A strategy for estimating the components of the carbon and water budgets for croplands at plot scale over large areas

Integrated Carbon Observation System (ICOS)
Integrated Carbon Observation System (ICOS)Integrated Carbon Observation System (ICOS)
A strategy for estimating the
components of the carbon and water
budgets for croplands at plot scale over
large areas
Univ. Toulouse III, CNRS, CNES, IRD,
INRA
E. Ceschia, G. Pique, A. Veloso, R. Fieuzal, A. Albitar, JF. Dejoux,
with contributions from A. Brut,T. Tallec, V. Demarez, O. Hagolle, H. Gibrin, B.
Zawilski, C. Marais-Sicre, N. Claverie, F. Granouillac.
3rd
ICOS Science Conference
Prague, September 13th
2018
Questioning of the durability of the conventional agriculture (climate change &
other environmental impacts)
Context/societal challenges
Illustrations: Arbre et
Paysage 32
Agro-ecological practices
Lack of large scale multi-criteria diagnostic modelling tools working at plot level to
establish an environmental/agronomical baseline, guide the transition towards agro-
ecological practices and quantify their positive/negative impacts (changes in
ecosystem services)
Strategic challenge for the agricultural profession and the society in general
C storage
= 4/1000
No till
Cover crops
Agroforestery
23rd
ICOS Science Conference, Prague, September 2018
• To analyse cropland ecosystem services at plot scale over large
areas (regional to global) : yield, biomass dynamics,
evapotranspiration and net CO2 flux components  annual
carbon & water budgets,
• Test the effect of some management practices (e.g. cover
crops, exporting straw…) on the surface fluxes and C & water
budgets
We developed a multi-temporal high resolution Remote
Sensing (RS) data assimilation scheme in a crop model
(Sentinel…) : avoiding as much as possible the need for ground
data (management)  the Simple Algorithm for Fluxes and
Yield estimates, SAFYE- CO2 (Veloso, 2014 ; Pique G. Fieuzal R.
et al. in prep).
Objectives
3rd
ICOS Science Conference, Prague, September 2018
Why is it possible now ?
Clear or cloudy sky conditions
Rugosity & surface water content
Sentinel 1
(10 m, 6j, Radar)
Sentinel 2
(10 m, 5j, Optical)
Clear sky conditions
Reflectances (13 bands)
Land cover LAI/
phenology
Albedo2%
40%
Soil
humidity
Biomass
Land use dynamic mapping
Soil work
Monitored
parameters
Dynamic mapping
fusion
How to use those RS derived products to answer scientific and societal
challenges related to agriculture ? 4
Sentinel
A
Revolution !!!
(free all over
the globe)
5
(since 2002)
(since 2006)
ESU
ESU
The Spatial Regional Observatory (OSR)
Part of the international JECAM & ICOS networks
Sentinel 1&2
The Lamasquère ICOS site
More than 250 variables continuoulsy measured since 2005 (same at Auradé)
4 profiles sol (0 à 1m)
Radiation(albedo) et
vertical profiles : wind,
T°C, HR%, CO2
Meteo + soil variables +
fluxes : CO2, H, LE
Soil automatic Chambers :
CO2, N2O
Deported mast Main mast
W
ind direction
Eddy-covariance
method
20 Hz
Humidité T°C
Flux de
chaleur
4 chambers
Inter-row
Maïs
Bois
Bâti/Surf. minérale
Blé-Tournesol
Blé- Colza - Tournesol
Eau
Surf. enherbées - Blé
Blé-Colza
Maïs- Blé
Maïs - Tournesol
Surf. enherbées
Surf. enherbées - Tournesol
Maïs
Bois
Bâti/Surf. minérale
Blé-Tournesol
Blé- Colza - Tournesol
Eau
Surf. enherbées - Blé
Blé-Colza
Maïs- Blé
Maïs - Tournesol
Surf. enherbées - Tournesol- Blé
Blé - Tournesol - Sorgho
Blé - Colza - Orge
Maïs - Soja
Surf. enherbées
Surf. enherbées - Tournesol
Bare soil
Early regrowth
Late regrowth
Late cover crops
Early cover crops
D. Ducros, J. Inglada, C. Marais-Sicre , S. Valero , J.F Dejoux,, E. Ceschia
Crop rotations
Autres rotations
Maïs
Bois
Bâti/Surf. minérale
Blé-Tournesol
Blé- Colza - Tournesol
Eau
Surf. enherbées - Blé
Blé-Colza
Maïs- Blé
Maïs - Tournesol
Surf. enherbées - Tournesol- Blé
Blé - Tournesol - Sorgho
Blé - Colza - Orge
Maïs - Soja
Blé - Maïs - Tournesol
Surf. enherbées
Surf. enherbées - Tournesol
CICC & Bag’ages projects
Cover crops
H2020 Sensagri project
Crop mapping based on remote sensing
7
 operational algorithms for annual crop mapping at regional/national scale
(ESA Sentinel 2 Agri & H2020 Sensagri projects),
 mapping of some management practices : cover crops, crop rotations,
irrigation, soil work.
Legend
objectivize the cover crop
development and associated
C storage
3rd
ICOS Science Conference, Prague, September 2018
Sen2agri
Sensagri
29/06/006
26/07/2006
09/09/2006
Cartes de Green Area Index
Biomass,
Yield,
irrigation
CO2 & water fluxes
+
C & water budgets
Validation par stations de
mesures des flux du
Radiative transfer model, SVM…
Crop
mapps
Soil maps
(e.g. global
soil map)
Climatic
data (e.g.
SAFRAN)
29 Juin 2006
Spot, Landsat,
Sentinel 2
Yield
SAFYE-CO2
Monteith approach+FAO56
(Veloso, 2014) Validation with regional stat.
(yield/irrigation)
Validation with regional stat.
(yield/irrigation)
8 km
Modelling approach with SAFYE-CO2
ASW
C
Crop param.
Calibration of
phenology/LUE
Leaf area index
m2
leaves/m2
soil
C budgets
for winter
wheat fields
in 2011
(gC.m-2
)
8
Biomass,SWC
H2020
Sensagri
Dynamic land
use mapp
(crop &
management)
Crop & soilparam.
National observatoriesNational observatories
JECAM Network
Ecosystem component
flux stations
H2020
Sensagri
3rd
ICOS Science Conference, Prague, September 2018
9
Regional estimates for winter wheat
3rd
ICOS Science Conference, Prague, September 2018
10
Net CO2 fluxes (NEP) & C budget (NECB)
Regional estimates for winter wheat
3rd
ICOS Science Conference, Prague, September 2018
11
WUEagronomical = yield or biomass exported/ETR
WUEenvironnemental = C budget /ETR
SAFYE-
CO2
Usefull approach to find compromises between productive and
environmental ecosystem services.
Grains exportésGrain + straw exported
Agronomical vs environmental WUE
Tallec et al (2013)
in AFM
Validation des flux nets de CO2 cumulés sur blé
SAFYE-
CO2
Performances/originality of our approach
3rd
ICOS Science Conference, Prague, September 2018
GPP Reco NEE
R² RMSE* Slope R² RMSE* Slope R² RMSE* Slope
AUR2006 0.91 1.42 1.06 0.77 0.80 0.96 0.85 1.21 1.02
LAM2007 0.94 1.4 0.81 0.80 1.23 0.69 0.87 1.06 0.81
AUR2008 0.94 1.26 0.95 0.74 0.89 0.84 0.89 1.05 0.87
LAM2009 0.93 1.13 1.04 0.71 0.90 0.87 0.79 1.19 0.88
AUR2010 0.94 1.27 0.89 0.82 0.85 0.85 0.88 1.28 0.79
1
GPP Reco
R² RMSE* Slope R² RMSE* Slope R
AUR2006 0.91 1.42 1.06 0.77 0.80 0.96 0.8
LAM2007 0.94 1.4 0.81 0.80 1.23 0.69 0.8
AUR2008 0.94 1.26 0.95 0.74 0.89 0.84 0.8
LAM2009 0.93 1.13 1.04 0.71 0.90 0.87 0.7
AUR2010 0.94 1.27 0.89 0.82 0.85 0.85 0.8
1
Comparaison des différents modèles: flux net de CO2
Wattenbach et al. (2010)
Very good performance of this simple modelling approach that does not requires data
on management (fertilisation, sowing date..) compared to other models.
Shows the power of remote sensing for constraining this crop model
CumulatednetCO2fluxes(gC.m-2
)
Accounting for
regrowth, weeds,
cover crops from
remote sensing
Likely improvement by accounting for the dynamic mapping of some of the
management practices (H2020 Sensagri & Bag’ages) : soil work, cover crops,
irrigation...
ObservationsObservations
Simulations
vs.
+ 5%
Fluxes
CO2
Cimp
- 0.854%
+ 7.8%
No accounting for regrowth (or
cover crops)
No accounting for
regrowth (or cover
crops)
Fluxes
CO2
Cimp
+ 7.8%
- 24%
- 84.1%
C
budget
Charvest
C
budget
Charvest
Performances/originality of our approach
ComponentsoftheCBudget(gC.m-2
.an-1
)
3rd
ICOS Science Conference, Prague, September 2018
• According to literature cover crop (CC) allow C storage of 313 ± 313
kg C.ha-1
.yr-1
considering trial > 5 years i.e. in optimum conditions
(Justes et al. 2013 ; Poeplau & Don, 2015) but…
• In real conditions CC development is very
heterogeneous (in time and space) and therefore
the C storage effect too  can be quantified by our approach
• And the C storage effect of CC will be compared to the albedo
effect (Carrer et al, 2018 in ERL) : essential for optimal mitigation
strategy
Effect of cover crops
Radiative forcing (W.m-2
) Mitigation effect (kt CO2-eq/yr)
Albedo effect of CC is
approx. 40% of the C
storage effect on the short
term but represents 170%
of it on a 100 years basis
(Tribouillois et al. 2018 ;
Carrer et al. 2018)
Albedo increase with CC
Limits of the approach
• Diagnostic approach : but some scenarii can be tested,
• Optical RS data must be combined with radar data
(Sentinel 1) in cloudy aeras & for strong crop
development (optical RS saturates for high LAI values);
ongoing research  H2020 Sensagri,
• Not suited for areas with animal farming : impossible to
quantify organic fertilisation from RS and very difficult
to locate fields where straw is exported  main causes
of uncertainties on the C budget,
Still this approach could be combined with a smart use of
inventory data enlightened by remote sensing data (or
the next generation of LPIS).
3rd
ICOS Science Conference, Prague, September 2018
Conclusions
• This approaches was developed in the perspective of
generalising it by using Sentinel data/products and global soil
maps (for model input) and the JECAM & ICOS networks (for
validation); with some limits… and some challenges (huge
amount of RS data… DIAS),
• Well suited for assessing the effects of straw management and
cover crops on cropland C budgets (and other benefits for
climate mitigation like the albedo effects; Carrer et al. 2018),
• The transposability of this modelling approach as been verified
(Morocco, Mexico, India…) for the SAFY-WB version, next is to
test SAFY-CO2 at other ICOS crop sites,
• Research tool that needs improvements before it can be used
in operational mode for mapping ecosystem services.
3rd
ICOS Science Conference, Prague, September 2018
Thanks for your attention and
thanks to our financers
If you want to have more details concerning our work please contact me at :
eric.ceschia@cesbio.cnes.fr
For complete description of the model see : http://www.cesbio.ups-tlse.fr/data_all/theses/Th_Veloso_2014.pdf
3rd
ICOS Science Conference, Prague, September 2018
Example of C and GHG Budgets
Auradé 2006 Lamasquère 2006
Blé
FluxdeCarboneetGES[geqCm-2
y-1
]
-500
0
500
1000
Maïs
-500
0
500
1000
NEP FO Exp NBP GES
Machines
Intrants
N2
O
Irrigation
NEP FO Exp NBP GES
Machines
Intrants
N2
O
Irrigation
(Béziat et al. 2009, Ceschia et al. 2010 AGEE)
Winter wheat
(Auradé 2006)
Maize for silage
(Lamasquère 2006)
??
EFO EFO
CarbonandGHGfluxes[gC-eqm-2
y-1
]
+ 35 gC.m-2
.yr-1
with cover crops
3rd
ICOS Science Conference, Prague, September 2018
Contexte
Growth
Senescence
D0
BiomassGAI
FT(Ta)
End of
growing
Time (Day of Year)
Senescence
starts
The SAFYE-CO2 model
Stt
Rs
Pla / Plb
19
),()(1 21 HHFwTaFfELUEeRgGPP T
GAIk
c
ext ×××−××=∆ ×−
ε
( ) elueeafELUE
bRR gdf
××=
×/
Correction of the elue
according to diffuse/total
radiation
(x GAI/GAImax)
On each pixel/plot
Emergence
Only during the senescence phase
ELUE(GPP/Rg)
Rgdiffuse/Rgtotal)
FAPAR
Optimised by comparison with
RS derived LAI
The SAFYE-CO2 model
growing
Plateau
Sénescence
D0
Biomass
Soil module = 3 layers
GreenAI
Plant module = 3 phases
Evaporation
= f(ET0)
Transpiration = f(GAI,ET0)
Diffusivité
Drainage
Rain +
irrigation
End of foliage
development
Time (Day of Year)
H1
H2
H3
Beginning of
sénescence
Simplified Monteith
equation
GAI
Coupling the vegetation module with the soil
water module
),()(1 21 HHFwTaFfELUEeRgGPP T
GAIk
c
ext ×××−××=∆ ×−
ε
Couplage avec un module hydrique simple de type FAO56 (et activation possible d’un module
d’irrigation)
3rd
ICOS Science Conference, Prague, September 2018
Details concerning SAFYE-CO2
GPP
NPP Biomasse /
Rendement
RtSv
NPP
a
NPP
+
=
1
RaGPPNPPd −=
RhNPPNEE −=
STb
eaRh
×
×=
( ) ( )RmGPPGYgR
aT
QRRm
RmNPPdmR
gRmRRa
−×−=
−
×=
×−=
+=






1
10
10
1010
1
Empirical relationship
(PhD E. Delogu)
NEE
Baret et al. (1992)
Ra
Rh
See former slide
Yield = f(ΣTa) cf STICS
or a simple harvest index
3 PhDs P. Béziat, A. Veloso & E. Delogu
GAI
• Partition to leaf
• SLA
3rd
ICOS Science Conference, Prague, September 2018
Validating biomass & yield simulations
Measured biomass (Kg m-2
)
Simulatedbiomass(Kgm-2
)
SAFY SAFY-CO2 SAFYE-CO2
RMSE (g.m-2
) 180.3 171.0 186.8
RRMSE (%) 25.0 23.7 25.9
Bias (g.m-2
) -20.1 -22.6 -30.7
R² 0.88 0.91 0.89
Comparison with destructive biomass samplings
Claverie et al (2012) in RSE Veloso (2014)
Summer crops (ESU 2006, 2008) Winter wheat
Underestimation for the highest values (saturation effect of
the RS optical derived LAI) : could be improved by
assimilating biomass data derived from radar satellites (ex.
Sentinel 1)
Contexte
0 20 40 60 80 100
0
20
40
60
80
100
Field campaign
Measured Yield (q/ha)
SimulatedYield(q/ha)
RMSE (q.ha-1
) = 12.22
RRMSE (%) = 25.73
Bias = 4.031
R2
= 0.83
0 20 40 60 80 100
0
20
40
60
80
100
RMSE (q.ha-1
) = 19.49
RRMSE (%) = 36.96
Bias = 6.715
R2
= 0.04
Farmers surveys
Measured Yield(q/ha)
EstimatedYield(q/ha)
0 20 40 60 80 100
0
20
40
60
80
100
RMSE (g.m-2
) = 26.81
RRMSE (%) = 39.64
Bias = -24.98
R2
= 0.95
Yield monitors
Measured Yield(q/ha)
EstimatedYield(q/ha)
y(x) = a x
a = 1.11
y(x) = a x
a = 1.12
y(x) = a x
a = 0.64
Validating yield estimates
Yield monitor on combined
harvester may have to be
calibrated against mean plot
values (weigthed) and data
require post processing 
very interesting for assessing
plot level spatial variablility
Yield
2011 campaign
(Veloso, 2014)
3rd
ICOS Science Conference, Prague, September 2018
24
SAFYE-
CO2
Evapotranspiration (ETR)
Années de
calibration
(données
sites flux)
Years of
validation
(flux data
at both
sites)
ETR
Performances of the model : ETR
25
SAFYE-
CO2
cumulated ETR
calibration
validation
validation
validation
calibration
Performances of the model : ETR
3rd
ICOS Science Conference, Prague, September 2018
26
Auradé 2006
Regrowth
Performances of the model : GPP
Hydric stress
27
Lamasquère 2007
Low
temperatures
Under-
estimation
Performances of the model : GPP
3rd
ICOS Science Conference, Prague, September 2018
Lamasquère 2007Lamasquère 2009
RhRaR +=eco
Under-estimation
28
Performances of the model : Reco
3rd
ICOS Science Conference, Prague, September 2018
29
NEE= GPP-Reco
GPPRecoNEE
Lamasquère 2007
Performances of the model : NEE
Biomass
Residues
Soil orga. C
Photosynthesis
(GPP)
Ra Rh
Eco. resp. (RE)
Net CO2 flux (NEE)
Orga. fertil +
seeds
C budgetC budget GHG budget (LCA)GHG budget (LCA)
Fieldoperations
N2O(IPCC/measures)
Albedo effectAlbedo effect
CH4
DOC ?
See Ceschia et al. 2010 inAGEE Adapted from Muñoz et al. 2010
Other GHG
emissions
Time or space
Bare
soil
Growing period
t0 t1 t2
αs LO1
αs LO2
Surfacealbedo(αs)
RFLMC 1
< 0
C sink : C-CO2 eq1 < 0
RFLMC 2
> 0
C source : C-CO2 eq2 > 0
harvestseeding
1 yr
Bare
soil
Betts (2000), Bird et al. (2008)
Radiative forcing (in C-CO2 eq) = (C budget + N2O + Field operations ) + albedo effect
LMC1 LMC2
Harvest
System of study : the agricultural plot & interfaces
seeBéziat et al. 2009 inAFM
For France
MitigationpotentialMtCO2-eq.yr-1
Years0 25 50 75 100
~ 40% of the C
storage effect
C storage effect
N2O
Albedo effect
Tribouillois et al.
(2018)
~ 80%
of the C storage
effect
~ 170%
of the C storage
effect
Tribouillois et al.
(2018)
Carrer et al.(2018)
3
0
1.2
RFCC
Détermination des
zone et périodes
d’interculture
Données de
rayonnement &
transmittance
atmo.
(ERA-INTERIM)
Land use and desagregated vegetation index,
bare soil albedo & vegetation albedo derived
desagregated MODIS data at 5*5 km (Kalman
filter ;Carrer et al., 2012)
Radiative
Forcing of
Cover Crop
Ta*SWi
n
Albedo mitigation effect of cover crops estimated from RS
Carrer et al. (2018)
Gain d’albédo avec CIMS
Forçage radiatif (W.m-2
)
32
(Carrer et al. 2018)
• Les pays qui ont le plus fort potentiel d’effet albédo lié à l’introduction des CIMS sont la
France, la Roumanie, la Bulgarie et l’Allemagne,
• En moy. pour les 28 pays de l’UE, l’effet albédo des CIMS représente 10% de l’effet
stockage de C mais sans présenter d’effet saturation à long terme (au contraire !!)
Effet albédo des CIMS par pays en équivalent CO2
33
1 de 33

Recomendados

Soil carbon models for carbon stock estimation – where do we fail? por
Soil carbon models for carbon stock estimation – where do we fail?Soil carbon models for carbon stock estimation – where do we fail?
Soil carbon models for carbon stock estimation – where do we fail?ExternalEvents
901 visualizações13 slides
Towards a Tier 3 approach to estimate SOC stocks at sub-regional scale in Sou... por
Towards a Tier 3 approach to estimate SOC stocks at sub-regional scale in Sou...Towards a Tier 3 approach to estimate SOC stocks at sub-regional scale in Sou...
Towards a Tier 3 approach to estimate SOC stocks at sub-regional scale in Sou...ExternalEvents
454 visualizações13 slides
Global space-time soil organic carbon assessment por
Global space-time soil organic carbon assessmentGlobal space-time soil organic carbon assessment
Global space-time soil organic carbon assessmentExternalEvents
428 visualizações19 slides
How is soil erosion evaluated in the land capability systems used in Brazil? por
How is soil erosion evaluated in the land capability systems used in Brazil?How is soil erosion evaluated in the land capability systems used in Brazil?
How is soil erosion evaluated in the land capability systems used in Brazil?ExternalEvents
67 visualizações13 slides
Estimating soil organic carbon changes: is it feasible? por
Estimating soil organic carbon changes: is it feasible?Estimating soil organic carbon changes: is it feasible?
Estimating soil organic carbon changes: is it feasible?ExternalEvents
437 visualizações29 slides
New Measurement and Mapping of SOC in Australia supports national carbon acco... por
New Measurement and Mapping of SOC in Australia supports national carbon acco...New Measurement and Mapping of SOC in Australia supports national carbon acco...
New Measurement and Mapping of SOC in Australia supports national carbon acco...ExternalEvents
357 visualizações19 slides

Mais conteúdo relacionado

Mais procurados

VIIe - Global Soil Organic Carbon Sequestration Potential Map - GSOCseq por
VIIe - Global Soil Organic Carbon Sequestration Potential Map - GSOCseqVIIe - Global Soil Organic Carbon Sequestration Potential Map - GSOCseq
VIIe - Global Soil Organic Carbon Sequestration Potential Map - GSOCseqSoils FAO-GSP
118 visualizações62 slides
A high-resolution spatially-explicit methodology to assess global soil organi... por
A high-resolution spatially-explicit methodology to assess global soil organi...A high-resolution spatially-explicit methodology to assess global soil organi...
A high-resolution spatially-explicit methodology to assess global soil organi...ExternalEvents
411 visualizações13 slides
Soil Carbon Mapping in Australia por
Soil Carbon Mapping in AustraliaSoil Carbon Mapping in Australia
Soil Carbon Mapping in AustraliaExternalEvents
341 visualizações17 slides
''Copernicus for sustainable land management'' by Markus Erhard, European Env... por
''Copernicus for sustainable land management'' by Markus Erhard, European Env...''Copernicus for sustainable land management'' by Markus Erhard, European Env...
''Copernicus for sustainable land management'' by Markus Erhard, European Env...The European GNSS Agency (GSA)
497 visualizações23 slides
IRJET- Future Generation of Multi Daily Rainfall Time Series for Hydrolog... por
IRJET-  	  Future Generation of Multi Daily Rainfall Time Series for Hydrolog...IRJET-  	  Future Generation of Multi Daily Rainfall Time Series for Hydrolog...
IRJET- Future Generation of Multi Daily Rainfall Time Series for Hydrolog...IRJET Journal
10 visualizações10 slides
Can global soil organic carbon maps be used in policy decisions on practical ... por
Can global soil organic carbon maps be used in policy decisions on practical ...Can global soil organic carbon maps be used in policy decisions on practical ...
Can global soil organic carbon maps be used in policy decisions on practical ...ExternalEvents
395 visualizações14 slides

Mais procurados(20)

VIIe - Global Soil Organic Carbon Sequestration Potential Map - GSOCseq por Soils FAO-GSP
VIIe - Global Soil Organic Carbon Sequestration Potential Map - GSOCseqVIIe - Global Soil Organic Carbon Sequestration Potential Map - GSOCseq
VIIe - Global Soil Organic Carbon Sequestration Potential Map - GSOCseq
Soils FAO-GSP118 visualizações
A high-resolution spatially-explicit methodology to assess global soil organi... por ExternalEvents
A high-resolution spatially-explicit methodology to assess global soil organi...A high-resolution spatially-explicit methodology to assess global soil organi...
A high-resolution spatially-explicit methodology to assess global soil organi...
ExternalEvents411 visualizações
Soil Carbon Mapping in Australia por ExternalEvents
Soil Carbon Mapping in AustraliaSoil Carbon Mapping in Australia
Soil Carbon Mapping in Australia
ExternalEvents341 visualizações
''Copernicus for sustainable land management'' by Markus Erhard, European Env... por The European GNSS Agency (GSA)
''Copernicus for sustainable land management'' by Markus Erhard, European Env...''Copernicus for sustainable land management'' by Markus Erhard, European Env...
''Copernicus for sustainable land management'' by Markus Erhard, European Env...
The European GNSS Agency (GSA)497 visualizações
IRJET- Future Generation of Multi Daily Rainfall Time Series for Hydrolog... por IRJET Journal
IRJET-  	  Future Generation of Multi Daily Rainfall Time Series for Hydrolog...IRJET-  	  Future Generation of Multi Daily Rainfall Time Series for Hydrolog...
IRJET- Future Generation of Multi Daily Rainfall Time Series for Hydrolog...
IRJET Journal10 visualizações
Can global soil organic carbon maps be used in policy decisions on practical ... por ExternalEvents
Can global soil organic carbon maps be used in policy decisions on practical ...Can global soil organic carbon maps be used in policy decisions on practical ...
Can global soil organic carbon maps be used in policy decisions on practical ...
ExternalEvents395 visualizações
Status and challenges for mapping, monitoring and MRV of SOC por FAO
Status and challenges for mapping, monitoring and MRV of SOCStatus and challenges for mapping, monitoring and MRV of SOC
Status and challenges for mapping, monitoring and MRV of SOC
FAO525 visualizações
DSM in Argentina: challenges to overcome - Marcos Angelini, Soil Institute, N... por FAO
DSM in Argentina: challenges to overcome - Marcos Angelini, Soil Institute, N...DSM in Argentina: challenges to overcome - Marcos Angelini, Soil Institute, N...
DSM in Argentina: challenges to overcome - Marcos Angelini, Soil Institute, N...
FAO543 visualizações
Ijciet 10 01_180 por IAEME Publication
Ijciet 10 01_180Ijciet 10 01_180
Ijciet 10 01_180
IAEME Publication41 visualizações
IRJET - Normalized Difference Vegetation Index (NDVI) based Land Cover Cl... por IRJET Journal
IRJET -  	  Normalized Difference Vegetation Index (NDVI) based Land Cover Cl...IRJET -  	  Normalized Difference Vegetation Index (NDVI) based Land Cover Cl...
IRJET - Normalized Difference Vegetation Index (NDVI) based Land Cover Cl...
IRJET Journal65 visualizações
The performance of portable mid-infrared spectroscopy for the prediction of s... por ExternalEvents
The performance of portable mid-infrared spectroscopy for the prediction of s...The performance of portable mid-infrared spectroscopy for the prediction of s...
The performance of portable mid-infrared spectroscopy for the prediction of s...
ExternalEvents460 visualizações
J012415965 por IOSR Journals
J012415965J012415965
J012415965
IOSR Journals130 visualizações
Decision supporting framework for soil erosion control and ecosystem services... por ExternalEvents
Decision supporting framework for soil erosion control and ecosystem services...Decision supporting framework for soil erosion control and ecosystem services...
Decision supporting framework for soil erosion control and ecosystem services...
ExternalEvents219 visualizações
Beautiful Data: Gabrielle Hoad (6 October 2017) por Ear, Knows & Throat
Beautiful Data: Gabrielle Hoad (6 October 2017)Beautiful Data: Gabrielle Hoad (6 October 2017)
Beautiful Data: Gabrielle Hoad (6 October 2017)
Ear, Knows & Throat390 visualizações
Development of a SOC Baseline:Experiences from Otjozondjupa, Namibia por ExternalEvents
Development of a SOC Baseline:Experiences from Otjozondjupa, NamibiaDevelopment of a SOC Baseline:Experiences from Otjozondjupa, Namibia
Development of a SOC Baseline:Experiences from Otjozondjupa, Namibia
ExternalEvents493 visualizações
Global custom-tailored machine learning of soil water content for locale spec... por Agriculture Journal IJOEAR
Global custom-tailored machine learning of soil water content for locale spec...Global custom-tailored machine learning of soil water content for locale spec...
Global custom-tailored machine learning of soil water content for locale spec...
Agriculture Journal IJOEAR325 visualizações
DISCOVERY DAY 2017: MAKE IT HAPPEN! por FAO
DISCOVERY DAY 2017: MAKE IT HAPPEN!DISCOVERY DAY 2017: MAKE IT HAPPEN!
DISCOVERY DAY 2017: MAKE IT HAPPEN!
FAO118 visualizações

Similar a A strategy for estimating the components of the carbon and water budgets for croplands at plot scale over large areas

An integrative information aqueduct to close the gaps between global satellit... por
An integrative information aqueduct to close the gaps between global satellit...An integrative information aqueduct to close the gaps between global satellit...
An integrative information aqueduct to close the gaps between global satellit...Salvatore Manfreda
264 visualizações33 slides
OnTheUseOfMultitemporalSeriesOfCOSMODataForClassificationAndSurfaceParameterR... por
OnTheUseOfMultitemporalSeriesOfCOSMODataForClassificationAndSurfaceParameterR...OnTheUseOfMultitemporalSeriesOfCOSMODataForClassificationAndSurfaceParameterR...
OnTheUseOfMultitemporalSeriesOfCOSMODataForClassificationAndSurfaceParameterR...grssieee
203 visualizações13 slides
Rangeland Carbon Sequestration In California por
Rangeland Carbon Sequestration In CaliforniaRangeland Carbon Sequestration In California
Rangeland Carbon Sequestration In Californiaandrewfynn
1.2K visualizações27 slides
MRV of soil organic carbon: Where are we and what is missing? | SOC in NDC we... por
MRV of soil organic carbon: Where are we and what is missing? | SOC in NDC we...MRV of soil organic carbon: Where are we and what is missing? | SOC in NDC we...
MRV of soil organic carbon: Where are we and what is missing? | SOC in NDC we...CCAFS | CGIAR Research Program on Climate Change, Agriculture and Food Security
438 visualizações16 slides
3.3 Climate data and projections por
3.3 Climate data and projections3.3 Climate data and projections
3.3 Climate data and projectionsNAP Events
735 visualizações87 slides

Similar a A strategy for estimating the components of the carbon and water budgets for croplands at plot scale over large areas (20)

An integrative information aqueduct to close the gaps between global satellit... por Salvatore Manfreda
An integrative information aqueduct to close the gaps between global satellit...An integrative information aqueduct to close the gaps between global satellit...
An integrative information aqueduct to close the gaps between global satellit...
Salvatore Manfreda264 visualizações
OnTheUseOfMultitemporalSeriesOfCOSMODataForClassificationAndSurfaceParameterR... por grssieee
OnTheUseOfMultitemporalSeriesOfCOSMODataForClassificationAndSurfaceParameterR...OnTheUseOfMultitemporalSeriesOfCOSMODataForClassificationAndSurfaceParameterR...
OnTheUseOfMultitemporalSeriesOfCOSMODataForClassificationAndSurfaceParameterR...
grssieee203 visualizações
Rangeland Carbon Sequestration In California por andrewfynn
Rangeland Carbon Sequestration In CaliforniaRangeland Carbon Sequestration In California
Rangeland Carbon Sequestration In California
andrewfynn1.2K visualizações
3.3 Climate data and projections por NAP Events
3.3 Climate data and projections3.3 Climate data and projections
3.3 Climate data and projections
NAP Events735 visualizações
Calibration of Physically based Hydrological Models por Salvatore Manfreda
Calibration of Physically based Hydrological ModelsCalibration of Physically based Hydrological Models
Calibration of Physically based Hydrological Models
Salvatore Manfreda292 visualizações
Barrios-Perez, et al. determination of suitable agro-climatic areas for the i... por Camilo Barrios Perez
Barrios-Perez, et al. determination of suitable agro-climatic areas for the i...Barrios-Perez, et al. determination of suitable agro-climatic areas for the i...
Barrios-Perez, et al. determination of suitable agro-climatic areas for the i...
Camilo Barrios Perez321 visualizações
EcoTas13 BradEvans e-MAST por TERN Australia
EcoTas13 BradEvans e-MASTEcoTas13 BradEvans e-MAST
EcoTas13 BradEvans e-MAST
TERN Australia484 visualizações
AI and Satellite Remote Sensing Data for Improved Decision-making in the Afri... por AKADEMIYA2063
AI and Satellite Remote Sensing Data for Improved Decision-making in the Afri...AI and Satellite Remote Sensing Data for Improved Decision-making in the Afri...
AI and Satellite Remote Sensing Data for Improved Decision-making in the Afri...
AKADEMIYA206315 visualizações
Fao modelling system for agricultural impacts of climate change por Maroi Tsouli Fathi
Fao modelling system for agricultural impacts of climate changeFao modelling system for agricultural impacts of climate change
Fao modelling system for agricultural impacts of climate change
Maroi Tsouli Fathi121 visualizações
Differences in land CO2 fluxes between global models and country GHG inventor... por ipcc-media
Differences in land CO2 fluxes between global models and country GHG inventor...Differences in land CO2 fluxes between global models and country GHG inventor...
Differences in land CO2 fluxes between global models and country GHG inventor...
ipcc-media667 visualizações
Climate smart Agriculture: an introduction - Bruno Verbist (KLIMOS) por BTC CTB
Climate smart Agriculture: an introduction - Bruno Verbist (KLIMOS)Climate smart Agriculture: an introduction - Bruno Verbist (KLIMOS)
Climate smart Agriculture: an introduction - Bruno Verbist (KLIMOS)
BTC CTB274 visualizações
Estimating the Impact of Agriculture on the Environment of Catalunya by means... por Andreas Kamilaris
Estimating the Impact of Agriculture on the Environment of Catalunya by means...Estimating the Impact of Agriculture on the Environment of Catalunya by means...
Estimating the Impact of Agriculture on the Environment of Catalunya by means...
Andreas Kamilaris279 visualizações
Gfw presentation for wb master class 27march15 por Nancy Harris
Gfw presentation for wb master class 27march15Gfw presentation for wb master class 27march15
Gfw presentation for wb master class 27march15
Nancy Harris254 visualizações
Francois Delobel: FAO-MOSAICC: The FAO modelling system to support decision-m... por AfricaAdapt
Francois Delobel: FAO-MOSAICC: The FAO modelling system to support decision-m...Francois Delobel: FAO-MOSAICC: The FAO modelling system to support decision-m...
Francois Delobel: FAO-MOSAICC: The FAO modelling system to support decision-m...
AfricaAdapt2.2K visualizações
DRONES IN HYDROLOGY por Salvatore Manfreda
DRONES IN HYDROLOGYDRONES IN HYDROLOGY
DRONES IN HYDROLOGY
Salvatore Manfreda769 visualizações
Advanced weather forecasting for RES applications: Smart4RES developments tow... por Leonardo ENERGY
Advanced weather forecasting for RES applications: Smart4RES developments tow...Advanced weather forecasting for RES applications: Smart4RES developments tow...
Advanced weather forecasting for RES applications: Smart4RES developments tow...
Leonardo ENERGY372 visualizações

Mais de Integrated Carbon Observation System (ICOS)

Röttger, Annette: Overview on radon metrology por
Röttger, Annette:  Overview on radon metrologyRöttger, Annette:  Overview on radon metrology
Röttger, Annette: Overview on radon metrologyIntegrated Carbon Observation System (ICOS)
50 visualizações21 slides
Kirtzel, Hans-Jürgen: FM-CW Wind Lidar “Wind Ranger” and Multi-Path Sonic “uS... por
Kirtzel, Hans-Jürgen: FM-CW Wind Lidar “Wind Ranger” and Multi-Path Sonic “uS...Kirtzel, Hans-Jürgen: FM-CW Wind Lidar “Wind Ranger” and Multi-Path Sonic “uS...
Kirtzel, Hans-Jürgen: FM-CW Wind Lidar “Wind Ranger” and Multi-Path Sonic “uS...Integrated Carbon Observation System (ICOS)
113 visualizações34 slides
Jocher, Georg: Addressing forest canopy decoupling on a global scale por
Jocher, Georg: Addressing forest canopy decoupling on a global scaleJocher, Georg: Addressing forest canopy decoupling on a global scale
Jocher, Georg: Addressing forest canopy decoupling on a global scaleIntegrated Carbon Observation System (ICOS)
23 visualizações20 slides
Dukat, Paulina: How does drought impact water and carbon exchange in the temp... por
Dukat, Paulina: How does drought impact water and carbon exchange in the temp...Dukat, Paulina: How does drought impact water and carbon exchange in the temp...
Dukat, Paulina: How does drought impact water and carbon exchange in the temp...Integrated Carbon Observation System (ICOS)
13 visualizações10 slides
van Zwieten, Ruthger: Performance assessment of the mobile g4301 Cavity Ring-... por
van Zwieten, Ruthger: Performance assessment of the mobile g4301 Cavity Ring-...van Zwieten, Ruthger: Performance assessment of the mobile g4301 Cavity Ring-...
van Zwieten, Ruthger: Performance assessment of the mobile g4301 Cavity Ring-...Integrated Carbon Observation System (ICOS)
10 visualizações13 slides
Vainio, Elisa: Carbon Action – Towards regenerative agriculture in Finland por
Vainio, Elisa: Carbon Action – Towards regenerative agriculture in FinlandVainio, Elisa: Carbon Action – Towards regenerative agriculture in Finland
Vainio, Elisa: Carbon Action – Towards regenerative agriculture in FinlandIntegrated Carbon Observation System (ICOS)
14 visualizações16 slides

Mais de Integrated Carbon Observation System (ICOS)(20)

Último

Disinfectants & Antiseptic por
Disinfectants & AntisepticDisinfectants & Antiseptic
Disinfectants & AntisepticSanket P Shinde
48 visualizações36 slides
Experimental animal Guinea pigs.pptx por
Experimental animal Guinea pigs.pptxExperimental animal Guinea pigs.pptx
Experimental animal Guinea pigs.pptxMansee Arya
17 visualizações16 slides
Small ruminant keepers’ knowledge, attitudes and practices towards peste des ... por
Small ruminant keepers’ knowledge, attitudes and practices towards peste des ...Small ruminant keepers’ knowledge, attitudes and practices towards peste des ...
Small ruminant keepers’ knowledge, attitudes and practices towards peste des ...ILRI
5 visualizações1 slide
1978 NASA News Release Log por
1978 NASA News Release Log1978 NASA News Release Log
1978 NASA News Release Logpurrterminator
10 visualizações146 slides
A Ready-to-Analyze High-Plex Spatial Signature Development Workflow for Cance... por
A Ready-to-Analyze High-Plex Spatial Signature Development Workflow for Cance...A Ready-to-Analyze High-Plex Spatial Signature Development Workflow for Cance...
A Ready-to-Analyze High-Plex Spatial Signature Development Workflow for Cance...InsideScientific
58 visualizações62 slides
Conventional and non-conventional methods for improvement of cucurbits.pptx por
Conventional and non-conventional methods for improvement of cucurbits.pptxConventional and non-conventional methods for improvement of cucurbits.pptx
Conventional and non-conventional methods for improvement of cucurbits.pptxgandhi976
19 visualizações35 slides

Último(20)

Disinfectants & Antiseptic por Sanket P Shinde
Disinfectants & AntisepticDisinfectants & Antiseptic
Disinfectants & Antiseptic
Sanket P Shinde48 visualizações
Experimental animal Guinea pigs.pptx por Mansee Arya
Experimental animal Guinea pigs.pptxExperimental animal Guinea pigs.pptx
Experimental animal Guinea pigs.pptx
Mansee Arya17 visualizações
Small ruminant keepers’ knowledge, attitudes and practices towards peste des ... por ILRI
Small ruminant keepers’ knowledge, attitudes and practices towards peste des ...Small ruminant keepers’ knowledge, attitudes and practices towards peste des ...
Small ruminant keepers’ knowledge, attitudes and practices towards peste des ...
ILRI5 visualizações
1978 NASA News Release Log por purrterminator
1978 NASA News Release Log1978 NASA News Release Log
1978 NASA News Release Log
purrterminator10 visualizações
A Ready-to-Analyze High-Plex Spatial Signature Development Workflow for Cance... por InsideScientific
A Ready-to-Analyze High-Plex Spatial Signature Development Workflow for Cance...A Ready-to-Analyze High-Plex Spatial Signature Development Workflow for Cance...
A Ready-to-Analyze High-Plex Spatial Signature Development Workflow for Cance...
InsideScientific58 visualizações
Conventional and non-conventional methods for improvement of cucurbits.pptx por gandhi976
Conventional and non-conventional methods for improvement of cucurbits.pptxConventional and non-conventional methods for improvement of cucurbits.pptx
Conventional and non-conventional methods for improvement of cucurbits.pptx
gandhi97619 visualizações
Chromatography ppt.pptx por varshachandgudesvpm
Chromatography ppt.pptxChromatography ppt.pptx
Chromatography ppt.pptx
varshachandgudesvpm18 visualizações
SANJAY HPLC.pptx por sanjayudps2016
SANJAY HPLC.pptxSANJAY HPLC.pptx
SANJAY HPLC.pptx
sanjayudps2016185 visualizações
MODULE-9-Biotechnology, Genetically Modified Organisms, and Gene Therapy.pdf por KerryNuez1
MODULE-9-Biotechnology, Genetically Modified Organisms, and Gene Therapy.pdfMODULE-9-Biotechnology, Genetically Modified Organisms, and Gene Therapy.pdf
MODULE-9-Biotechnology, Genetically Modified Organisms, and Gene Therapy.pdf
KerryNuez125 visualizações
ELECTRON TRANSPORT CHAIN por DEEKSHA RANI
ELECTRON TRANSPORT CHAINELECTRON TRANSPORT CHAIN
ELECTRON TRANSPORT CHAIN
DEEKSHA RANI7 visualizações
Artificial Intelligence Helps in Drug Designing and Discovery.pptx por abhinashsahoo2001
Artificial Intelligence Helps in Drug Designing and Discovery.pptxArtificial Intelligence Helps in Drug Designing and Discovery.pptx
Artificial Intelligence Helps in Drug Designing and Discovery.pptx
abhinashsahoo2001126 visualizações
CSF -SHEEBA.D presentation.pptx por SheebaD7
CSF -SHEEBA.D presentation.pptxCSF -SHEEBA.D presentation.pptx
CSF -SHEEBA.D presentation.pptx
SheebaD714 visualizações
Open Access Publishing in Astrophysics por Peter Coles
Open Access Publishing in AstrophysicsOpen Access Publishing in Astrophysics
Open Access Publishing in Astrophysics
Peter Coles906 visualizações
himalay baruah acid fast staining.pptx por HimalayBaruah
himalay baruah acid fast staining.pptxhimalay baruah acid fast staining.pptx
himalay baruah acid fast staining.pptx
HimalayBaruah7 visualizações
Light Pollution for LVIS students por CWBarthlmew
Light Pollution for LVIS studentsLight Pollution for LVIS students
Light Pollution for LVIS students
CWBarthlmew7 visualizações
Synthesis and Characterization of Magnetite-Magnesium Sulphate-Sodium Dodecyl... por GIFT KIISI NKIN
Synthesis and Characterization of Magnetite-Magnesium Sulphate-Sodium Dodecyl...Synthesis and Characterization of Magnetite-Magnesium Sulphate-Sodium Dodecyl...
Synthesis and Characterization of Magnetite-Magnesium Sulphate-Sodium Dodecyl...
GIFT KIISI NKIN26 visualizações
DATABASE MANAGEMENT SYSTEM por Dr. GOPINATH D
DATABASE MANAGEMENT SYSTEMDATABASE MANAGEMENT SYSTEM
DATABASE MANAGEMENT SYSTEM
Dr. GOPINATH D7 visualizações
Distinct distributions of elliptical and disk galaxies across the Local Super... por Sérgio Sacani
Distinct distributions of elliptical and disk galaxies across the Local Super...Distinct distributions of elliptical and disk galaxies across the Local Super...
Distinct distributions of elliptical and disk galaxies across the Local Super...
Sérgio Sacani31 visualizações

A strategy for estimating the components of the carbon and water budgets for croplands at plot scale over large areas

  • 1. A strategy for estimating the components of the carbon and water budgets for croplands at plot scale over large areas Univ. Toulouse III, CNRS, CNES, IRD, INRA E. Ceschia, G. Pique, A. Veloso, R. Fieuzal, A. Albitar, JF. Dejoux, with contributions from A. Brut,T. Tallec, V. Demarez, O. Hagolle, H. Gibrin, B. Zawilski, C. Marais-Sicre, N. Claverie, F. Granouillac. 3rd ICOS Science Conference Prague, September 13th 2018
  • 2. Questioning of the durability of the conventional agriculture (climate change & other environmental impacts) Context/societal challenges Illustrations: Arbre et Paysage 32 Agro-ecological practices Lack of large scale multi-criteria diagnostic modelling tools working at plot level to establish an environmental/agronomical baseline, guide the transition towards agro- ecological practices and quantify their positive/negative impacts (changes in ecosystem services) Strategic challenge for the agricultural profession and the society in general C storage = 4/1000 No till Cover crops Agroforestery 23rd ICOS Science Conference, Prague, September 2018
  • 3. • To analyse cropland ecosystem services at plot scale over large areas (regional to global) : yield, biomass dynamics, evapotranspiration and net CO2 flux components  annual carbon & water budgets, • Test the effect of some management practices (e.g. cover crops, exporting straw…) on the surface fluxes and C & water budgets We developed a multi-temporal high resolution Remote Sensing (RS) data assimilation scheme in a crop model (Sentinel…) : avoiding as much as possible the need for ground data (management)  the Simple Algorithm for Fluxes and Yield estimates, SAFYE- CO2 (Veloso, 2014 ; Pique G. Fieuzal R. et al. in prep). Objectives 3rd ICOS Science Conference, Prague, September 2018
  • 4. Why is it possible now ? Clear or cloudy sky conditions Rugosity & surface water content Sentinel 1 (10 m, 6j, Radar) Sentinel 2 (10 m, 5j, Optical) Clear sky conditions Reflectances (13 bands) Land cover LAI/ phenology Albedo2% 40% Soil humidity Biomass Land use dynamic mapping Soil work Monitored parameters Dynamic mapping fusion How to use those RS derived products to answer scientific and societal challenges related to agriculture ? 4 Sentinel A Revolution !!! (free all over the globe)
  • 5. 5 (since 2002) (since 2006) ESU ESU The Spatial Regional Observatory (OSR) Part of the international JECAM & ICOS networks Sentinel 1&2
  • 6. The Lamasquère ICOS site More than 250 variables continuoulsy measured since 2005 (same at Auradé) 4 profiles sol (0 à 1m) Radiation(albedo) et vertical profiles : wind, T°C, HR%, CO2 Meteo + soil variables + fluxes : CO2, H, LE Soil automatic Chambers : CO2, N2O Deported mast Main mast W ind direction Eddy-covariance method 20 Hz Humidité T°C Flux de chaleur 4 chambers Inter-row
  • 7. Maïs Bois Bâti/Surf. minérale Blé-Tournesol Blé- Colza - Tournesol Eau Surf. enherbées - Blé Blé-Colza Maïs- Blé Maïs - Tournesol Surf. enherbées Surf. enherbées - Tournesol Maïs Bois Bâti/Surf. minérale Blé-Tournesol Blé- Colza - Tournesol Eau Surf. enherbées - Blé Blé-Colza Maïs- Blé Maïs - Tournesol Surf. enherbées - Tournesol- Blé Blé - Tournesol - Sorgho Blé - Colza - Orge Maïs - Soja Surf. enherbées Surf. enherbées - Tournesol Bare soil Early regrowth Late regrowth Late cover crops Early cover crops D. Ducros, J. Inglada, C. Marais-Sicre , S. Valero , J.F Dejoux,, E. Ceschia Crop rotations Autres rotations Maïs Bois Bâti/Surf. minérale Blé-Tournesol Blé- Colza - Tournesol Eau Surf. enherbées - Blé Blé-Colza Maïs- Blé Maïs - Tournesol Surf. enherbées - Tournesol- Blé Blé - Tournesol - Sorgho Blé - Colza - Orge Maïs - Soja Blé - Maïs - Tournesol Surf. enherbées Surf. enherbées - Tournesol CICC & Bag’ages projects Cover crops H2020 Sensagri project Crop mapping based on remote sensing 7  operational algorithms for annual crop mapping at regional/national scale (ESA Sentinel 2 Agri & H2020 Sensagri projects),  mapping of some management practices : cover crops, crop rotations, irrigation, soil work. Legend objectivize the cover crop development and associated C storage 3rd ICOS Science Conference, Prague, September 2018 Sen2agri Sensagri
  • 8. 29/06/006 26/07/2006 09/09/2006 Cartes de Green Area Index Biomass, Yield, irrigation CO2 & water fluxes + C & water budgets Validation par stations de mesures des flux du Radiative transfer model, SVM… Crop mapps Soil maps (e.g. global soil map) Climatic data (e.g. SAFRAN) 29 Juin 2006 Spot, Landsat, Sentinel 2 Yield SAFYE-CO2 Monteith approach+FAO56 (Veloso, 2014) Validation with regional stat. (yield/irrigation) Validation with regional stat. (yield/irrigation) 8 km Modelling approach with SAFYE-CO2 ASW C Crop param. Calibration of phenology/LUE Leaf area index m2 leaves/m2 soil C budgets for winter wheat fields in 2011 (gC.m-2 ) 8 Biomass,SWC H2020 Sensagri Dynamic land use mapp (crop & management) Crop & soilparam. National observatoriesNational observatories JECAM Network Ecosystem component flux stations H2020 Sensagri 3rd ICOS Science Conference, Prague, September 2018
  • 9. 9 Regional estimates for winter wheat 3rd ICOS Science Conference, Prague, September 2018
  • 10. 10 Net CO2 fluxes (NEP) & C budget (NECB) Regional estimates for winter wheat 3rd ICOS Science Conference, Prague, September 2018
  • 11. 11 WUEagronomical = yield or biomass exported/ETR WUEenvironnemental = C budget /ETR SAFYE- CO2 Usefull approach to find compromises between productive and environmental ecosystem services. Grains exportésGrain + straw exported Agronomical vs environmental WUE Tallec et al (2013) in AFM
  • 12. Validation des flux nets de CO2 cumulés sur blé SAFYE- CO2 Performances/originality of our approach 3rd ICOS Science Conference, Prague, September 2018 GPP Reco NEE R² RMSE* Slope R² RMSE* Slope R² RMSE* Slope AUR2006 0.91 1.42 1.06 0.77 0.80 0.96 0.85 1.21 1.02 LAM2007 0.94 1.4 0.81 0.80 1.23 0.69 0.87 1.06 0.81 AUR2008 0.94 1.26 0.95 0.74 0.89 0.84 0.89 1.05 0.87 LAM2009 0.93 1.13 1.04 0.71 0.90 0.87 0.79 1.19 0.88 AUR2010 0.94 1.27 0.89 0.82 0.85 0.85 0.88 1.28 0.79 1 GPP Reco R² RMSE* Slope R² RMSE* Slope R AUR2006 0.91 1.42 1.06 0.77 0.80 0.96 0.8 LAM2007 0.94 1.4 0.81 0.80 1.23 0.69 0.8 AUR2008 0.94 1.26 0.95 0.74 0.89 0.84 0.8 LAM2009 0.93 1.13 1.04 0.71 0.90 0.87 0.7 AUR2010 0.94 1.27 0.89 0.82 0.85 0.85 0.8 1
  • 13. Comparaison des différents modèles: flux net de CO2 Wattenbach et al. (2010) Very good performance of this simple modelling approach that does not requires data on management (fertilisation, sowing date..) compared to other models. Shows the power of remote sensing for constraining this crop model CumulatednetCO2fluxes(gC.m-2 ) Accounting for regrowth, weeds, cover crops from remote sensing Likely improvement by accounting for the dynamic mapping of some of the management practices (H2020 Sensagri & Bag’ages) : soil work, cover crops, irrigation... ObservationsObservations Simulations vs. + 5% Fluxes CO2 Cimp - 0.854% + 7.8% No accounting for regrowth (or cover crops) No accounting for regrowth (or cover crops) Fluxes CO2 Cimp + 7.8% - 24% - 84.1% C budget Charvest C budget Charvest Performances/originality of our approach ComponentsoftheCBudget(gC.m-2 .an-1 ) 3rd ICOS Science Conference, Prague, September 2018
  • 14. • According to literature cover crop (CC) allow C storage of 313 ± 313 kg C.ha-1 .yr-1 considering trial > 5 years i.e. in optimum conditions (Justes et al. 2013 ; Poeplau & Don, 2015) but… • In real conditions CC development is very heterogeneous (in time and space) and therefore the C storage effect too  can be quantified by our approach • And the C storage effect of CC will be compared to the albedo effect (Carrer et al, 2018 in ERL) : essential for optimal mitigation strategy Effect of cover crops Radiative forcing (W.m-2 ) Mitigation effect (kt CO2-eq/yr) Albedo effect of CC is approx. 40% of the C storage effect on the short term but represents 170% of it on a 100 years basis (Tribouillois et al. 2018 ; Carrer et al. 2018) Albedo increase with CC
  • 15. Limits of the approach • Diagnostic approach : but some scenarii can be tested, • Optical RS data must be combined with radar data (Sentinel 1) in cloudy aeras & for strong crop development (optical RS saturates for high LAI values); ongoing research  H2020 Sensagri, • Not suited for areas with animal farming : impossible to quantify organic fertilisation from RS and very difficult to locate fields where straw is exported  main causes of uncertainties on the C budget, Still this approach could be combined with a smart use of inventory data enlightened by remote sensing data (or the next generation of LPIS). 3rd ICOS Science Conference, Prague, September 2018
  • 16. Conclusions • This approaches was developed in the perspective of generalising it by using Sentinel data/products and global soil maps (for model input) and the JECAM & ICOS networks (for validation); with some limits… and some challenges (huge amount of RS data… DIAS), • Well suited for assessing the effects of straw management and cover crops on cropland C budgets (and other benefits for climate mitigation like the albedo effects; Carrer et al. 2018), • The transposability of this modelling approach as been verified (Morocco, Mexico, India…) for the SAFY-WB version, next is to test SAFY-CO2 at other ICOS crop sites, • Research tool that needs improvements before it can be used in operational mode for mapping ecosystem services. 3rd ICOS Science Conference, Prague, September 2018
  • 17. Thanks for your attention and thanks to our financers If you want to have more details concerning our work please contact me at : eric.ceschia@cesbio.cnes.fr For complete description of the model see : http://www.cesbio.ups-tlse.fr/data_all/theses/Th_Veloso_2014.pdf 3rd ICOS Science Conference, Prague, September 2018
  • 18. Example of C and GHG Budgets Auradé 2006 Lamasquère 2006 Blé FluxdeCarboneetGES[geqCm-2 y-1 ] -500 0 500 1000 Maïs -500 0 500 1000 NEP FO Exp NBP GES Machines Intrants N2 O Irrigation NEP FO Exp NBP GES Machines Intrants N2 O Irrigation (Béziat et al. 2009, Ceschia et al. 2010 AGEE) Winter wheat (Auradé 2006) Maize for silage (Lamasquère 2006) ?? EFO EFO CarbonandGHGfluxes[gC-eqm-2 y-1 ] + 35 gC.m-2 .yr-1 with cover crops 3rd ICOS Science Conference, Prague, September 2018
  • 19. Contexte Growth Senescence D0 BiomassGAI FT(Ta) End of growing Time (Day of Year) Senescence starts The SAFYE-CO2 model Stt Rs Pla / Plb 19 ),()(1 21 HHFwTaFfELUEeRgGPP T GAIk c ext ×××−××=∆ ×− ε ( ) elueeafELUE bRR gdf ××= ×/ Correction of the elue according to diffuse/total radiation (x GAI/GAImax) On each pixel/plot Emergence Only during the senescence phase ELUE(GPP/Rg) Rgdiffuse/Rgtotal) FAPAR Optimised by comparison with RS derived LAI The SAFYE-CO2 model
  • 20. growing Plateau Sénescence D0 Biomass Soil module = 3 layers GreenAI Plant module = 3 phases Evaporation = f(ET0) Transpiration = f(GAI,ET0) Diffusivité Drainage Rain + irrigation End of foliage development Time (Day of Year) H1 H2 H3 Beginning of sénescence Simplified Monteith equation GAI Coupling the vegetation module with the soil water module ),()(1 21 HHFwTaFfELUEeRgGPP T GAIk c ext ×××−××=∆ ×− ε Couplage avec un module hydrique simple de type FAO56 (et activation possible d’un module d’irrigation) 3rd ICOS Science Conference, Prague, September 2018
  • 21. Details concerning SAFYE-CO2 GPP NPP Biomasse / Rendement RtSv NPP a NPP + = 1 RaGPPNPPd −= RhNPPNEE −= STb eaRh × ×= ( ) ( )RmGPPGYgR aT QRRm RmNPPdmR gRmRRa −×−= − ×= ×−= +=       1 10 10 1010 1 Empirical relationship (PhD E. Delogu) NEE Baret et al. (1992) Ra Rh See former slide Yield = f(ΣTa) cf STICS or a simple harvest index 3 PhDs P. Béziat, A. Veloso & E. Delogu GAI • Partition to leaf • SLA 3rd ICOS Science Conference, Prague, September 2018
  • 22. Validating biomass & yield simulations Measured biomass (Kg m-2 ) Simulatedbiomass(Kgm-2 ) SAFY SAFY-CO2 SAFYE-CO2 RMSE (g.m-2 ) 180.3 171.0 186.8 RRMSE (%) 25.0 23.7 25.9 Bias (g.m-2 ) -20.1 -22.6 -30.7 R² 0.88 0.91 0.89 Comparison with destructive biomass samplings Claverie et al (2012) in RSE Veloso (2014) Summer crops (ESU 2006, 2008) Winter wheat Underestimation for the highest values (saturation effect of the RS optical derived LAI) : could be improved by assimilating biomass data derived from radar satellites (ex. Sentinel 1)
  • 23. Contexte 0 20 40 60 80 100 0 20 40 60 80 100 Field campaign Measured Yield (q/ha) SimulatedYield(q/ha) RMSE (q.ha-1 ) = 12.22 RRMSE (%) = 25.73 Bias = 4.031 R2 = 0.83 0 20 40 60 80 100 0 20 40 60 80 100 RMSE (q.ha-1 ) = 19.49 RRMSE (%) = 36.96 Bias = 6.715 R2 = 0.04 Farmers surveys Measured Yield(q/ha) EstimatedYield(q/ha) 0 20 40 60 80 100 0 20 40 60 80 100 RMSE (g.m-2 ) = 26.81 RRMSE (%) = 39.64 Bias = -24.98 R2 = 0.95 Yield monitors Measured Yield(q/ha) EstimatedYield(q/ha) y(x) = a x a = 1.11 y(x) = a x a = 1.12 y(x) = a x a = 0.64 Validating yield estimates Yield monitor on combined harvester may have to be calibrated against mean plot values (weigthed) and data require post processing  very interesting for assessing plot level spatial variablility Yield 2011 campaign (Veloso, 2014) 3rd ICOS Science Conference, Prague, September 2018
  • 24. 24 SAFYE- CO2 Evapotranspiration (ETR) Années de calibration (données sites flux) Years of validation (flux data at both sites) ETR Performances of the model : ETR
  • 25. 25 SAFYE- CO2 cumulated ETR calibration validation validation validation calibration Performances of the model : ETR 3rd ICOS Science Conference, Prague, September 2018
  • 26. 26 Auradé 2006 Regrowth Performances of the model : GPP Hydric stress
  • 27. 27 Lamasquère 2007 Low temperatures Under- estimation Performances of the model : GPP 3rd ICOS Science Conference, Prague, September 2018
  • 28. Lamasquère 2007Lamasquère 2009 RhRaR +=eco Under-estimation 28 Performances of the model : Reco 3rd ICOS Science Conference, Prague, September 2018
  • 30. Biomass Residues Soil orga. C Photosynthesis (GPP) Ra Rh Eco. resp. (RE) Net CO2 flux (NEE) Orga. fertil + seeds C budgetC budget GHG budget (LCA)GHG budget (LCA) Fieldoperations N2O(IPCC/measures) Albedo effectAlbedo effect CH4 DOC ? See Ceschia et al. 2010 inAGEE Adapted from Muñoz et al. 2010 Other GHG emissions Time or space Bare soil Growing period t0 t1 t2 αs LO1 αs LO2 Surfacealbedo(αs) RFLMC 1 < 0 C sink : C-CO2 eq1 < 0 RFLMC 2 > 0 C source : C-CO2 eq2 > 0 harvestseeding 1 yr Bare soil Betts (2000), Bird et al. (2008) Radiative forcing (in C-CO2 eq) = (C budget + N2O + Field operations ) + albedo effect LMC1 LMC2 Harvest System of study : the agricultural plot & interfaces seeBéziat et al. 2009 inAFM
  • 31. For France MitigationpotentialMtCO2-eq.yr-1 Years0 25 50 75 100 ~ 40% of the C storage effect C storage effect N2O Albedo effect Tribouillois et al. (2018) ~ 80% of the C storage effect ~ 170% of the C storage effect Tribouillois et al. (2018) Carrer et al.(2018) 3 0 1.2
  • 32. RFCC Détermination des zone et périodes d’interculture Données de rayonnement & transmittance atmo. (ERA-INTERIM) Land use and desagregated vegetation index, bare soil albedo & vegetation albedo derived desagregated MODIS data at 5*5 km (Kalman filter ;Carrer et al., 2012) Radiative Forcing of Cover Crop Ta*SWi n Albedo mitigation effect of cover crops estimated from RS Carrer et al. (2018) Gain d’albédo avec CIMS Forçage radiatif (W.m-2 ) 32
  • 33. (Carrer et al. 2018) • Les pays qui ont le plus fort potentiel d’effet albédo lié à l’introduction des CIMS sont la France, la Roumanie, la Bulgarie et l’Allemagne, • En moy. pour les 28 pays de l’UE, l’effet albédo des CIMS représente 10% de l’effet stockage de C mais sans présenter d’effet saturation à long terme (au contraire !!) Effet albédo des CIMS par pays en équivalent CO2 33

Notas do Editor

  1. A la différence des anciennes missions spatiales…les nouveaux satellites S1&amp;2 lancés en 2015 n’obligent pas à faire un compromis entre résol spatiale et temporelle
  2. SUd-ouest / OSR: Étude de l’impact des pratiques agricoles sur les échanges et les bilans d’eau et de carbone
  3. NEE error : bootstrapping approach as in Papale et al. (2006), random error Richardson and Hollinger (2007), error associated to gapfilling see Béziat et al. (2009) A faire : Resumé méthodes bootstrapp + random error (thèse PB) Estimer incertidute pour diff termes m pr nee, basé sur méthode papale, richardson, holl, mais c un gros boulot. Jouable en dela i? Envoyer fichiers bien formatés. De leur coté, ok ... But se mettre daccord sur methodo d’estimation. Papale : méthode bootstrapping. Recréé un jeu de données avec des trous qui respectent la distribution qui ds jeu de données initial pour calculer erreur lie au gapfilling sur ces periodes et dc sur bilan annuel. Here’s an example of Carbone et GHG budgetsfor our 2 sites in southWest France in 2006 : winter wheat for Auradé et Maize for silage for Lamasquère.