SlideShare uma empresa Scribd logo
Coordenadas Cartesianas
Coordenadas cartesianas é o conjunto de pontos pertencentes ao
plano cartesiano
Eixos Cartesianos:
São as retas x, e y perpendiculares entre si
x
y
0
P( x,y)
P: representa o ponto no plano cartesiano
X : representa o eixo das abscissas
Y: representa o eixo das ordenadas
y
x
O par ordenado é o conjunto constituído de
dois elementos sempre na mesma ordem (x,y).
x
y
0
P( x,y)
P: representa o ponto no plano cartesiano
X : representa o eixo das abscissas
Y: representa o eixo das ordenadas
Par ordenado:
Par ordenado:
O par ordenado é um conjunto de dois elementos dispostos
na mesma ordem (x,y)
y
-3 -2 -1 0 1 2 3 4 5 6
7
6
5
4
3
2
1
-1
-2
1 P
2P
Indicando as coordenadas dos pontos,
no plano:
P3
4 P x
P1 = ( 4, 2) P2 = (1 , 6) P3 = ( -3,1)
e P4 = (-1, 3)
Divisão do Plano cartesiano em quadrantes
y
-4 -3 -2 -1 0 1 2 3 4 5 6
7
6
5
4
3
2
1
-1
-2
2P
P3
4 P
3º quadrante
2º quadrante
X
1º quadrante
4º quadrante
•
•
P5
P7
1P
6P
•
Observação:
Características dos Pares ordenados no
Plano Cartesiano
P1 ∈ 1º q. ⇒ (+, +) P5∈ X ⇒ (x, 0)
P2 ∈ 2º q. ⇒ (−, +) P6∈ Y ⇒ (0, y)
P3 ∈ 3º q. ⇒ (−, −) P7∈ X ∩ Y ⇒(0, 0)
P4 ∈ 4º q. ⇒ (+, −)
Aplicações:
Construa o plano cartesiano, localize os
pontos dados, una esses pontos e determine a
área e o perímetro da figura formada.
a) P1(5, 0); P2(5, 5); P3(0, 0); P4(0, 5).
b) P1(-2, -2); P2(3, -2); P3(-2, 1).
c) P1(-3, 3); P2(0, 0); P3(-3, 0); P4(0, 3).
Distância entre dois pontos no plano
cartesiano
Observe o gráfico
0 x1 x2
y2
y1
P2 (x2, y2)
d
P1(x1, x2)
Dedução da equação: Por Pitágoras temos: (hip)2
= (cat)2
+ (cat)2
d 2
= ( x2 – x1)2
+ ( y2 – y1)2
d =
2
12
2
12 )y–y()x–x( +
Exercícios:
Determine a distância entre os pontos
dados:
1. A(-2, 3) e B(-1,-1)
2. A(4, 5) e B( 0, 2)
3. A(2, -6) e B(-1, 0)
4. A(1, 0) e B(-2, 3)
5. A( , 0) e B( 0, 1)5
Pares ordenados
Igualdade entre pares ordenados:
Dois pares ordenados são iguais quando seus elementos forem
iguais.
Notação: (x, y) = ( a, b) ⇒ x = a e y = b
Segundo essa afirmação, calcule as variáveis nas igualdades
entre os pares dados:
a) ( 2a + b, 5a – 3b) = (3, 2)
b) (a + 2b, 17) = (6, a + b)
c) (x +y, x – y) = (3, 5)
d) (5x + 2y, 2x + y) = (12, 3)
e) (a2
+ a, 4b2
– 1 ) = ( 2, 7)
Figuras Planas
Área, Diagonal e Perímetro do quadrado:
A = x =
2
P = 4 
D =
2a
D
Figuras Planas:
Área e Perímetro do Retângulo:
A = b x h
P = 2b + 2h
b
h
d
Figuras Planas:
Área e Perímetro do Triângulo Isósceles:
h
b
2
bxh
A =
P = b + + 
Figuras Planas:
Trapézio:
|B
b
h
h.
2
bB
A 




 +
=
Figuras Planas:
Losango:
2
.dD
A =
d
D
Atividades: (sugstão, faça no final da
aula)
Calcular a medida da diagonal do quadrado de lado .
Calcular a medida da diagonal de um retângulo de comprimento
e altura .
 
cm28
cm23cm26

Mais conteúdo relacionado

Mais procurados

Exercícios função de 2° grau 2p
Exercícios função de 2° grau 2pExercícios função de 2° grau 2p
Exercícios função de 2° grau 2pJean Silveira
 
Conjuntos dos números racionais
Conjuntos dos números racionaisConjuntos dos números racionais
Conjuntos dos números racionaisGenilson Pankará
 
Funcoes trigonometricas.ppt
Funcoes trigonometricas.pptFuncoes trigonometricas.ppt
Funcoes trigonometricas.pptRodrigo Carvalho
 
Apresentação geometria analítica
Apresentação geometria analíticaApresentação geometria analítica
Apresentação geometria analíticaprofluizgustavo
 
22 exercícios - inequação produto e quociente (1)
22   exercícios - inequação produto e quociente (1)22   exercícios - inequação produto e quociente (1)
22 exercícios - inequação produto e quociente (1)Kualo Kala
 
Função 1º grau definição e notação de função - exemplos resolvidos
Função 1º grau   definição e notação de função - exemplos resolvidosFunção 1º grau   definição e notação de função - exemplos resolvidos
Função 1º grau definição e notação de função - exemplos resolvidosAdriano Souza
 
Retas, semirretas e segmentos de reta
Retas, semirretas e segmentos de retaRetas, semirretas e segmentos de reta
Retas, semirretas e segmentos de retaquesado72
 
Funcao modular
Funcao modularFuncao modular
Funcao modularcon_seguir
 
Funções - Exercícios
Funções - ExercíciosFunções - Exercícios
Funções - ExercíciosEverton Moraes
 
Bingo matemático(sistemas de equações do 1º grau com duas variáveis)
Bingo matemático(sistemas de equações do 1º grau com duas variáveis)Bingo matemático(sistemas de equações do 1º grau com duas variáveis)
Bingo matemático(sistemas de equações do 1º grau com duas variáveis)Edimar Santos
 

Mais procurados (20)

Exercícios função de 2° grau 2p
Exercícios função de 2° grau 2pExercícios função de 2° grau 2p
Exercícios função de 2° grau 2p
 
Conjuntos dos números racionais
Conjuntos dos números racionaisConjuntos dos números racionais
Conjuntos dos números racionais
 
Segmentos tangentes
Segmentos tangentesSegmentos tangentes
Segmentos tangentes
 
Zero da função do 1º grau
Zero da função do 1º grauZero da função do 1º grau
Zero da função do 1º grau
 
Plano cartesiano ppt
Plano cartesiano pptPlano cartesiano ppt
Plano cartesiano ppt
 
Funções
FunçõesFunções
Funções
 
Funcoes trigonometricas.ppt
Funcoes trigonometricas.pptFuncoes trigonometricas.ppt
Funcoes trigonometricas.ppt
 
Apresentação geometria analítica
Apresentação geometria analíticaApresentação geometria analítica
Apresentação geometria analítica
 
Múltiplos e divisores
Múltiplos e divisoresMúltiplos e divisores
Múltiplos e divisores
 
22 exercícios - inequação produto e quociente (1)
22   exercícios - inequação produto e quociente (1)22   exercícios - inequação produto e quociente (1)
22 exercícios - inequação produto e quociente (1)
 
Função 1º grau definição e notação de função - exemplos resolvidos
Função 1º grau   definição e notação de função - exemplos resolvidosFunção 1º grau   definição e notação de função - exemplos resolvidos
Função 1º grau definição e notação de função - exemplos resolvidos
 
Ponto, reta e plano
Ponto, reta e planoPonto, reta e plano
Ponto, reta e plano
 
Polígonos 8º ano
Polígonos 8º anoPolígonos 8º ano
Polígonos 8º ano
 
Retas, semirretas e segmentos de reta
Retas, semirretas e segmentos de retaRetas, semirretas e segmentos de reta
Retas, semirretas e segmentos de reta
 
Funcao modular
Funcao modularFuncao modular
Funcao modular
 
Funções - Exercícios
Funções - ExercíciosFunções - Exercícios
Funções - Exercícios
 
Bingo matemático(sistemas de equações do 1º grau com duas variáveis)
Bingo matemático(sistemas de equações do 1º grau com duas variáveis)Bingo matemático(sistemas de equações do 1º grau com duas variáveis)
Bingo matemático(sistemas de equações do 1º grau com duas variáveis)
 
Função polinomial do 1º grau
Função polinomial do 1º grauFunção polinomial do 1º grau
Função polinomial do 1º grau
 
Apostila de matrizes (9 páginas, 40 questões, com gabarito)
Apostila de matrizes (9 páginas, 40 questões, com gabarito)Apostila de matrizes (9 páginas, 40 questões, com gabarito)
Apostila de matrizes (9 páginas, 40 questões, com gabarito)
 
Aula 05 Gráficos Estatísticos
Aula 05   Gráficos EstatísticosAula 05   Gráficos Estatísticos
Aula 05 Gráficos Estatísticos
 

Destaque

Aula Sobre Coordenadas Cartesianas
Aula Sobre Coordenadas CartesianasAula Sobre Coordenadas Cartesianas
Aula Sobre Coordenadas CartesianasAntonio Carneiro
 
A etnomatemática e a modelagem como possibilidades
A etnomatemática e a modelagem como possibilidadesA etnomatemática e a modelagem como possibilidades
A etnomatemática e a modelagem como possibilidadesHerlan Ribeiro de Souza
 
Formação de Educadores: Uma Perspectiva Multidimensional
Formação de Educadores: Uma Perspectiva MultidimensionalFormação de Educadores: Uma Perspectiva Multidimensional
Formação de Educadores: Uma Perspectiva MultidimensionalHerlan Ribeiro de Souza
 
Compreensão e produção de texto escrito
Compreensão e produção de texto escritoCompreensão e produção de texto escrito
Compreensão e produção de texto escritoHerlan Ribeiro de Souza
 
Livro didático na história da educação brasileira
Livro didático na história da educação brasileiraLivro didático na história da educação brasileira
Livro didático na história da educação brasileiraHerlan Ribeiro de Souza
 

Destaque (20)

Aula Sobre Coordenadas Cartesianas
Aula Sobre Coordenadas CartesianasAula Sobre Coordenadas Cartesianas
Aula Sobre Coordenadas Cartesianas
 
A etnomatemática e a modelagem como possibilidades
A etnomatemática e a modelagem como possibilidadesA etnomatemática e a modelagem como possibilidades
A etnomatemática e a modelagem como possibilidades
 
Educação matemática
Educação matemáticaEducação matemática
Educação matemática
 
Equações diferenciais ordinárias
Equações diferenciais ordináriasEquações diferenciais ordinárias
Equações diferenciais ordinárias
 
Sistemas lineares
Sistemas linearesSistemas lineares
Sistemas lineares
 
Estatística básica
Estatística básicaEstatística básica
Estatística básica
 
Zero de função
Zero de funçãoZero de função
Zero de função
 
Formação de Educadores: Uma Perspectiva Multidimensional
Formação de Educadores: Uma Perspectiva MultidimensionalFormação de Educadores: Uma Perspectiva Multidimensional
Formação de Educadores: Uma Perspectiva Multidimensional
 
Funções trigonométricas
Funções trigonométricasFunções trigonométricas
Funções trigonométricas
 
Função do 1º grau
Função do 1º grauFunção do 1º grau
Função do 1º grau
 
Função polinomial
Função polinomialFunção polinomial
Função polinomial
 
Conjuntos numéricos
Conjuntos numéricosConjuntos numéricos
Conjuntos numéricos
 
Cálculo numérico
Cálculo numéricoCálculo numérico
Cálculo numérico
 
Compreensão e produção de texto escrito
Compreensão e produção de texto escritoCompreensão e produção de texto escrito
Compreensão e produção de texto escrito
 
Planejamento
PlanejamentoPlanejamento
Planejamento
 
Arte e tecnologia na escola
Arte e tecnologia na escolaArte e tecnologia na escola
Arte e tecnologia na escola
 
Fonética
FonéticaFonética
Fonética
 
Livro didático na história da educação brasileira
Livro didático na história da educação brasileiraLivro didático na história da educação brasileira
Livro didático na história da educação brasileira
 
Fundamentos da educação
Fundamentos da educaçãoFundamentos da educação
Fundamentos da educação
 
Razão áurea
Razão áureaRazão áurea
Razão áurea
 

Semelhante a Coordenadas cartesianas

coordenadascartesianas-140425223750-phpapp02.pptx
coordenadascartesianas-140425223750-phpapp02.pptxcoordenadascartesianas-140425223750-phpapp02.pptx
coordenadascartesianas-140425223750-phpapp02.pptxTailorRaniereWaiandt
 
Aula sobre coordenadas cartesianas
Aula sobre coordenadas cartesianasAula sobre coordenadas cartesianas
Aula sobre coordenadas cartesianasElaine Mello
 
Conjuntos NuméRicos
Conjuntos NuméRicosConjuntos NuméRicos
Conjuntos NuméRicoseducacao f
 
9ano sug atividades_unid_3
9ano sug atividades_unid_39ano sug atividades_unid_3
9ano sug atividades_unid_3Erivaldo Duarte
 
9anosugatividadesunid3 150829125804-lva1-app6891
9anosugatividadesunid3 150829125804-lva1-app68919anosugatividadesunid3 150829125804-lva1-app6891
9anosugatividadesunid3 150829125804-lva1-app6891Juliete Firme Madalena
 
9ano sug atividades_unid_3
9ano sug atividades_unid_39ano sug atividades_unid_3
9ano sug atividades_unid_3Erivaldo Duarte
 
4 - Vetores no Espaço Tratamento algébrico.pdf
4 - Vetores no Espaço Tratamento algébrico.pdf4 - Vetores no Espaço Tratamento algébrico.pdf
4 - Vetores no Espaço Tratamento algébrico.pdfIndiaAndreiaCostaSiq
 
Geometria Analítica I
Geometria Analítica IGeometria Analítica I
Geometria Analítica IEverton Moraes
 
Plano cartesiano 7º ano
Plano cartesiano   7º anoPlano cartesiano   7º ano
Plano cartesiano 7º anoRafael Marques
 
Ap2 gai-2014-2-gabarito
Ap2 gai-2014-2-gabaritoAp2 gai-2014-2-gabarito
Ap2 gai-2014-2-gabaritoMarcia Costa
 
Matemática - Estudo da reta
Matemática - Estudo da retaMatemática - Estudo da reta
Matemática - Estudo da retaDanielle Siqueira
 
Função do 2º Grau
Função do 2º GrauFunção do 2º Grau
Função do 2º Grauprofmribeiro
 
Ap geometria analitica resolvidos
Ap geometria analitica resolvidosAp geometria analitica resolvidos
Ap geometria analitica resolvidostrigono_metrico
 
Função de 2º grau 17122016
Função de 2º grau 17122016Função de 2º grau 17122016
Função de 2º grau 17122016Antonio Carneiro
 

Semelhante a Coordenadas cartesianas (20)

coordenadascartesianas-140425223750-phpapp02.pptx
coordenadascartesianas-140425223750-phpapp02.pptxcoordenadascartesianas-140425223750-phpapp02.pptx
coordenadascartesianas-140425223750-phpapp02.pptx
 
Aula sobre coordenadas cartesianas
Aula sobre coordenadas cartesianasAula sobre coordenadas cartesianas
Aula sobre coordenadas cartesianas
 
Sistema cartesiano ortogonal
Sistema cartesiano ortogonalSistema cartesiano ortogonal
Sistema cartesiano ortogonal
 
Conjuntos NuméRicos
Conjuntos NuméRicosConjuntos NuméRicos
Conjuntos NuméRicos
 
9ano sug atividades_unid_3
9ano sug atividades_unid_39ano sug atividades_unid_3
9ano sug atividades_unid_3
 
9anosugatividadesunid3 150829125804-lva1-app6891
9anosugatividadesunid3 150829125804-lva1-app68919anosugatividadesunid3 150829125804-lva1-app6891
9anosugatividadesunid3 150829125804-lva1-app6891
 
9ano sug atividades_unid_3
9ano sug atividades_unid_39ano sug atividades_unid_3
9ano sug atividades_unid_3
 
Planos
PlanosPlanos
Planos
 
4 - Vetores no Espaço Tratamento algébrico.pdf
4 - Vetores no Espaço Tratamento algébrico.pdf4 - Vetores no Espaço Tratamento algébrico.pdf
4 - Vetores no Espaço Tratamento algébrico.pdf
 
Pró exatcta universidade federal do ceará
Pró exatcta universidade federal do cearáPró exatcta universidade federal do ceará
Pró exatcta universidade federal do ceará
 
Geometria Analítica I
Geometria Analítica IGeometria Analítica I
Geometria Analítica I
 
Plano cartesiano animado
Plano cartesiano animadoPlano cartesiano animado
Plano cartesiano animado
 
Geometria anatica retas exercicios by gledson
Geometria anatica retas exercicios by gledsonGeometria anatica retas exercicios by gledson
Geometria anatica retas exercicios by gledson
 
Plano cartesiano 7º ano
Plano cartesiano   7º anoPlano cartesiano   7º ano
Plano cartesiano 7º ano
 
Ap2 gai-2014-2-gabarito
Ap2 gai-2014-2-gabaritoAp2 gai-2014-2-gabarito
Ap2 gai-2014-2-gabarito
 
Matemática - Estudo da reta
Matemática - Estudo da retaMatemática - Estudo da reta
Matemática - Estudo da reta
 
Função do 2º Grau
Função do 2º GrauFunção do 2º Grau
Função do 2º Grau
 
Ap geometria analitica resolvidos
Ap geometria analitica resolvidosAp geometria analitica resolvidos
Ap geometria analitica resolvidos
 
Apostila pré cálculo
Apostila pré cálculoApostila pré cálculo
Apostila pré cálculo
 
Função de 2º grau 17122016
Função de 2º grau 17122016Função de 2º grau 17122016
Função de 2º grau 17122016
 

Mais de Herlan Ribeiro de Souza (13)

Pré-Projeto: Etnomatemática e a Cubagem de Madeira no Município de Jacundá
Pré-Projeto:  Etnomatemática e a Cubagem de Madeira no Município de JacundáPré-Projeto:  Etnomatemática e a Cubagem de Madeira no Município de Jacundá
Pré-Projeto: Etnomatemática e a Cubagem de Madeira no Município de Jacundá
 
A chegada dos portugueses ao brasil
A chegada dos portugueses ao brasilA chegada dos portugueses ao brasil
A chegada dos portugueses ao brasil
 
A água
A águaA água
A água
 
Olimpíada brasileira de matemática das escolas públicas 2015
Olimpíada brasileira de matemática das escolas públicas 2015Olimpíada brasileira de matemática das escolas públicas 2015
Olimpíada brasileira de matemática das escolas públicas 2015
 
Palestra cap rogério pm
Palestra cap rogério pmPalestra cap rogério pm
Palestra cap rogério pm
 
Projeto: Lúdico e o Tradicional
Projeto: Lúdico e o TradicionalProjeto: Lúdico e o Tradicional
Projeto: Lúdico e o Tradicional
 
Curriculo Herlan Ribeiro de Souza
Curriculo Herlan Ribeiro de SouzaCurriculo Herlan Ribeiro de Souza
Curriculo Herlan Ribeiro de Souza
 
Obmep 2014
Obmep 2014Obmep 2014
Obmep 2014
 
Lei orgânica do Município de Jacundá
Lei orgânica do Município de JacundáLei orgânica do Município de Jacundá
Lei orgânica do Município de Jacundá
 
Plano de ação lie 2014
Plano de ação lie 2014Plano de ação lie 2014
Plano de ação lie 2014
 
Geometria plana
Geometria planaGeometria plana
Geometria plana
 
Projeto Proinfo
Projeto ProinfoProjeto Proinfo
Projeto Proinfo
 
Teoria do texto literário
Teoria do texto literárioTeoria do texto literário
Teoria do texto literário
 

Último

Fotossíntese para o Ensino médio primeiros anos
Fotossíntese para o Ensino médio primeiros anosFotossíntese para o Ensino médio primeiros anos
Fotossíntese para o Ensino médio primeiros anosbiancaborges0906
 
INTRODUÇÃO A ARQUEOLOGIA BÍBLICA [BIBLIOLOGIA]]
INTRODUÇÃO A ARQUEOLOGIA BÍBLICA [BIBLIOLOGIA]]INTRODUÇÃO A ARQUEOLOGIA BÍBLICA [BIBLIOLOGIA]]
INTRODUÇÃO A ARQUEOLOGIA BÍBLICA [BIBLIOLOGIA]]ESCRIBA DE CRISTO
 
Atividade com a música Xote da Alegria - Falamansa
Atividade com a música Xote  da  Alegria    -   FalamansaAtividade com a música Xote  da  Alegria    -   Falamansa
Atividade com a música Xote da Alegria - FalamansaMary Alvarenga
 
PPP6_ciencias final 6 ano ano de 23/24 final
PPP6_ciencias final 6 ano ano de 23/24 finalPPP6_ciencias final 6 ano ano de 23/24 final
PPP6_ciencias final 6 ano ano de 23/24 finalcarlaOliveira438
 
Atividades-Sobre-o-Conto-Venha-Ver-o-Por-Do-Sol.docx
Atividades-Sobre-o-Conto-Venha-Ver-o-Por-Do-Sol.docxAtividades-Sobre-o-Conto-Venha-Ver-o-Por-Do-Sol.docx
Atividades-Sobre-o-Conto-Venha-Ver-o-Por-Do-Sol.docxSolangeWaltre
 
AS COLUNAS B E J E SUAS POSICOES CONFORME O RITO.pdf
AS COLUNAS B E J E SUAS POSICOES CONFORME O RITO.pdfAS COLUNAS B E J E SUAS POSICOES CONFORME O RITO.pdf
AS COLUNAS B E J E SUAS POSICOES CONFORME O RITO.pdfssuserbb4ac2
 
Slides Lição 8, Central Gospel, Os 144 Mil Que Não Se Curvarão Ao Anticristo....
Slides Lição 8, Central Gospel, Os 144 Mil Que Não Se Curvarão Ao Anticristo....Slides Lição 8, Central Gospel, Os 144 Mil Que Não Se Curvarão Ao Anticristo....
Slides Lição 8, Central Gospel, Os 144 Mil Que Não Se Curvarão Ao Anticristo....LuizHenriquedeAlmeid6
 
Os Padres de Assaré - CE. Prof. Francisco Leite
Os Padres de Assaré - CE. Prof. Francisco LeiteOs Padres de Assaré - CE. Prof. Francisco Leite
Os Padres de Assaré - CE. Prof. Francisco Leiteprofesfrancleite
 
Os Tempos Verbais em Inglês-tempos -dos-
Os Tempos Verbais em Inglês-tempos -dos-Os Tempos Verbais em Inglês-tempos -dos-
Os Tempos Verbais em Inglês-tempos -dos-carloseduardogonalve36
 
AULA Saúde e tradição-3º Bimestre tscqv.pptx
AULA Saúde e tradição-3º Bimestre tscqv.pptxAULA Saúde e tradição-3º Bimestre tscqv.pptx
AULA Saúde e tradição-3º Bimestre tscqv.pptxGraycyelleCavalcanti
 
Apresentação sobre as etapas do desenvolvimento infantil
Apresentação sobre as etapas do desenvolvimento infantilApresentação sobre as etapas do desenvolvimento infantil
Apresentação sobre as etapas do desenvolvimento infantilMariaHelena293800
 
GRAMÁTICA NORMATIVA DA LÍNGUA PORTUGUESA UM GUIA COMPLETO DO IDIOMA.pdf
GRAMÁTICA NORMATIVA DA LÍNGUA PORTUGUESA UM GUIA COMPLETO DO IDIOMA.pdfGRAMÁTICA NORMATIVA DA LÍNGUA PORTUGUESA UM GUIA COMPLETO DO IDIOMA.pdf
GRAMÁTICA NORMATIVA DA LÍNGUA PORTUGUESA UM GUIA COMPLETO DO IDIOMA.pdfrarakey779
 
As Mil Palavras Mais Usadas No Inglês (Robert de Aquino) (Z-Library).pdf
As Mil Palavras Mais Usadas No Inglês (Robert de Aquino) (Z-Library).pdfAs Mil Palavras Mais Usadas No Inglês (Robert de Aquino) (Z-Library).pdf
As Mil Palavras Mais Usadas No Inglês (Robert de Aquino) (Z-Library).pdfcarloseduardogonalve36
 
Slides Lição 9, CPAD, Resistindo à Tentação no Caminho, 2Tr24.pptx
Slides Lição 9, CPAD, Resistindo à Tentação no Caminho, 2Tr24.pptxSlides Lição 9, CPAD, Resistindo à Tentação no Caminho, 2Tr24.pptx
Slides Lição 9, CPAD, Resistindo à Tentação no Caminho, 2Tr24.pptxLuizHenriquedeAlmeid6
 
5ca0e9_ea0307e5baa1478490e87a15cb4ee530.pdf
5ca0e9_ea0307e5baa1478490e87a15cb4ee530.pdf5ca0e9_ea0307e5baa1478490e87a15cb4ee530.pdf
5ca0e9_ea0307e5baa1478490e87a15cb4ee530.pdfedjailmax
 
Produção de poemas - Reciclar é preciso
Produção  de  poemas  -  Reciclar é precisoProdução  de  poemas  -  Reciclar é preciso
Produção de poemas - Reciclar é precisoMary Alvarenga
 
Recurso da Casa das Ciências: Bateria/Acumulador
Recurso da Casa das Ciências: Bateria/AcumuladorRecurso da Casa das Ciências: Bateria/Acumulador
Recurso da Casa das Ciências: Bateria/AcumuladorCasa Ciências
 
O que é uma Revolução Solar. tecnica preditiva
O que é uma Revolução Solar. tecnica preditivaO que é uma Revolução Solar. tecnica preditiva
O que é uma Revolução Solar. tecnica preditivaCludiaRodrigues693635
 
América Latina: Da Independência à Consolidação dos Estados Nacionais
América Latina: Da Independência à Consolidação dos Estados NacionaisAmérica Latina: Da Independência à Consolidação dos Estados Nacionais
América Latina: Da Independência à Consolidação dos Estados NacionaisValéria Shoujofan
 
Manual dos Principio básicos do Relacionamento e sexologia humana .pdf
Manual dos Principio básicos do Relacionamento e sexologia humana .pdfManual dos Principio básicos do Relacionamento e sexologia humana .pdf
Manual dos Principio básicos do Relacionamento e sexologia humana .pdfPastor Robson Colaço
 

Último (20)

Fotossíntese para o Ensino médio primeiros anos
Fotossíntese para o Ensino médio primeiros anosFotossíntese para o Ensino médio primeiros anos
Fotossíntese para o Ensino médio primeiros anos
 
INTRODUÇÃO A ARQUEOLOGIA BÍBLICA [BIBLIOLOGIA]]
INTRODUÇÃO A ARQUEOLOGIA BÍBLICA [BIBLIOLOGIA]]INTRODUÇÃO A ARQUEOLOGIA BÍBLICA [BIBLIOLOGIA]]
INTRODUÇÃO A ARQUEOLOGIA BÍBLICA [BIBLIOLOGIA]]
 
Atividade com a música Xote da Alegria - Falamansa
Atividade com a música Xote  da  Alegria    -   FalamansaAtividade com a música Xote  da  Alegria    -   Falamansa
Atividade com a música Xote da Alegria - Falamansa
 
PPP6_ciencias final 6 ano ano de 23/24 final
PPP6_ciencias final 6 ano ano de 23/24 finalPPP6_ciencias final 6 ano ano de 23/24 final
PPP6_ciencias final 6 ano ano de 23/24 final
 
Atividades-Sobre-o-Conto-Venha-Ver-o-Por-Do-Sol.docx
Atividades-Sobre-o-Conto-Venha-Ver-o-Por-Do-Sol.docxAtividades-Sobre-o-Conto-Venha-Ver-o-Por-Do-Sol.docx
Atividades-Sobre-o-Conto-Venha-Ver-o-Por-Do-Sol.docx
 
AS COLUNAS B E J E SUAS POSICOES CONFORME O RITO.pdf
AS COLUNAS B E J E SUAS POSICOES CONFORME O RITO.pdfAS COLUNAS B E J E SUAS POSICOES CONFORME O RITO.pdf
AS COLUNAS B E J E SUAS POSICOES CONFORME O RITO.pdf
 
Slides Lição 8, Central Gospel, Os 144 Mil Que Não Se Curvarão Ao Anticristo....
Slides Lição 8, Central Gospel, Os 144 Mil Que Não Se Curvarão Ao Anticristo....Slides Lição 8, Central Gospel, Os 144 Mil Que Não Se Curvarão Ao Anticristo....
Slides Lição 8, Central Gospel, Os 144 Mil Que Não Se Curvarão Ao Anticristo....
 
Os Padres de Assaré - CE. Prof. Francisco Leite
Os Padres de Assaré - CE. Prof. Francisco LeiteOs Padres de Assaré - CE. Prof. Francisco Leite
Os Padres de Assaré - CE. Prof. Francisco Leite
 
Os Tempos Verbais em Inglês-tempos -dos-
Os Tempos Verbais em Inglês-tempos -dos-Os Tempos Verbais em Inglês-tempos -dos-
Os Tempos Verbais em Inglês-tempos -dos-
 
AULA Saúde e tradição-3º Bimestre tscqv.pptx
AULA Saúde e tradição-3º Bimestre tscqv.pptxAULA Saúde e tradição-3º Bimestre tscqv.pptx
AULA Saúde e tradição-3º Bimestre tscqv.pptx
 
Apresentação sobre as etapas do desenvolvimento infantil
Apresentação sobre as etapas do desenvolvimento infantilApresentação sobre as etapas do desenvolvimento infantil
Apresentação sobre as etapas do desenvolvimento infantil
 
GRAMÁTICA NORMATIVA DA LÍNGUA PORTUGUESA UM GUIA COMPLETO DO IDIOMA.pdf
GRAMÁTICA NORMATIVA DA LÍNGUA PORTUGUESA UM GUIA COMPLETO DO IDIOMA.pdfGRAMÁTICA NORMATIVA DA LÍNGUA PORTUGUESA UM GUIA COMPLETO DO IDIOMA.pdf
GRAMÁTICA NORMATIVA DA LÍNGUA PORTUGUESA UM GUIA COMPLETO DO IDIOMA.pdf
 
As Mil Palavras Mais Usadas No Inglês (Robert de Aquino) (Z-Library).pdf
As Mil Palavras Mais Usadas No Inglês (Robert de Aquino) (Z-Library).pdfAs Mil Palavras Mais Usadas No Inglês (Robert de Aquino) (Z-Library).pdf
As Mil Palavras Mais Usadas No Inglês (Robert de Aquino) (Z-Library).pdf
 
Slides Lição 9, CPAD, Resistindo à Tentação no Caminho, 2Tr24.pptx
Slides Lição 9, CPAD, Resistindo à Tentação no Caminho, 2Tr24.pptxSlides Lição 9, CPAD, Resistindo à Tentação no Caminho, 2Tr24.pptx
Slides Lição 9, CPAD, Resistindo à Tentação no Caminho, 2Tr24.pptx
 
5ca0e9_ea0307e5baa1478490e87a15cb4ee530.pdf
5ca0e9_ea0307e5baa1478490e87a15cb4ee530.pdf5ca0e9_ea0307e5baa1478490e87a15cb4ee530.pdf
5ca0e9_ea0307e5baa1478490e87a15cb4ee530.pdf
 
Produção de poemas - Reciclar é preciso
Produção  de  poemas  -  Reciclar é precisoProdução  de  poemas  -  Reciclar é preciso
Produção de poemas - Reciclar é preciso
 
Recurso da Casa das Ciências: Bateria/Acumulador
Recurso da Casa das Ciências: Bateria/AcumuladorRecurso da Casa das Ciências: Bateria/Acumulador
Recurso da Casa das Ciências: Bateria/Acumulador
 
O que é uma Revolução Solar. tecnica preditiva
O que é uma Revolução Solar. tecnica preditivaO que é uma Revolução Solar. tecnica preditiva
O que é uma Revolução Solar. tecnica preditiva
 
América Latina: Da Independência à Consolidação dos Estados Nacionais
América Latina: Da Independência à Consolidação dos Estados NacionaisAmérica Latina: Da Independência à Consolidação dos Estados Nacionais
América Latina: Da Independência à Consolidação dos Estados Nacionais
 
Manual dos Principio básicos do Relacionamento e sexologia humana .pdf
Manual dos Principio básicos do Relacionamento e sexologia humana .pdfManual dos Principio básicos do Relacionamento e sexologia humana .pdf
Manual dos Principio básicos do Relacionamento e sexologia humana .pdf
 

Coordenadas cartesianas

  • 2. Coordenadas cartesianas é o conjunto de pontos pertencentes ao plano cartesiano Eixos Cartesianos: São as retas x, e y perpendiculares entre si x y 0 P( x,y) P: representa o ponto no plano cartesiano X : representa o eixo das abscissas Y: representa o eixo das ordenadas y x
  • 3. O par ordenado é o conjunto constituído de dois elementos sempre na mesma ordem (x,y). x y 0 P( x,y) P: representa o ponto no plano cartesiano X : representa o eixo das abscissas Y: representa o eixo das ordenadas Par ordenado:
  • 4. Par ordenado: O par ordenado é um conjunto de dois elementos dispostos na mesma ordem (x,y) y -3 -2 -1 0 1 2 3 4 5 6 7 6 5 4 3 2 1 -1 -2 1 P 2P Indicando as coordenadas dos pontos, no plano: P3 4 P x P1 = ( 4, 2) P2 = (1 , 6) P3 = ( -3,1) e P4 = (-1, 3)
  • 5. Divisão do Plano cartesiano em quadrantes y -4 -3 -2 -1 0 1 2 3 4 5 6 7 6 5 4 3 2 1 -1 -2 2P P3 4 P 3º quadrante 2º quadrante X 1º quadrante 4º quadrante • • P5 P7 1P 6P •
  • 6. Observação: Características dos Pares ordenados no Plano Cartesiano P1 ∈ 1º q. ⇒ (+, +) P5∈ X ⇒ (x, 0) P2 ∈ 2º q. ⇒ (−, +) P6∈ Y ⇒ (0, y) P3 ∈ 3º q. ⇒ (−, −) P7∈ X ∩ Y ⇒(0, 0) P4 ∈ 4º q. ⇒ (+, −)
  • 7. Aplicações: Construa o plano cartesiano, localize os pontos dados, una esses pontos e determine a área e o perímetro da figura formada. a) P1(5, 0); P2(5, 5); P3(0, 0); P4(0, 5). b) P1(-2, -2); P2(3, -2); P3(-2, 1). c) P1(-3, 3); P2(0, 0); P3(-3, 0); P4(0, 3).
  • 8. Distância entre dois pontos no plano cartesiano Observe o gráfico 0 x1 x2 y2 y1 P2 (x2, y2) d P1(x1, x2) Dedução da equação: Por Pitágoras temos: (hip)2 = (cat)2 + (cat)2 d 2 = ( x2 – x1)2 + ( y2 – y1)2 d = 2 12 2 12 )y–y()x–x( +
  • 9. Exercícios: Determine a distância entre os pontos dados: 1. A(-2, 3) e B(-1,-1) 2. A(4, 5) e B( 0, 2) 3. A(2, -6) e B(-1, 0) 4. A(1, 0) e B(-2, 3) 5. A( , 0) e B( 0, 1)5
  • 10. Pares ordenados Igualdade entre pares ordenados: Dois pares ordenados são iguais quando seus elementos forem iguais. Notação: (x, y) = ( a, b) ⇒ x = a e y = b Segundo essa afirmação, calcule as variáveis nas igualdades entre os pares dados: a) ( 2a + b, 5a – 3b) = (3, 2) b) (a + 2b, 17) = (6, a + b) c) (x +y, x – y) = (3, 5) d) (5x + 2y, 2x + y) = (12, 3) e) (a2 + a, 4b2 – 1 ) = ( 2, 7)
  • 11. Figuras Planas Área, Diagonal e Perímetro do quadrado: A = x = 2 P = 4  D = 2a D
  • 12. Figuras Planas: Área e Perímetro do Retângulo: A = b x h P = 2b + 2h b h d
  • 13. Figuras Planas: Área e Perímetro do Triângulo Isósceles: h b 2 bxh A = P = b + + 
  • 16. Atividades: (sugstão, faça no final da aula) Calcular a medida da diagonal do quadrado de lado . Calcular a medida da diagonal de um retângulo de comprimento e altura .   cm28 cm23cm26