparo é ajustado através do potenciômetro. 5.3 - Circuito de Disparo Com Pulsos Usando o UJT Como já foi dito, o disparo por pulsos evita o aquecimento do componente provocado por disparo com sinais CC, e possibilita a isolação elétrica entre o circuito de disparo e o circuito de potência por meio de transformadores de pulso. carga SCR D R1 Pot VCA carga SCR D1C R1 Pot VCA D2 carga Triac diacC R1 PotVCA Fig. 5.2 – Circuitos de variação de potência com TRIAC.
  58. 58. CEFET-ES/ Uned. Serra Automação Industrial Eletrônica de Potência Circuitos de disparo 57 O Transistor de Unijunção (UJT) O UJT é um dispositivo semicondutor de três terminais como mostra a Figura 5.3. B2 B1 E B2 B1 E rB2 rB1 (a) (b) + _ Vbb Ve Vx Fig. 5.3 – Transistor de Unijunção – UJT: (a) Símbolo – (b) Circuito equivalente com polarização. Os terminais são: base 1 (B1), base 2 (B2) e emissor (E). O circuito equivalente do UJT apresenta um diodo, que representa a junção PN do emissor. Entre os terminais B2 e B1 existe uma barra de material N que pode ser dividida em duas partes: a primeira parte, rB2, equivale à resistência da parte superior da barra e a segunda, rB1, a resistência da parte inferior. Considerando o circuito equivalente, pode-se concluir que sem polarização de emissor o dispositivo funciona como um divisor resistivo, por onde circula uma corrente da ordem de miliampères. De onde se obtém: Vbb rr r V BB B X ⋅ + = 21 1 Onde a relação rB1/(rB1 + rB2) é denominada relação intrínseca η, a qual depende apenas dos parâmetros internos do dispositivo (Para o UJT 2N2646, η é da ordem de 0.6). Assim pode-se escrever: VbbVX ⋅=η Com polarização de emissor, enquanto a tensão Ve for menor que Vd + Vx, o diodo do emissor está cortado. Quando a tensão Ve for superior que Vd + Vx, o diodo de emissor fica diretamente polarizado permitindo circulação de corrente entre o emissor e base 1. Isso faz com que a resistência rB1 diminua de seu valor máximo (da ordem de 5kΩ), para 50Ω aproximadamente.
  59. 59. CEFET-ES/ Uned. Serra Automação Industrial Eletrônica de Potência Circuitos de disparo 58 Esse comportamento permite o controle de carga e descarga de um capacitor ligado no emissor, cuja descarga será utilizada para disparar SCRs e TRIACs. Se desprezarmos a queda de tensão no diodo, a equação característica do UJT é: VbbVE ⋅=η Oscilador de Relaxação com UJT A figura 5.4 mostra um circuito tradicional de disparo usando UJT, que consiste em um oscilador de relaxação. Fig. 5.4 – Oscilador de relaxação com UJT e formas de onda. Na prática, utiliza-se R2 << rB2 , fazendo com que a queda de tensão em R2 seja desprezível. O mesmo ocorre com R1 e rB1. Considerando o capacitor inicialmente descarregado, este impõe Ve menor que ηVbb. Com o passar do tempo, o capacitor vai se carregando através de Rt, elevando o potencial Ve até atingir ηVbb. Isso provoca o início da condução do emissor, conseqüentemente diminuindo o valor de rB1, descarregando rapidamente o capacitor Ct, fornecendo um pulso de tensão no ponto Vb1. Com a descarga do capacitor, o potencial de Ve é reduzido até provocar novamente o corte do UJT, reiniciando o ciclo. O resistor R1 é o responsável pela coleta do pulso dado pela descarga do capacitor Ct, assumindo um valor na ordem de dezenas ou centenas de ohm. O resistor R2 melhora a estabilidade térmica do UJT, tipicamente com valores na ordem de centenas de ohm. R2 Rt R1 Ct UJT Vbb Ve VB1 B2 B1 E η.Vbb Ve t Vb1
  60. 60. CEFET-ES/ Uned. Serra Automação Industrial Eletrônica de Potência Circuitos de disparo 59 O tempo de oscilação depende de Rt, Ct e η. Para o UJT2N2646 o período de oscilação é aproximadamente dado por Rt x Ct. Oscilador de Relaxação com UJT Sincronizado com a Rede O oscilador de relaxação pode ser facilmente colocado em sincronismo com a rede para disparar tiristores em circuitos de potência. Veja a Figura 5.5. D1 R3 R2Rt R1 Dz Ct Rede CA SCR UJT CARGA Fig. 5.5 – Circuito de disparo sincronizado com a rede usando UJT. O funcionamento é bem simples. No semiciclo negativo da tensão da rede o diodo D1 está em corte e o oscilador não atua. No semiciclo positivo, até que a tensão da rede atinja VZ, o diodo zener está bloqueado. A partir daí, o oscilador ficará alimentado com Vbb = VZ. Como a tensão de pico da rede é bem maior que VZ, isso ocorrerá logo no início do semiciclo positivo. Uma vez alimentado, o circuito oscilará normalmente e o primeiro pulso (com ângulo α em relação à tensão da rede) irá disparar o SCR. Os demais pulsos são desnecessários, mas inevitáveis neste circuito. Para variar o ângulo de disparo basta variar a resistência Rt. As formas de onda são mostradas na Figura 5.6. Fig. 5.6 – Formas de onda do circuito de disparo sincronizado com a rede. η.Vz VCt t VR1 α Vrede

×