O slideshow foi denunciado.
Utilizamos seu perfil e dados de atividades no LinkedIn para personalizar e exibir anúncios mais relevantes. Altere suas preferências de anúncios quando desejar.

Brain-Inspired Robotics and Neural Dynamics: Lecture 02 (2015)

252 visualizações

Publicada em

Brain-Inspired Robotics and Neural Dynamics: Lecture 02 (2015)

Publicada em: Educação
  • Entre para ver os comentários

  • Seja a primeira pessoa a gostar disto

Brain-Inspired Robotics and Neural Dynamics: Lecture 02 (2015)

  1. 1. 脳型知能創発 2 . 脳、生体、社会現象に関する数理モデル 講義者:我妻広明 九州工業大学大学院生命体工学研究科 脳情報専攻 Hiroaki Wagatsuma @ Kyutech 「脳型知能創発」 月曜3 ,4 限 13:00 ~ 16 : 40 講義室2 日 時: 6/3 月  我妻 会 場:九州工業大学 若松キャンパス Equations for describing biological systems, especially for non-linear phenomena
  2. 2. • ロボットは何のためにあるか (What for) • ロボットは何ができるか (What it can do) • ロボットに求められるもの (What is appropriate)   • ロボットに求められるもの (What we need)   • ロボットはどうやって賢くなるか (How it works well) - Knowing and understanding human beings ( for living together comfortably ) - 安全性と信頼性 (Safety and reliability; safe for others and is not broken unexpectedly) - Investigate brain mechanisms such as intention, emotion and feelings. Finally we reach a way of implementation すなわち、考えてみるべきことは ... Thus, we have to think
  3. 3. ロボットの定義 • 認知・判断・理解などの人間(生物)が持つ能力 について、特定の目的のために、代替するもの • A substitution of human abilities (recognition, decision-making, understanding and so on) based on a specific purpose • →自動化 自律化 Automation and autonomous robot are different  ( autonomous -> self discipline ) • personal memory, sympathy, awareness are necessary? The definition of robots
  4. 4. 脳と知能と心を考える Designed by T. Ikeda 知能 知能(ちのう、 intelligence )とは、論理的に考える、計画を 立てる、問題解決する、言語機能、学習機能など様々な知的 活動を含む心の特性のことである。知能は、しばしば幅広い 概念も含めて捉えられるが、心理学領域では一般に、創造性 、性格、知恵などとは分けて考えられている。 Designed by HIRO 生物ならではの「知能」を考えてみる NHK 『発見!道具を使 うサル』より
  5. 5. 我妻 広明   Hiroaki WAGATSUMA PC-9801n Notebook PC ( released in 1989 ) photo in Neuroscience Institute (San Diego, USA) Wagatsuma & Yamaguchi (2004; Cover photo) PC-9801 series PC ( 1980 - ) Neural Basis of Cognitive Map ( Theta phase coding ) n science & Engineering euro-robotics ) Graduate School of Life Science and Systems Engineering, Kyushu Institute of Technology (KIT, or Kyutech) VLSI 開発 Engineering Neuroscience Integration Kyutech ( Brain-inspired Robots ) RIKEN BSI ( Theoretical Neuroscience ) 5
  6. 6. As a higher cognitive function in the brain, we consider “Self-referential intelligence” Photos from www.carview.co.jp/ news Photos from NHK special TV program   (2005) http://archives.nhk.or.jp/ Computers (Machines) ・ Rule-based implementation ・ Designed for a specific purpose ・ Consistent without any( logical descriptions ) v.s. Biological System (Brain) ・ Intuitive - generative ・ Self-referential (subjective) ・ Self-reinvention ( biological intelligence ) Moura&Lee(2004), “Capuchin stone tool use in Caatinga dry forest”, Science 306 (5703): pp.1909 ASIMO, a humanoid robot by Honda http://asimo.honda.com/ (set externally) (modifiable internally) 6
  7. 7. What is the brain-inspired robotics? Is the computational neuroscience possible to contribute actual society by making a robot interacting with humans
  8. 8. Our Conscious Awareness: a self-referential property ! “ Aha! This is what I want!” • Accurate motion control • Object recognitions • Matching objects with implemented targets • To be safe to use : : What is the awareness? Necessary skills 8
  9. 9. NHK TV program: NHK special, an amazonian fish An Example of Biological Intelligence https://www.youtube.com/watch? v=HD_6zPyrb00 Copella Arnoldi - Le Characin Arroseur Watch the following video 18:54-21:29
  10. 10. Target Copella Arnoldi Prevent to dry Adaptation Path planning
  11. 11. Behaviors of Copella Arnoldi To prevent it to be dry Action Cognition ( loop ) loop of cognition and action consciousness noun 1: an alert cognitive state in which you are aware of yourself and your situation; "he lost consciousness" [ant: {unconsciousness}] 2: having knowledge of; "he had no awareness of his mistakes"; "his sudden consciousness of the problem he faced"; "their intelligence and general knowingness was impressive" [syn: {awareness}, {cognizance}, {knowingness}] Conscious Awareness
  12. 12. 12 Actions Recognition To focus a flow of information with dynamical changes Matching between the top-down and bottom-up processes Skills to operate objects at hand + Recognition what I intend (top-down, decomposition) (bottom-up, composition) matching agreement a real-time constructive process of the matching in the environment: “biological information”
  13. 13. Long distance between fields Brain Science Engineering ?? inspired from the body control and its morphology inspired from the nerve center, higher-cognitive functions inspired from our living society, and applied things to the society Brain-Inspired Systems Social Embodiment Intelligence
  14. 14. 14 http://press.princeton.edu/titles/8458.htm
  15. 15. 15 数学は生物学すべてに浸透している。しかしながらその事実 は生物学を学ぶ多くの学生にとって既知とはなっていない。 彼らが専攻を選んで随分経ってからその事実を知り、如何に 自分自身で数理モデルを立てることが難しいかに直面する。
  16. 16. 16 渋谷交差点 オックスフォードサーカス交差点 http://en.wikipedia.org/wiki/Oxford_Circus https://www.youtube.com/watch?v=Z04NrFXnrM4 Shibuya Circus in Japan Oxford_Circus
  17. 17. • A • B • C どうやって 数量化するか? http://www.youtube.com/watch?v=Z04NrFXnrM4 https://www.youtube.com/watch?v=QXtOdSgf6Ic&feature=player_embe How do you quantize?
  18. 18. 18 数量化可能なリスト a list of quantizations • 人の数 the number of persons (countable factor; 1st ) • 歩く方向 directions of walking (statistical value; 2nd) • 衝突 collision events (event definition; complex) 18
  19. 19. 19 https://www.youtube.com/watch?v=Afpc_EcohcY 組織的な行動は .... more organized form is ...
  20. 20. 20 A static data Statistical analyses
  21. 21. 21 ヒト免疫不全ウイルス(ヒトめんえきふぜんウイルス、英 : Human Immunodeficiency Virus 、 HIV )は、人の免疫細胞に感染して免疫細 胞を破壊し、最終的に後天性免疫不全症候群( AIDS )を発症させるウイ ルス。 主に HIV に関して記述。 HIV 感染症に関しては、主に後天性免疫不全症候 群に記述 リンパ球に結合する HIV-1 後天性免疫不全症候群(こうてんせいめんえきふぜんしょうこうぐん、 Acquired Immune Deficiency Syndrome; AIDS )は、ヒト免疫不全ウイルス( HIV )が免疫細胞に感染し、免疫 細胞を破壊して後天的に免疫不全を起こす免疫不全症のことである [1] 。一般にエイズ ( AIDS )の略称で知られている。
  22. 22. 22
  23. 23. 23
  24. 24. 24
  25. 25. 25 1 million = 100 万
  26. 26. 26
  27. 27. 27 線形と非線形 linear relation non-linear linearization
  28. 28. 28
  29. 29. 29
  30. 30. 30 何を知りたいか? できるだけシンプルに 時間単位を選ぶ 変数、定数、相互作用を記述
  31. 31. 31 動的課程(フロー)を記述 式を分析する(シミュレーション) 式に書き換える
  32. 32. 32 妥当性、バランス 式を見直す
  33. 33. 33
  34. 34. 34
  35. 35. 35
  36. 36. 36
  37. 37. 37
  38. 38. 38
  39. 39. 39
  40. 40. 40
  41. 41. 41
  42. 42. 42
  43. 43. 43
  44. 44. 44
  45. 45. 宿題 Assignment どれとどれが対応するか? Which correspond to which?

×