SlideShare uma empresa Scribd logo
1 de 7
Baixar para ler offline
IOSR Journal of Engineering (IOSRJEN) www.iosrjen.org
ISSN (e): 2250-3021, ISSN (p): 2278-8719
Vol. 05, Issue 08 (August. 2015), ||V4|| PP 32-38
International organization of Scientific Research 32 | P a g e
A Novel Technique for the better analysis of Ice Properties using
Kalman Filtering
Rajwinder Sidhu1
, Gurbakash Phonsa2
1
Dept of Computer Science and Engineering, Lovely Professional University, Phagwara
1
e-mail:Shilpakaur100@gmail.com
2
Dept of Computer Science and Engineering, Lovely Professional University, Phagwara
2
e-mail: Gurbakash.15483@lpu.co.in
Abstract:SAR algorithm has been used to detect the sea ice to save the ship from any kind of damage. So that
ship does not strike with ice. SAR algorithm applied on RADAR1 imagery data to get accurate results. Pixel
based segmentation MIRGS algorithm to segment the ice has been studied. Due to this we can differentiate the
ice based on its properties. PMA detector has also been studied and thus can easily detect and recognize target
by knowing the signal values. There are many methods for multitemporal segmentation from the MODIS data
called TempoSeg method for multiyear sea ice floes has also been studied. RADARSAT1 imagery data which is
used by Synthetic Aperture Radar to detect the ice of sea at different regions of the oceans. Automated
algorithm gives better result of target using R1 imagery data. In project work, we have to implement the
automated SAR algorithm to detect sea ice which is already implemented. In further work we have to enhance
this automated SAR algorithm to get more accurate results using RADARSAT1 imagery data and will try to use
the RADARSAT2 imagery data to make it compatible to SAR algorithm.
Keywords: Sea Ice, SAR, Floe, Rater Scan, Dual Polarization, Kalman Filtering
I. INTRODUCTION
Processing of an image is a process of translating an image into Digital form into digital form and
applied some operations so that information can be extracted from it. In this entire process input can be any
image, video frame and output can be like features of images and any other things associated with it. Whenever
any functions or signal processing applied on it, image is usually considered as 2D. It is one of the fast growing
technologies. Most of the time this process is known as digital image process but sometimes digital and optical
image processing is also considered [6]. Digital images are manipulated using Digital computers. The main
necessity for image processing of images is that digitized form of image should be available of any finite length
of binary. For digitization, on a discrete grid the given image is sampled and using a finite number of bits each
sample or pixel of image is quantized. Digital images are processed by computers and are converted to Analog
signals for displaying. It is then followed by scanning over some display. Processing is of two types Graphical
and Computer vision based. The Computer Graphics involves the Physical models of lightning, objects and
environment. It is a manual process. It is similar like seemed in a animated movies. But computer vision is often
considered as high-level of Image processing. From this high-level image software tries to extract useful
physical information.
1.1Image Segmentation:
Image segmentation can be defined as the mechanism of subdividing a digital image into multiple
pixels or regions. Regions should greatly reveal to interpret objects. A region is collection of similar pixels. The
aim of segmentation is to represent the image into some meaningful form. There are many different ways to
perform segmentation like thresholding, color based segmentation, watershed segmentation, and texture
methods etc. The Segmentation process involves the partitioning of Digital images into parts. This number could
be N. Segmentation is done based on the pixel sets or the pixels present in a given region. The pixels present are
similar and are based upon the homogeneity of Texture, Colour, and Intensity. This information helps in
locating objects and boundaries in the given image [2]. Segmentation is partitioning a digital image f(a, ab) into
distinct, continuous, and nonempty subsets. After that from these subsets we extract the information of high
level. Practical applications of image segmentation include object identification and recognition, criminal
investigation, medical image processing, facial recognition, satellite images, quality assurance in factories, etc
The two Image Segmentation areas of consideration are:
A Novel Technique for the better analysis of Ice Properties using Kalman Filtering
International organization of Scientific Research 33 | P a g e
1.1.1 Region based segmentation:
Region segmentation can be defined as partitioning the image into regions. Region is an important concept to
depict the image because regions may correspond to objects in the scene. In this, formations of pixels around
some objects are located creating a region of those pixels and separating the region from the rest of the image
[7].
1.1.2 Edge based segmentation:
Edge segmentation can be defined as that in which each object is surrounded by a border. Edge detection is used
to identify the edges and edge pixels. The border of the object is closed, visible and can be detected in the
intensity values of the image. It analyzes the distribution according to gray level value scale [7].
1.2Dual Polarization
RADARSAT 2 is a multichannel receiver. The HH channel of it provides same data as of R1. HV
channel of R2 is a new addition and is anticipated to enhance the bias of ice and water. Unusually, water is wind
roughens and it looks similar to ice at several incidence angles in the channel. Therefore, its required for it to
enhance the sea ice image segmentation results using automated algorithms of SAR. RADARSAT 2 provides all
the features of RADAR1 and offers some additional features to distinguish different ice types [3]. Dual
polarization is the advanced feature which is Radar2 based and is use for mapping of ice. It incorporates 500
km Swath width as that of Radar1 in single polarization. Dual polarization provides Scanning mode of SAR
with additive data [10]. The ENVIST Advance SAR (ASAR) also provides the features of dual polarization bit
it is having different swath width of 100 km from R1 and R2. ASAR has five modes and five different
preferences of polarization levels which can take different images of earth’s surface. We are having a full SAR
scene which contains pixel resolution of 1000*1000 m. Now, we will target on SAR Scan wide mode to
understand the use of R2 dual polarization and will use this model for sea ice monitoring.
1.3 PMA Detector:
In SAR, reflected rays come from target to make it visualize. Point of target will not get if the intensity
or amplitude of reflected rays will not large, usually, because of Lower cluttering signal ratio. Fundamentally,
SCR affects the detection in the presence of amplitude or intensity data. Thus, a good detector should be
designed in such a way that SCR should be improved naturally. Due to this, target can be enhanced and disorder
constrained. We know that, the processor which is mostly used in SPAN detector and this makes only use of
image intensities because the sum of all polar metric channels is incoherent [12]. SPAN detector is having the
synthetic power of all the channels. Therefore, according to some analysis, it has been noticed that this detector
can retrieve a higher SCR and lower noise level than HH, HV, or VV independently. So, we can conclude that
SCR can be improved with the way of synthetic power. Due to this, by using single channel willfull
information; we can single out the targets from the disorder or clutter. For the moment, it is very hard to give the
appropriate detection with the SPAN detector because of the lack of knowledge of related data. Considering
these facts, a PMA detector has constructed as another synthetic power [13].
1.4 Related Work
X.Yang and Clausi(2012)[1] introduces an approach for ice segmentation in Synthetic Aperture Radar (SAR)
generated images. This is done by the combination of Edge Preserving region (EPR) and the MRF Models.
Construction of EPR representation requires the measurement of Edge strength. Measuring of the Edge strength
is done using the Instantaneous Coefficient of Variation (ICOV). The basis of ICOV is the Watershed Algorithm
which is applied on the image to get the regions. Evaluation of the proposed method has been done using SAR
image which gets corrupted first by varying levels of Speckle Noise. The proposed method gives accuracy with
the combination of above mentioned models and also improves accuracy by 29% reduction in Computational
time.
Mari-Ann N. Meon, et.al, (2009) [2] list the brief study and exploration of SAR. In this paper [2] researchers
explored an automatic segmentation of syntheticaperture radar satellite images (SAR) satellite images of sea ice.
The investigation is based on a comparison of an automaticallysegmented SAR image and manual
classifications by iceservice analysts. Statistical ice properties are considered for segmenting SAR images into
classes. The number of classes is determined from available ground truth.Sea ice experts, aided by various in-
situ data, were able tolabel most of the segments from the automatic algorithm.They utilized the physical data of
the Polar metricfeatures which are used for classifying the algorithm, in order tofurther explore the class
labeling.
Phonsa G et al, (2014) [10] proposed a technique to resolve the object extraction problem. This technique helps
in object extraction on basis of area assessment size, pixel, enhancement and mining.
A Novel Technique for the better analysis of Ice Properties using Kalman Filtering
International organization of Scientific Research 34 | P a g e
GuiGao, et.al, (2013) in their research paper [8] a CFAR method for the detection of ship in presence of high
resolution of SAR amplitude of dual polarization. In order to get better form of clutter ratio, a PMA detector has
been designed, thereby preventing any form of biasness for the ship due to SCR as it’s quite sensitive to clutter
ratio and the procedure thus helps to reduce the discrimination to a huge extent. Statistical model of PMA
detector has also been described using G0 distribution. This distribution is suitable for coping with the complex
backgrounds of sea.
B. Ramsay et al [4] proposed a design of a method of temporal segmentation for Multi Temporal segmentation
of sea ice to detecting the melting rate of multilayered sea ice. MODIS images has been generated for the
experimentation purposes, position of ice floes has been detected using microwave radiometer to determine the
position of ice floes with time and changing atmosphere. The procedure involves dividing the image into Floe
and the background. Feature extraction is done at the first place to extract the useful features followed by
marking of floes and shape constrained region growing is applied to detect to best shape. Region maps are
generated by post filtering and area of interest or ice floes is thus obtained using morphological operators on
piece of MODIS images. The advantage of this newly proposed approach is the availability of the area of the
image under study for the region of interest over the period of time. In this paper a study about [5] the study of
various feature extraction methods and is marked as an important research area in order to implement the
intelligent processing in more précised and effective manner. The best texture extraction method has been
determined based on the geostatistic principles and entropy concept. These are the two evaluating factors. The
proposed method is marked superior over the other pre existing approaches. Experiments has been performed on
medical data which is complex in nature due to the presence of discontinuities when it comes to X-rays or
magnetic resonance imaging and the piece of data is hard to segment and analyze.
ChristofRidder et.al [15] discusses the foreground and background estimations for image processing. For the
background estimations are done considering illuminations but does not present it as background, the author
proposed an approach using the CCD cameras of fixed length for making estimations. Back ground estimations
have been parallel, independent of pixel positions. Background estimation on smaller image resolution can also
be performed easily.
Simon J Julier and Jeffrey K. Uhlmann[16] describes the method of linear estimator that has been proposed
using the principle of sampled points which can parameterize mean and covariance and can easily work on the
nonlinear systems, Performance comparisons of the new approach has been done with the present Extended
Kalman Filter.
2 Proposed Methodology
SAR generated data is employed for mapping the ice. Among the various segmentation methods for
interpretation of such data, unsupervised approach is used. The data in the form of images is obtained from
RADARSAT 1 at the first place. But it does not provide accurate results. Thus development of various
automated algorithms reduced this hurdle to some extent but further enhancement in such techniques is further
required together with the source and RADARSAT 2 provided better outcomes in terms of considering factors
such as density and position. The given work is focused on analyzing the pixel data and the related
algorithms.[9] Study of region based algorithms and use will also lead to achieve the desired output and results.
Need to enhance SAR for RADAR1 imagery data. Now, RADARSAT 1 provides better results using the
concept of polarization in SAR and we can get more accurate results by enhancing it.
A Novel Technique for the better analysis of Ice Properties using Kalman Filtering
International organization of Scientific Research 35 | P a g e
Fig. 2.1Chart to show the context of proposed methodology
2.1 Algorithm:
INPUT: - INPUT IMAGE FOR SEA ICE DETECTION
OUTPUT: - VALUE OF IT,IC AND IV
Start ();
1.Input image and store in variable a;
2.[b c]=size(a);
3.Define initialize starting pixel and increment value of the pixels
4.If property of p(i,j)!=p(i+1,j+1)
5.Image will be segmented
6.Store value of IT, IV and IC
STOP ()
The existing algorithms SAR is compatible to RADARSAT1 and give accurate results to detect the ice
and for more accurate and efficient results of ice images we need to enhance the SAR algorithm. So, we need to
enhance the automated algorithms to capture better results. In proposed work we have used raster scan and
kalman filtering to get better and accurate results.
2.2 Experimental Results
Fig. 2.2.1Input Image
As shown in Figure 2.2.1, the image is input which contains ice and water. In this image technique of
morphological segmentation is applied to extract the image properties like Ice Thickness, Velocity and
Concentration.
A Novel Technique for the better analysis of Ice Properties using Kalman Filtering
International organization of Scientific Research 36 | P a g e
(a) (b) (c)
Fig. 2.2.2a) Thickness b) Velocity c) Concentration
In fig 2.2.2 the image is input which contains ice, water. In this image technique of morphological segmentation
is applied to extract the image properties like ice thickness, ice velocity and ice concentration.
Fig. 2.2.3Values in Text File
As shown in figure 2.2.3, the image is input which contains ice, water. In this image technique of morphological
segmentation is applied to extract the image properties like thickness, velocity and concentration. Final values of
Thickness, Velocity,and Concentration are defined and analyzed value is shown in text file.
Fig. 2.2.4Input Images
(a) (b) (c)
Fig. 2.2.5a) Ice Thickness b) Ice Concentration c) Ice Velocity
In this Figure 2.2.5, the image is input which contains ice, water. In this image technique of morphological
segmentation is applied to extract the image properties like ice thickness, ice velocity and ice concentration.
A Novel Technique for the better analysis of Ice Properties using Kalman Filtering
International organization of Scientific Research 37 | P a g e
Fig. 2.2.6 Final Values
As shown in Figure 2.2.6, the image is input which contains ice, water. In this image technique of
morphological segmentation is applied to extract the image properties like Ice Thickness, Velocity and
Concentration. The final values of ice concentration, ice velocity and ice thickness is defined and analyzed value
is shown in text file.
Table 2.2.1Results for observations
Images IT IC IV
Figure 2.3.2 (a),(b),(c) old=3.02
new=3.07
old=202
new=234
old=0.272
new=0.279
Figure 2.3.5 (a),(b),(c) old=2.54
new=2.59
old=147
new=153
old=0.226
new=0.236
IT: ICE THICKNESS
IC: ICE CONCENTRATION
IV: ICE VELOCITY
Table 2.2.1 represents the values generated for a set of five images namely, Image1 to Image 5. There is
increase in values for ice thickness, concentration and velocity after applying the proposed method.
II. CONCLUSION
The image segmentation is the technique in which the images are segmented for better analysis of the given
piece of data. In proposed work involves the segmentation of images of ice present in sea we are working on
ice sea segmentation. SAR is the algorithm being used for analyzing the properties of the ice sea images. Main
focus is on getting the ice properties in order to do the further analysis ad segmentation in an enhanced way. Ice
thickness, ice concentration and ice velocity are the important parameters being focused on to segment various
ice types as well. In this paper, an enhancement is being proposed in the SAR algorithm to do better analysis of
ice images and the ice types.
REFERENCES
[1] Xuezhi Yang; Clausi, D.A., "Evaluating SAR Sea Ice Image Segmentation Using Edge-Preserving
Region-Based MRFs," Selected Topics in AppliedEarth Observations and Remote Sensing, IEEE Journal
of , vol.5, no.5, pp.1383,1393, Oct. 2012
[2] Mari-Ann N. Moen Pnthony P. Doulgeris, Stian N. Anfinsen, Nick Hughes, Angelika H.H. Renner, “
Comparison of feature based segmentation of SAR Satellite Sea Ice Images with manually drawn ice
charts”, 2009
[3] Bernd Scheuchl et.al, “Potential of RADARSAT-2 data for operational sea ice monitoring”, CJRS, 2004
[4] B. Ramsay, D. Flett, H. S. Andersen, R. Gill, S. Nghiem, and C. Bertoia. Preparation for the operational
use of RADARSAT-2 for ice monitoring. Canadian Journal of Remote Sensing, June 2004.
[5] B. Scheuchl, R. Caves, D. Flett, R. Abreu, M. Arkett, and I. Cumming “ENVISAT ASAR AP data for
operational sea ice monitoring” In Proc. IEEE,International Geoscience and Remote Sensing Symposium,
volume 3, Sept. 2004
[6] Costa, AlceuFerraz, Gabriel Humpire-Mamani, and AgmaJuci Machado Traina. "An Efficient Algorithm
for Fractal Analysis of Textures." In Graphics, Patterns and Images (SIBGRAPI), 2012 25th SIBGRAPI
Conference on, pp. 39-46. IEEE, 2012.
[7] Ehmann, J. "Structural Texture Similarity Metrics for Image Analysis and Retrieval", IEEE 2013
A Novel Technique for the better analysis of Ice Properties using Kalman Filtering
International organization of Scientific Research 38 | P a g e
[8] GuiGao, Gongtao Shi and Shilin Zhou, “Ship Detection in High-Resolution Dual-Polarization SAR
Amplitude Images” IJAP, volume 3 issue 5, pp- 213-2-15, 2013
[9] Kanchan S. Deshmukh, “Texture Image Segmentation using FCM” 012 IACSIT Hong Kong Conferences
IPCSIT vol. 25 2012, IACSIT Press, Singapore
[10] Phonsa, G & Sandhar, R. K. (2014, May). Distinctive feature mining based on varying threshold based
image extraction for single and multiple objects. InAdvanced Communication Control and Computing
Technologies (ICACCCT), 2014 International Conference on (pp. 1537-1541). IEEE.
[11] Marta, Antonio, “ Models For Synthetic Aperture Radar Texture Analysis” IEEE, 2009
[12] Pham, Tuan D. "Image texture analysis using geostatistical information entropy" IEEE 2012
[13] Waller, Ben M., Mark S. Nixon, and J. N. Carter. "Analysing Micro-and Macro-Structures in Textures."
In Signal Image Technology and Internet Based Systems (SITIS), 2012 Eighth International Conference
on, pp. 246-253. IEEE, 2012.
[14] YuliyaTarabalka et.al “Shape-Constrained Segmentation Approach For Arctic Multiyear Sea Ice Floe
Analysis”, IEEE, 2012
[15] ChristofRidder et.al “Adaptive Background Estimation and Foreground Detection using Kalman-
Filtering” Bavarian Research Center for Knowledge-Based SystemsOrleansstr. 34, D–81667 Munchen,
Germany.
[16] Simon J Julier and Jeffrey K. Uhlmann “A New Extension of the Kalman Filter to Nonlinear Systems”
The Robotics Research Group, Department of Engineering Science, The University of Oxford.

Mais conteúdo relacionado

Mais procurados

Satellite image resolution enhancement using multi
Satellite image resolution enhancement using multiSatellite image resolution enhancement using multi
Satellite image resolution enhancement using multieSAT Publishing House
 
IRJET-Underwater Image Enhancement by Wavelet Decomposition using FPGA
IRJET-Underwater Image Enhancement by Wavelet Decomposition using FPGAIRJET-Underwater Image Enhancement by Wavelet Decomposition using FPGA
IRJET-Underwater Image Enhancement by Wavelet Decomposition using FPGAIRJET Journal
 
IRJET- Analysis of Underwater Image Visibility using White Balance Algorithm
IRJET- Analysis of Underwater Image Visibility using White Balance AlgorithmIRJET- Analysis of Underwater Image Visibility using White Balance Algorithm
IRJET- Analysis of Underwater Image Visibility using White Balance AlgorithmIRJET Journal
 
Image Denoising Based On Wavelet for Satellite Imagery: A Review
Image Denoising Based On Wavelet for Satellite Imagery: A  ReviewImage Denoising Based On Wavelet for Satellite Imagery: A  Review
Image Denoising Based On Wavelet for Satellite Imagery: A ReviewIJMER
 
Depth Estimation from Defocused Images: a Survey
Depth Estimation from Defocused Images: a SurveyDepth Estimation from Defocused Images: a Survey
Depth Estimation from Defocused Images: a SurveyIJAAS Team
 
A Fusion Based Visibility Enhancement of Single Underwater Hazy Image
A Fusion Based Visibility Enhancement of Single Underwater Hazy ImageA Fusion Based Visibility Enhancement of Single Underwater Hazy Image
A Fusion Based Visibility Enhancement of Single Underwater Hazy ImageIJAAS Team
 
Development and Hardware Implementation of an Efficient Algorithm for Cloud D...
Development and Hardware Implementation of an Efficient Algorithm for Cloud D...Development and Hardware Implementation of an Efficient Algorithm for Cloud D...
Development and Hardware Implementation of an Efficient Algorithm for Cloud D...sipij
 
Analysis of LED
Analysis of LEDAnalysis of LED
Analysis of LEDrpiitcbme
 
RADAR Image Fusion Using Wavelet Transform
RADAR Image Fusion Using Wavelet TransformRADAR Image Fusion Using Wavelet Transform
RADAR Image Fusion Using Wavelet TransformINFOGAIN PUBLICATION
 
Particle image velocimetry
Particle image velocimetryParticle image velocimetry
Particle image velocimetryMohsin Siddique
 
Satellite Image Enhancement Using Dual Tree Complex Wavelet Transform
Satellite Image Enhancement Using Dual Tree Complex Wavelet TransformSatellite Image Enhancement Using Dual Tree Complex Wavelet Transform
Satellite Image Enhancement Using Dual Tree Complex Wavelet TransformjournalBEEI
 
Image resolution enhancement by using wavelet transform 2
Image resolution enhancement by using wavelet transform 2Image resolution enhancement by using wavelet transform 2
Image resolution enhancement by using wavelet transform 2IAEME Publication
 
IRJET- Satellite Image Resolution Enhancement using Dual-tree Complex Wav...
IRJET-  	  Satellite Image Resolution Enhancement using Dual-tree Complex Wav...IRJET-  	  Satellite Image Resolution Enhancement using Dual-tree Complex Wav...
IRJET- Satellite Image Resolution Enhancement using Dual-tree Complex Wav...IRJET Journal
 
Image Resolution Enhancement by using Wavelet Transform
Image Resolution Enhancement  by using Wavelet TransformImage Resolution Enhancement  by using Wavelet Transform
Image Resolution Enhancement by using Wavelet TransformIRJET Journal
 
Applying edge density based region growing with frame difference for detectin...
Applying edge density based region growing with frame difference for detectin...Applying edge density based region growing with frame difference for detectin...
Applying edge density based region growing with frame difference for detectin...eSAT Publishing House
 
A NOVEL ALGORITHM FOR IMAGE DENOISING USING DT-CWT
A NOVEL ALGORITHM FOR IMAGE DENOISING USING DT-CWT A NOVEL ALGORITHM FOR IMAGE DENOISING USING DT-CWT
A NOVEL ALGORITHM FOR IMAGE DENOISING USING DT-CWT sipij
 

Mais procurados (20)

Satellite image resolution enhancement using multi
Satellite image resolution enhancement using multiSatellite image resolution enhancement using multi
Satellite image resolution enhancement using multi
 
IRJET-Underwater Image Enhancement by Wavelet Decomposition using FPGA
IRJET-Underwater Image Enhancement by Wavelet Decomposition using FPGAIRJET-Underwater Image Enhancement by Wavelet Decomposition using FPGA
IRJET-Underwater Image Enhancement by Wavelet Decomposition using FPGA
 
IRJET- Analysis of Underwater Image Visibility using White Balance Algorithm
IRJET- Analysis of Underwater Image Visibility using White Balance AlgorithmIRJET- Analysis of Underwater Image Visibility using White Balance Algorithm
IRJET- Analysis of Underwater Image Visibility using White Balance Algorithm
 
Image Denoising Based On Wavelet for Satellite Imagery: A Review
Image Denoising Based On Wavelet for Satellite Imagery: A  ReviewImage Denoising Based On Wavelet for Satellite Imagery: A  Review
Image Denoising Based On Wavelet for Satellite Imagery: A Review
 
Depth Estimation from Defocused Images: a Survey
Depth Estimation from Defocused Images: a SurveyDepth Estimation from Defocused Images: a Survey
Depth Estimation from Defocused Images: a Survey
 
A Fusion Based Visibility Enhancement of Single Underwater Hazy Image
A Fusion Based Visibility Enhancement of Single Underwater Hazy ImageA Fusion Based Visibility Enhancement of Single Underwater Hazy Image
A Fusion Based Visibility Enhancement of Single Underwater Hazy Image
 
Development and Hardware Implementation of an Efficient Algorithm for Cloud D...
Development and Hardware Implementation of an Efficient Algorithm for Cloud D...Development and Hardware Implementation of an Efficient Algorithm for Cloud D...
Development and Hardware Implementation of an Efficient Algorithm for Cloud D...
 
Ik3415621565
Ik3415621565Ik3415621565
Ik3415621565
 
2007 asprs
2007 asprs2007 asprs
2007 asprs
 
Analysis of LED
Analysis of LEDAnalysis of LED
Analysis of LED
 
K42016368
K42016368K42016368
K42016368
 
RADAR Image Fusion Using Wavelet Transform
RADAR Image Fusion Using Wavelet TransformRADAR Image Fusion Using Wavelet Transform
RADAR Image Fusion Using Wavelet Transform
 
Particle image velocimetry
Particle image velocimetryParticle image velocimetry
Particle image velocimetry
 
Satellite Image Enhancement Using Dual Tree Complex Wavelet Transform
Satellite Image Enhancement Using Dual Tree Complex Wavelet TransformSatellite Image Enhancement Using Dual Tree Complex Wavelet Transform
Satellite Image Enhancement Using Dual Tree Complex Wavelet Transform
 
Image resolution enhancement by using wavelet transform 2
Image resolution enhancement by using wavelet transform 2Image resolution enhancement by using wavelet transform 2
Image resolution enhancement by using wavelet transform 2
 
IRJET- Satellite Image Resolution Enhancement using Dual-tree Complex Wav...
IRJET-  	  Satellite Image Resolution Enhancement using Dual-tree Complex Wav...IRJET-  	  Satellite Image Resolution Enhancement using Dual-tree Complex Wav...
IRJET- Satellite Image Resolution Enhancement using Dual-tree Complex Wav...
 
Image Resolution Enhancement by using Wavelet Transform
Image Resolution Enhancement  by using Wavelet TransformImage Resolution Enhancement  by using Wavelet Transform
Image Resolution Enhancement by using Wavelet Transform
 
Applying edge density based region growing with frame difference for detectin...
Applying edge density based region growing with frame difference for detectin...Applying edge density based region growing with frame difference for detectin...
Applying edge density based region growing with frame difference for detectin...
 
A NOVEL ALGORITHM FOR IMAGE DENOISING USING DT-CWT
A NOVEL ALGORITHM FOR IMAGE DENOISING USING DT-CWT A NOVEL ALGORITHM FOR IMAGE DENOISING USING DT-CWT
A NOVEL ALGORITHM FOR IMAGE DENOISING USING DT-CWT
 
Ijetr011837
Ijetr011837Ijetr011837
Ijetr011837
 

Semelhante a F05843238

A new approach of edge detection in sar images using region based active cont...
A new approach of edge detection in sar images using region based active cont...A new approach of edge detection in sar images using region based active cont...
A new approach of edge detection in sar images using region based active cont...eSAT Journals
 
A new approach of edge detection in sar images using
A new approach of edge detection in sar images usingA new approach of edge detection in sar images using
A new approach of edge detection in sar images usingeSAT Publishing House
 
SAR ICE IMAGE CLASSIFICATION USING PARALLELEPIPED CLASSIFIER BASED ON GRAM-SC...
SAR ICE IMAGE CLASSIFICATION USING PARALLELEPIPED CLASSIFIER BASED ON GRAM-SC...SAR ICE IMAGE CLASSIFICATION USING PARALLELEPIPED CLASSIFIER BASED ON GRAM-SC...
SAR ICE IMAGE CLASSIFICATION USING PARALLELEPIPED CLASSIFIER BASED ON GRAM-SC...cscpconf
 
A NOVEL APPROACH FOR SEGMENTATION OF SECTOR SCAN SONAR IMAGES USING ADAPTIVE ...
A NOVEL APPROACH FOR SEGMENTATION OF SECTOR SCAN SONAR IMAGES USING ADAPTIVE ...A NOVEL APPROACH FOR SEGMENTATION OF SECTOR SCAN SONAR IMAGES USING ADAPTIVE ...
A NOVEL APPROACH FOR SEGMENTATION OF SECTOR SCAN SONAR IMAGES USING ADAPTIVE ...ijistjournal
 
A NOVEL APPROACH FOR SEGMENTATION OF SECTOR SCAN SONAR IMAGES USING ADAPTIVE ...
A NOVEL APPROACH FOR SEGMENTATION OF SECTOR SCAN SONAR IMAGES USING ADAPTIVE ...A NOVEL APPROACH FOR SEGMENTATION OF SECTOR SCAN SONAR IMAGES USING ADAPTIVE ...
A NOVEL APPROACH FOR SEGMENTATION OF SECTOR SCAN SONAR IMAGES USING ADAPTIVE ...ijistjournal
 
Conceptual and Practical Examination of Several Edge Detection Strategies
Conceptual and Practical Examination of Several Edge Detection StrategiesConceptual and Practical Examination of Several Edge Detection Strategies
Conceptual and Practical Examination of Several Edge Detection StrategiesIRJET Journal
 
AN EFFICIENT IMPLEMENTATION OF TRACKING USING KALMAN FILTER FOR UNDERWATER RO...
AN EFFICIENT IMPLEMENTATION OF TRACKING USING KALMAN FILTER FOR UNDERWATER RO...AN EFFICIENT IMPLEMENTATION OF TRACKING USING KALMAN FILTER FOR UNDERWATER RO...
AN EFFICIENT IMPLEMENTATION OF TRACKING USING KALMAN FILTER FOR UNDERWATER RO...IJCSEIT Journal
 
Pixel Classification of SAR ice images using ANFIS-PSO Classifier
Pixel Classification of SAR ice images using ANFIS-PSO ClassifierPixel Classification of SAR ice images using ANFIS-PSO Classifier
Pixel Classification of SAR ice images using ANFIS-PSO Classifierijeei-iaes
 
A New Approach of Iris Detection and Recognition
A New Approach of Iris Detection and RecognitionA New Approach of Iris Detection and Recognition
A New Approach of Iris Detection and RecognitionIJECEIAES
 
Image Classification For SAR Images using Modified ANN
Image Classification For SAR Images using Modified ANNImage Classification For SAR Images using Modified ANN
Image Classification For SAR Images using Modified ANNIRJET Journal
 
Hardware Unit for Edge Detection with Comparative Analysis of Different Edge ...
Hardware Unit for Edge Detection with Comparative Analysis of Different Edge ...Hardware Unit for Edge Detection with Comparative Analysis of Different Edge ...
Hardware Unit for Edge Detection with Comparative Analysis of Different Edge ...paperpublications3
 
Ieee gold 2010 resta
Ieee gold 2010 restaIeee gold 2010 resta
Ieee gold 2010 restagrssieee
 
A Flexible Scheme for Transmission Line Fault Identification Using Image Proc...
A Flexible Scheme for Transmission Line Fault Identification Using Image Proc...A Flexible Scheme for Transmission Line Fault Identification Using Image Proc...
A Flexible Scheme for Transmission Line Fault Identification Using Image Proc...IJEEE
 
Ship Detection from SAR Imagery Using CUDA and Performance Analysis of the Sy...
Ship Detection from SAR Imagery Using CUDA and Performance Analysis of the Sy...Ship Detection from SAR Imagery Using CUDA and Performance Analysis of the Sy...
Ship Detection from SAR Imagery Using CUDA and Performance Analysis of the Sy...IJERA Editor
 
WAVELET PACKET BASED IRIS TEXTURE ANALYSIS FOR PERSON AUTHENTICATION
WAVELET PACKET BASED IRIS TEXTURE ANALYSIS FOR PERSON AUTHENTICATIONWAVELET PACKET BASED IRIS TEXTURE ANALYSIS FOR PERSON AUTHENTICATION
WAVELET PACKET BASED IRIS TEXTURE ANALYSIS FOR PERSON AUTHENTICATIONsipij
 
Despeckling of Sar Image using Curvelet Transform
 	  Despeckling of Sar Image using Curvelet Transform 	  Despeckling of Sar Image using Curvelet Transform
Despeckling of Sar Image using Curvelet TransformIRJET Journal
 

Semelhante a F05843238 (20)

A new approach of edge detection in sar images using region based active cont...
A new approach of edge detection in sar images using region based active cont...A new approach of edge detection in sar images using region based active cont...
A new approach of edge detection in sar images using region based active cont...
 
A new approach of edge detection in sar images using
A new approach of edge detection in sar images usingA new approach of edge detection in sar images using
A new approach of edge detection in sar images using
 
SAR ICE IMAGE CLASSIFICATION USING PARALLELEPIPED CLASSIFIER BASED ON GRAM-SC...
SAR ICE IMAGE CLASSIFICATION USING PARALLELEPIPED CLASSIFIER BASED ON GRAM-SC...SAR ICE IMAGE CLASSIFICATION USING PARALLELEPIPED CLASSIFIER BASED ON GRAM-SC...
SAR ICE IMAGE CLASSIFICATION USING PARALLELEPIPED CLASSIFIER BASED ON GRAM-SC...
 
A NOVEL APPROACH FOR SEGMENTATION OF SECTOR SCAN SONAR IMAGES USING ADAPTIVE ...
A NOVEL APPROACH FOR SEGMENTATION OF SECTOR SCAN SONAR IMAGES USING ADAPTIVE ...A NOVEL APPROACH FOR SEGMENTATION OF SECTOR SCAN SONAR IMAGES USING ADAPTIVE ...
A NOVEL APPROACH FOR SEGMENTATION OF SECTOR SCAN SONAR IMAGES USING ADAPTIVE ...
 
A NOVEL APPROACH FOR SEGMENTATION OF SECTOR SCAN SONAR IMAGES USING ADAPTIVE ...
A NOVEL APPROACH FOR SEGMENTATION OF SECTOR SCAN SONAR IMAGES USING ADAPTIVE ...A NOVEL APPROACH FOR SEGMENTATION OF SECTOR SCAN SONAR IMAGES USING ADAPTIVE ...
A NOVEL APPROACH FOR SEGMENTATION OF SECTOR SCAN SONAR IMAGES USING ADAPTIVE ...
 
Ijcet 06 09_001
Ijcet 06 09_001Ijcet 06 09_001
Ijcet 06 09_001
 
Conceptual and Practical Examination of Several Edge Detection Strategies
Conceptual and Practical Examination of Several Edge Detection StrategiesConceptual and Practical Examination of Several Edge Detection Strategies
Conceptual and Practical Examination of Several Edge Detection Strategies
 
AN EFFICIENT IMPLEMENTATION OF TRACKING USING KALMAN FILTER FOR UNDERWATER RO...
AN EFFICIENT IMPLEMENTATION OF TRACKING USING KALMAN FILTER FOR UNDERWATER RO...AN EFFICIENT IMPLEMENTATION OF TRACKING USING KALMAN FILTER FOR UNDERWATER RO...
AN EFFICIENT IMPLEMENTATION OF TRACKING USING KALMAN FILTER FOR UNDERWATER RO...
 
Pixel Classification of SAR ice images using ANFIS-PSO Classifier
Pixel Classification of SAR ice images using ANFIS-PSO ClassifierPixel Classification of SAR ice images using ANFIS-PSO Classifier
Pixel Classification of SAR ice images using ANFIS-PSO Classifier
 
A New Approach of Iris Detection and Recognition
A New Approach of Iris Detection and RecognitionA New Approach of Iris Detection and Recognition
A New Approach of Iris Detection and Recognition
 
Fd36957962
Fd36957962Fd36957962
Fd36957962
 
Image Classification For SAR Images using Modified ANN
Image Classification For SAR Images using Modified ANNImage Classification For SAR Images using Modified ANN
Image Classification For SAR Images using Modified ANN
 
Hardware Unit for Edge Detection with Comparative Analysis of Different Edge ...
Hardware Unit for Edge Detection with Comparative Analysis of Different Edge ...Hardware Unit for Edge Detection with Comparative Analysis of Different Edge ...
Hardware Unit for Edge Detection with Comparative Analysis of Different Edge ...
 
Iw3515281533
Iw3515281533Iw3515281533
Iw3515281533
 
Ieee gold 2010 resta
Ieee gold 2010 restaIeee gold 2010 resta
Ieee gold 2010 resta
 
A Flexible Scheme for Transmission Line Fault Identification Using Image Proc...
A Flexible Scheme for Transmission Line Fault Identification Using Image Proc...A Flexible Scheme for Transmission Line Fault Identification Using Image Proc...
A Flexible Scheme for Transmission Line Fault Identification Using Image Proc...
 
Ship Detection from SAR Imagery Using CUDA and Performance Analysis of the Sy...
Ship Detection from SAR Imagery Using CUDA and Performance Analysis of the Sy...Ship Detection from SAR Imagery Using CUDA and Performance Analysis of the Sy...
Ship Detection from SAR Imagery Using CUDA and Performance Analysis of the Sy...
 
WAVELET PACKET BASED IRIS TEXTURE ANALYSIS FOR PERSON AUTHENTICATION
WAVELET PACKET BASED IRIS TEXTURE ANALYSIS FOR PERSON AUTHENTICATIONWAVELET PACKET BASED IRIS TEXTURE ANALYSIS FOR PERSON AUTHENTICATION
WAVELET PACKET BASED IRIS TEXTURE ANALYSIS FOR PERSON AUTHENTICATION
 
Despeckling of Sar Image using Curvelet Transform
 	  Despeckling of Sar Image using Curvelet Transform 	  Despeckling of Sar Image using Curvelet Transform
Despeckling of Sar Image using Curvelet Transform
 
D04402024029
D04402024029D04402024029
D04402024029
 

Mais de IOSR-JEN

Mais de IOSR-JEN (20)

C05921721
C05921721C05921721
C05921721
 
B05921016
B05921016B05921016
B05921016
 
A05920109
A05920109A05920109
A05920109
 
J05915457
J05915457J05915457
J05915457
 
I05914153
I05914153I05914153
I05914153
 
H05913540
H05913540H05913540
H05913540
 
G05913234
G05913234G05913234
G05913234
 
F05912731
F05912731F05912731
F05912731
 
E05912226
E05912226E05912226
E05912226
 
D05911621
D05911621D05911621
D05911621
 
C05911315
C05911315C05911315
C05911315
 
B05910712
B05910712B05910712
B05910712
 
A05910106
A05910106A05910106
A05910106
 
B05840510
B05840510B05840510
B05840510
 
I05844759
I05844759I05844759
I05844759
 
H05844346
H05844346H05844346
H05844346
 
G05843942
G05843942G05843942
G05843942
 
E05842831
E05842831E05842831
E05842831
 
D05842227
D05842227D05842227
D05842227
 
C05841121
C05841121C05841121
C05841121
 

Último

Connect Wave/ connectwave Pitch Deck Presentation
Connect Wave/ connectwave Pitch Deck PresentationConnect Wave/ connectwave Pitch Deck Presentation
Connect Wave/ connectwave Pitch Deck PresentationSlibray Presentation
 
H2O.ai CEO/Founder: Sri Ambati Keynote at Wells Fargo Day
H2O.ai CEO/Founder: Sri Ambati Keynote at Wells Fargo DayH2O.ai CEO/Founder: Sri Ambati Keynote at Wells Fargo Day
H2O.ai CEO/Founder: Sri Ambati Keynote at Wells Fargo DaySri Ambati
 
The Ultimate Guide to Choosing WordPress Pros and Cons
The Ultimate Guide to Choosing WordPress Pros and ConsThe Ultimate Guide to Choosing WordPress Pros and Cons
The Ultimate Guide to Choosing WordPress Pros and ConsPixlogix Infotech
 
Artificial intelligence in cctv survelliance.pptx
Artificial intelligence in cctv survelliance.pptxArtificial intelligence in cctv survelliance.pptx
Artificial intelligence in cctv survelliance.pptxhariprasad279825
 
Take control of your SAP testing with UiPath Test Suite
Take control of your SAP testing with UiPath Test SuiteTake control of your SAP testing with UiPath Test Suite
Take control of your SAP testing with UiPath Test SuiteDianaGray10
 
Leverage Zilliz Serverless - Up to 50X Saving for Your Vector Storage Cost
Leverage Zilliz Serverless - Up to 50X Saving for Your Vector Storage CostLeverage Zilliz Serverless - Up to 50X Saving for Your Vector Storage Cost
Leverage Zilliz Serverless - Up to 50X Saving for Your Vector Storage CostZilliz
 
Gen AI in Business - Global Trends Report 2024.pdf
Gen AI in Business - Global Trends Report 2024.pdfGen AI in Business - Global Trends Report 2024.pdf
Gen AI in Business - Global Trends Report 2024.pdfAddepto
 
DevoxxFR 2024 Reproducible Builds with Apache Maven
DevoxxFR 2024 Reproducible Builds with Apache MavenDevoxxFR 2024 Reproducible Builds with Apache Maven
DevoxxFR 2024 Reproducible Builds with Apache MavenHervé Boutemy
 
TeamStation AI System Report LATAM IT Salaries 2024
TeamStation AI System Report LATAM IT Salaries 2024TeamStation AI System Report LATAM IT Salaries 2024
TeamStation AI System Report LATAM IT Salaries 2024Lonnie McRorey
 
New from BookNet Canada for 2024: BNC CataList - Tech Forum 2024
New from BookNet Canada for 2024: BNC CataList - Tech Forum 2024New from BookNet Canada for 2024: BNC CataList - Tech Forum 2024
New from BookNet Canada for 2024: BNC CataList - Tech Forum 2024BookNet Canada
 
Anypoint Exchange: It’s Not Just a Repo!
Anypoint Exchange: It’s Not Just a Repo!Anypoint Exchange: It’s Not Just a Repo!
Anypoint Exchange: It’s Not Just a Repo!Manik S Magar
 
CloudStudio User manual (basic edition):
CloudStudio User manual (basic edition):CloudStudio User manual (basic edition):
CloudStudio User manual (basic edition):comworks
 
Streamlining Python Development: A Guide to a Modern Project Setup
Streamlining Python Development: A Guide to a Modern Project SetupStreamlining Python Development: A Guide to a Modern Project Setup
Streamlining Python Development: A Guide to a Modern Project SetupFlorian Wilhelm
 
Commit 2024 - Secret Management made easy
Commit 2024 - Secret Management made easyCommit 2024 - Secret Management made easy
Commit 2024 - Secret Management made easyAlfredo García Lavilla
 
Tampa BSides - Chef's Tour of Microsoft Security Adoption Framework (SAF)
Tampa BSides - Chef's Tour of Microsoft Security Adoption Framework (SAF)Tampa BSides - Chef's Tour of Microsoft Security Adoption Framework (SAF)
Tampa BSides - Chef's Tour of Microsoft Security Adoption Framework (SAF)Mark Simos
 
Are Multi-Cloud and Serverless Good or Bad?
Are Multi-Cloud and Serverless Good or Bad?Are Multi-Cloud and Serverless Good or Bad?
Are Multi-Cloud and Serverless Good or Bad?Mattias Andersson
 
Search Engine Optimization SEO PDF for 2024.pdf
Search Engine Optimization SEO PDF for 2024.pdfSearch Engine Optimization SEO PDF for 2024.pdf
Search Engine Optimization SEO PDF for 2024.pdfRankYa
 
Ensuring Technical Readiness For Copilot in Microsoft 365
Ensuring Technical Readiness For Copilot in Microsoft 365Ensuring Technical Readiness For Copilot in Microsoft 365
Ensuring Technical Readiness For Copilot in Microsoft 3652toLead Limited
 

Último (20)

Connect Wave/ connectwave Pitch Deck Presentation
Connect Wave/ connectwave Pitch Deck PresentationConnect Wave/ connectwave Pitch Deck Presentation
Connect Wave/ connectwave Pitch Deck Presentation
 
H2O.ai CEO/Founder: Sri Ambati Keynote at Wells Fargo Day
H2O.ai CEO/Founder: Sri Ambati Keynote at Wells Fargo DayH2O.ai CEO/Founder: Sri Ambati Keynote at Wells Fargo Day
H2O.ai CEO/Founder: Sri Ambati Keynote at Wells Fargo Day
 
The Ultimate Guide to Choosing WordPress Pros and Cons
The Ultimate Guide to Choosing WordPress Pros and ConsThe Ultimate Guide to Choosing WordPress Pros and Cons
The Ultimate Guide to Choosing WordPress Pros and Cons
 
Artificial intelligence in cctv survelliance.pptx
Artificial intelligence in cctv survelliance.pptxArtificial intelligence in cctv survelliance.pptx
Artificial intelligence in cctv survelliance.pptx
 
Take control of your SAP testing with UiPath Test Suite
Take control of your SAP testing with UiPath Test SuiteTake control of your SAP testing with UiPath Test Suite
Take control of your SAP testing with UiPath Test Suite
 
DMCC Future of Trade Web3 - Special Edition
DMCC Future of Trade Web3 - Special EditionDMCC Future of Trade Web3 - Special Edition
DMCC Future of Trade Web3 - Special Edition
 
Leverage Zilliz Serverless - Up to 50X Saving for Your Vector Storage Cost
Leverage Zilliz Serverless - Up to 50X Saving for Your Vector Storage CostLeverage Zilliz Serverless - Up to 50X Saving for Your Vector Storage Cost
Leverage Zilliz Serverless - Up to 50X Saving for Your Vector Storage Cost
 
Gen AI in Business - Global Trends Report 2024.pdf
Gen AI in Business - Global Trends Report 2024.pdfGen AI in Business - Global Trends Report 2024.pdf
Gen AI in Business - Global Trends Report 2024.pdf
 
DevoxxFR 2024 Reproducible Builds with Apache Maven
DevoxxFR 2024 Reproducible Builds with Apache MavenDevoxxFR 2024 Reproducible Builds with Apache Maven
DevoxxFR 2024 Reproducible Builds with Apache Maven
 
TeamStation AI System Report LATAM IT Salaries 2024
TeamStation AI System Report LATAM IT Salaries 2024TeamStation AI System Report LATAM IT Salaries 2024
TeamStation AI System Report LATAM IT Salaries 2024
 
E-Vehicle_Hacking_by_Parul Sharma_null_owasp.pptx
E-Vehicle_Hacking_by_Parul Sharma_null_owasp.pptxE-Vehicle_Hacking_by_Parul Sharma_null_owasp.pptx
E-Vehicle_Hacking_by_Parul Sharma_null_owasp.pptx
 
New from BookNet Canada for 2024: BNC CataList - Tech Forum 2024
New from BookNet Canada for 2024: BNC CataList - Tech Forum 2024New from BookNet Canada for 2024: BNC CataList - Tech Forum 2024
New from BookNet Canada for 2024: BNC CataList - Tech Forum 2024
 
Anypoint Exchange: It’s Not Just a Repo!
Anypoint Exchange: It’s Not Just a Repo!Anypoint Exchange: It’s Not Just a Repo!
Anypoint Exchange: It’s Not Just a Repo!
 
CloudStudio User manual (basic edition):
CloudStudio User manual (basic edition):CloudStudio User manual (basic edition):
CloudStudio User manual (basic edition):
 
Streamlining Python Development: A Guide to a Modern Project Setup
Streamlining Python Development: A Guide to a Modern Project SetupStreamlining Python Development: A Guide to a Modern Project Setup
Streamlining Python Development: A Guide to a Modern Project Setup
 
Commit 2024 - Secret Management made easy
Commit 2024 - Secret Management made easyCommit 2024 - Secret Management made easy
Commit 2024 - Secret Management made easy
 
Tampa BSides - Chef's Tour of Microsoft Security Adoption Framework (SAF)
Tampa BSides - Chef's Tour of Microsoft Security Adoption Framework (SAF)Tampa BSides - Chef's Tour of Microsoft Security Adoption Framework (SAF)
Tampa BSides - Chef's Tour of Microsoft Security Adoption Framework (SAF)
 
Are Multi-Cloud and Serverless Good or Bad?
Are Multi-Cloud and Serverless Good or Bad?Are Multi-Cloud and Serverless Good or Bad?
Are Multi-Cloud and Serverless Good or Bad?
 
Search Engine Optimization SEO PDF for 2024.pdf
Search Engine Optimization SEO PDF for 2024.pdfSearch Engine Optimization SEO PDF for 2024.pdf
Search Engine Optimization SEO PDF for 2024.pdf
 
Ensuring Technical Readiness For Copilot in Microsoft 365
Ensuring Technical Readiness For Copilot in Microsoft 365Ensuring Technical Readiness For Copilot in Microsoft 365
Ensuring Technical Readiness For Copilot in Microsoft 365
 

F05843238

  • 1. IOSR Journal of Engineering (IOSRJEN) www.iosrjen.org ISSN (e): 2250-3021, ISSN (p): 2278-8719 Vol. 05, Issue 08 (August. 2015), ||V4|| PP 32-38 International organization of Scientific Research 32 | P a g e A Novel Technique for the better analysis of Ice Properties using Kalman Filtering Rajwinder Sidhu1 , Gurbakash Phonsa2 1 Dept of Computer Science and Engineering, Lovely Professional University, Phagwara 1 e-mail:Shilpakaur100@gmail.com 2 Dept of Computer Science and Engineering, Lovely Professional University, Phagwara 2 e-mail: Gurbakash.15483@lpu.co.in Abstract:SAR algorithm has been used to detect the sea ice to save the ship from any kind of damage. So that ship does not strike with ice. SAR algorithm applied on RADAR1 imagery data to get accurate results. Pixel based segmentation MIRGS algorithm to segment the ice has been studied. Due to this we can differentiate the ice based on its properties. PMA detector has also been studied and thus can easily detect and recognize target by knowing the signal values. There are many methods for multitemporal segmentation from the MODIS data called TempoSeg method for multiyear sea ice floes has also been studied. RADARSAT1 imagery data which is used by Synthetic Aperture Radar to detect the ice of sea at different regions of the oceans. Automated algorithm gives better result of target using R1 imagery data. In project work, we have to implement the automated SAR algorithm to detect sea ice which is already implemented. In further work we have to enhance this automated SAR algorithm to get more accurate results using RADARSAT1 imagery data and will try to use the RADARSAT2 imagery data to make it compatible to SAR algorithm. Keywords: Sea Ice, SAR, Floe, Rater Scan, Dual Polarization, Kalman Filtering I. INTRODUCTION Processing of an image is a process of translating an image into Digital form into digital form and applied some operations so that information can be extracted from it. In this entire process input can be any image, video frame and output can be like features of images and any other things associated with it. Whenever any functions or signal processing applied on it, image is usually considered as 2D. It is one of the fast growing technologies. Most of the time this process is known as digital image process but sometimes digital and optical image processing is also considered [6]. Digital images are manipulated using Digital computers. The main necessity for image processing of images is that digitized form of image should be available of any finite length of binary. For digitization, on a discrete grid the given image is sampled and using a finite number of bits each sample or pixel of image is quantized. Digital images are processed by computers and are converted to Analog signals for displaying. It is then followed by scanning over some display. Processing is of two types Graphical and Computer vision based. The Computer Graphics involves the Physical models of lightning, objects and environment. It is a manual process. It is similar like seemed in a animated movies. But computer vision is often considered as high-level of Image processing. From this high-level image software tries to extract useful physical information. 1.1Image Segmentation: Image segmentation can be defined as the mechanism of subdividing a digital image into multiple pixels or regions. Regions should greatly reveal to interpret objects. A region is collection of similar pixels. The aim of segmentation is to represent the image into some meaningful form. There are many different ways to perform segmentation like thresholding, color based segmentation, watershed segmentation, and texture methods etc. The Segmentation process involves the partitioning of Digital images into parts. This number could be N. Segmentation is done based on the pixel sets or the pixels present in a given region. The pixels present are similar and are based upon the homogeneity of Texture, Colour, and Intensity. This information helps in locating objects and boundaries in the given image [2]. Segmentation is partitioning a digital image f(a, ab) into distinct, continuous, and nonempty subsets. After that from these subsets we extract the information of high level. Practical applications of image segmentation include object identification and recognition, criminal investigation, medical image processing, facial recognition, satellite images, quality assurance in factories, etc The two Image Segmentation areas of consideration are:
  • 2. A Novel Technique for the better analysis of Ice Properties using Kalman Filtering International organization of Scientific Research 33 | P a g e 1.1.1 Region based segmentation: Region segmentation can be defined as partitioning the image into regions. Region is an important concept to depict the image because regions may correspond to objects in the scene. In this, formations of pixels around some objects are located creating a region of those pixels and separating the region from the rest of the image [7]. 1.1.2 Edge based segmentation: Edge segmentation can be defined as that in which each object is surrounded by a border. Edge detection is used to identify the edges and edge pixels. The border of the object is closed, visible and can be detected in the intensity values of the image. It analyzes the distribution according to gray level value scale [7]. 1.2Dual Polarization RADARSAT 2 is a multichannel receiver. The HH channel of it provides same data as of R1. HV channel of R2 is a new addition and is anticipated to enhance the bias of ice and water. Unusually, water is wind roughens and it looks similar to ice at several incidence angles in the channel. Therefore, its required for it to enhance the sea ice image segmentation results using automated algorithms of SAR. RADARSAT 2 provides all the features of RADAR1 and offers some additional features to distinguish different ice types [3]. Dual polarization is the advanced feature which is Radar2 based and is use for mapping of ice. It incorporates 500 km Swath width as that of Radar1 in single polarization. Dual polarization provides Scanning mode of SAR with additive data [10]. The ENVIST Advance SAR (ASAR) also provides the features of dual polarization bit it is having different swath width of 100 km from R1 and R2. ASAR has five modes and five different preferences of polarization levels which can take different images of earth’s surface. We are having a full SAR scene which contains pixel resolution of 1000*1000 m. Now, we will target on SAR Scan wide mode to understand the use of R2 dual polarization and will use this model for sea ice monitoring. 1.3 PMA Detector: In SAR, reflected rays come from target to make it visualize. Point of target will not get if the intensity or amplitude of reflected rays will not large, usually, because of Lower cluttering signal ratio. Fundamentally, SCR affects the detection in the presence of amplitude or intensity data. Thus, a good detector should be designed in such a way that SCR should be improved naturally. Due to this, target can be enhanced and disorder constrained. We know that, the processor which is mostly used in SPAN detector and this makes only use of image intensities because the sum of all polar metric channels is incoherent [12]. SPAN detector is having the synthetic power of all the channels. Therefore, according to some analysis, it has been noticed that this detector can retrieve a higher SCR and lower noise level than HH, HV, or VV independently. So, we can conclude that SCR can be improved with the way of synthetic power. Due to this, by using single channel willfull information; we can single out the targets from the disorder or clutter. For the moment, it is very hard to give the appropriate detection with the SPAN detector because of the lack of knowledge of related data. Considering these facts, a PMA detector has constructed as another synthetic power [13]. 1.4 Related Work X.Yang and Clausi(2012)[1] introduces an approach for ice segmentation in Synthetic Aperture Radar (SAR) generated images. This is done by the combination of Edge Preserving region (EPR) and the MRF Models. Construction of EPR representation requires the measurement of Edge strength. Measuring of the Edge strength is done using the Instantaneous Coefficient of Variation (ICOV). The basis of ICOV is the Watershed Algorithm which is applied on the image to get the regions. Evaluation of the proposed method has been done using SAR image which gets corrupted first by varying levels of Speckle Noise. The proposed method gives accuracy with the combination of above mentioned models and also improves accuracy by 29% reduction in Computational time. Mari-Ann N. Meon, et.al, (2009) [2] list the brief study and exploration of SAR. In this paper [2] researchers explored an automatic segmentation of syntheticaperture radar satellite images (SAR) satellite images of sea ice. The investigation is based on a comparison of an automaticallysegmented SAR image and manual classifications by iceservice analysts. Statistical ice properties are considered for segmenting SAR images into classes. The number of classes is determined from available ground truth.Sea ice experts, aided by various in- situ data, were able tolabel most of the segments from the automatic algorithm.They utilized the physical data of the Polar metricfeatures which are used for classifying the algorithm, in order tofurther explore the class labeling. Phonsa G et al, (2014) [10] proposed a technique to resolve the object extraction problem. This technique helps in object extraction on basis of area assessment size, pixel, enhancement and mining.
  • 3. A Novel Technique for the better analysis of Ice Properties using Kalman Filtering International organization of Scientific Research 34 | P a g e GuiGao, et.al, (2013) in their research paper [8] a CFAR method for the detection of ship in presence of high resolution of SAR amplitude of dual polarization. In order to get better form of clutter ratio, a PMA detector has been designed, thereby preventing any form of biasness for the ship due to SCR as it’s quite sensitive to clutter ratio and the procedure thus helps to reduce the discrimination to a huge extent. Statistical model of PMA detector has also been described using G0 distribution. This distribution is suitable for coping with the complex backgrounds of sea. B. Ramsay et al [4] proposed a design of a method of temporal segmentation for Multi Temporal segmentation of sea ice to detecting the melting rate of multilayered sea ice. MODIS images has been generated for the experimentation purposes, position of ice floes has been detected using microwave radiometer to determine the position of ice floes with time and changing atmosphere. The procedure involves dividing the image into Floe and the background. Feature extraction is done at the first place to extract the useful features followed by marking of floes and shape constrained region growing is applied to detect to best shape. Region maps are generated by post filtering and area of interest or ice floes is thus obtained using morphological operators on piece of MODIS images. The advantage of this newly proposed approach is the availability of the area of the image under study for the region of interest over the period of time. In this paper a study about [5] the study of various feature extraction methods and is marked as an important research area in order to implement the intelligent processing in more précised and effective manner. The best texture extraction method has been determined based on the geostatistic principles and entropy concept. These are the two evaluating factors. The proposed method is marked superior over the other pre existing approaches. Experiments has been performed on medical data which is complex in nature due to the presence of discontinuities when it comes to X-rays or magnetic resonance imaging and the piece of data is hard to segment and analyze. ChristofRidder et.al [15] discusses the foreground and background estimations for image processing. For the background estimations are done considering illuminations but does not present it as background, the author proposed an approach using the CCD cameras of fixed length for making estimations. Back ground estimations have been parallel, independent of pixel positions. Background estimation on smaller image resolution can also be performed easily. Simon J Julier and Jeffrey K. Uhlmann[16] describes the method of linear estimator that has been proposed using the principle of sampled points which can parameterize mean and covariance and can easily work on the nonlinear systems, Performance comparisons of the new approach has been done with the present Extended Kalman Filter. 2 Proposed Methodology SAR generated data is employed for mapping the ice. Among the various segmentation methods for interpretation of such data, unsupervised approach is used. The data in the form of images is obtained from RADARSAT 1 at the first place. But it does not provide accurate results. Thus development of various automated algorithms reduced this hurdle to some extent but further enhancement in such techniques is further required together with the source and RADARSAT 2 provided better outcomes in terms of considering factors such as density and position. The given work is focused on analyzing the pixel data and the related algorithms.[9] Study of region based algorithms and use will also lead to achieve the desired output and results. Need to enhance SAR for RADAR1 imagery data. Now, RADARSAT 1 provides better results using the concept of polarization in SAR and we can get more accurate results by enhancing it.
  • 4. A Novel Technique for the better analysis of Ice Properties using Kalman Filtering International organization of Scientific Research 35 | P a g e Fig. 2.1Chart to show the context of proposed methodology 2.1 Algorithm: INPUT: - INPUT IMAGE FOR SEA ICE DETECTION OUTPUT: - VALUE OF IT,IC AND IV Start (); 1.Input image and store in variable a; 2.[b c]=size(a); 3.Define initialize starting pixel and increment value of the pixels 4.If property of p(i,j)!=p(i+1,j+1) 5.Image will be segmented 6.Store value of IT, IV and IC STOP () The existing algorithms SAR is compatible to RADARSAT1 and give accurate results to detect the ice and for more accurate and efficient results of ice images we need to enhance the SAR algorithm. So, we need to enhance the automated algorithms to capture better results. In proposed work we have used raster scan and kalman filtering to get better and accurate results. 2.2 Experimental Results Fig. 2.2.1Input Image As shown in Figure 2.2.1, the image is input which contains ice and water. In this image technique of morphological segmentation is applied to extract the image properties like Ice Thickness, Velocity and Concentration.
  • 5. A Novel Technique for the better analysis of Ice Properties using Kalman Filtering International organization of Scientific Research 36 | P a g e (a) (b) (c) Fig. 2.2.2a) Thickness b) Velocity c) Concentration In fig 2.2.2 the image is input which contains ice, water. In this image technique of morphological segmentation is applied to extract the image properties like ice thickness, ice velocity and ice concentration. Fig. 2.2.3Values in Text File As shown in figure 2.2.3, the image is input which contains ice, water. In this image technique of morphological segmentation is applied to extract the image properties like thickness, velocity and concentration. Final values of Thickness, Velocity,and Concentration are defined and analyzed value is shown in text file. Fig. 2.2.4Input Images (a) (b) (c) Fig. 2.2.5a) Ice Thickness b) Ice Concentration c) Ice Velocity In this Figure 2.2.5, the image is input which contains ice, water. In this image technique of morphological segmentation is applied to extract the image properties like ice thickness, ice velocity and ice concentration.
  • 6. A Novel Technique for the better analysis of Ice Properties using Kalman Filtering International organization of Scientific Research 37 | P a g e Fig. 2.2.6 Final Values As shown in Figure 2.2.6, the image is input which contains ice, water. In this image technique of morphological segmentation is applied to extract the image properties like Ice Thickness, Velocity and Concentration. The final values of ice concentration, ice velocity and ice thickness is defined and analyzed value is shown in text file. Table 2.2.1Results for observations Images IT IC IV Figure 2.3.2 (a),(b),(c) old=3.02 new=3.07 old=202 new=234 old=0.272 new=0.279 Figure 2.3.5 (a),(b),(c) old=2.54 new=2.59 old=147 new=153 old=0.226 new=0.236 IT: ICE THICKNESS IC: ICE CONCENTRATION IV: ICE VELOCITY Table 2.2.1 represents the values generated for a set of five images namely, Image1 to Image 5. There is increase in values for ice thickness, concentration and velocity after applying the proposed method. II. CONCLUSION The image segmentation is the technique in which the images are segmented for better analysis of the given piece of data. In proposed work involves the segmentation of images of ice present in sea we are working on ice sea segmentation. SAR is the algorithm being used for analyzing the properties of the ice sea images. Main focus is on getting the ice properties in order to do the further analysis ad segmentation in an enhanced way. Ice thickness, ice concentration and ice velocity are the important parameters being focused on to segment various ice types as well. In this paper, an enhancement is being proposed in the SAR algorithm to do better analysis of ice images and the ice types. REFERENCES [1] Xuezhi Yang; Clausi, D.A., "Evaluating SAR Sea Ice Image Segmentation Using Edge-Preserving Region-Based MRFs," Selected Topics in AppliedEarth Observations and Remote Sensing, IEEE Journal of , vol.5, no.5, pp.1383,1393, Oct. 2012 [2] Mari-Ann N. Moen Pnthony P. Doulgeris, Stian N. Anfinsen, Nick Hughes, Angelika H.H. Renner, “ Comparison of feature based segmentation of SAR Satellite Sea Ice Images with manually drawn ice charts”, 2009 [3] Bernd Scheuchl et.al, “Potential of RADARSAT-2 data for operational sea ice monitoring”, CJRS, 2004 [4] B. Ramsay, D. Flett, H. S. Andersen, R. Gill, S. Nghiem, and C. Bertoia. Preparation for the operational use of RADARSAT-2 for ice monitoring. Canadian Journal of Remote Sensing, June 2004. [5] B. Scheuchl, R. Caves, D. Flett, R. Abreu, M. Arkett, and I. Cumming “ENVISAT ASAR AP data for operational sea ice monitoring” In Proc. IEEE,International Geoscience and Remote Sensing Symposium, volume 3, Sept. 2004 [6] Costa, AlceuFerraz, Gabriel Humpire-Mamani, and AgmaJuci Machado Traina. "An Efficient Algorithm for Fractal Analysis of Textures." In Graphics, Patterns and Images (SIBGRAPI), 2012 25th SIBGRAPI Conference on, pp. 39-46. IEEE, 2012. [7] Ehmann, J. "Structural Texture Similarity Metrics for Image Analysis and Retrieval", IEEE 2013
  • 7. A Novel Technique for the better analysis of Ice Properties using Kalman Filtering International organization of Scientific Research 38 | P a g e [8] GuiGao, Gongtao Shi and Shilin Zhou, “Ship Detection in High-Resolution Dual-Polarization SAR Amplitude Images” IJAP, volume 3 issue 5, pp- 213-2-15, 2013 [9] Kanchan S. Deshmukh, “Texture Image Segmentation using FCM” 012 IACSIT Hong Kong Conferences IPCSIT vol. 25 2012, IACSIT Press, Singapore [10] Phonsa, G & Sandhar, R. K. (2014, May). Distinctive feature mining based on varying threshold based image extraction for single and multiple objects. InAdvanced Communication Control and Computing Technologies (ICACCCT), 2014 International Conference on (pp. 1537-1541). IEEE. [11] Marta, Antonio, “ Models For Synthetic Aperture Radar Texture Analysis” IEEE, 2009 [12] Pham, Tuan D. "Image texture analysis using geostatistical information entropy" IEEE 2012 [13] Waller, Ben M., Mark S. Nixon, and J. N. Carter. "Analysing Micro-and Macro-Structures in Textures." In Signal Image Technology and Internet Based Systems (SITIS), 2012 Eighth International Conference on, pp. 246-253. IEEE, 2012. [14] YuliyaTarabalka et.al “Shape-Constrained Segmentation Approach For Arctic Multiyear Sea Ice Floe Analysis”, IEEE, 2012 [15] ChristofRidder et.al “Adaptive Background Estimation and Foreground Detection using Kalman- Filtering” Bavarian Research Center for Knowledge-Based SystemsOrleansstr. 34, D–81667 Munchen, Germany. [16] Simon J Julier and Jeffrey K. Uhlmann “A New Extension of the Kalman Filter to Nonlinear Systems” The Robotics Research Group, Department of Engineering Science, The University of Oxford.